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Preface

The use and understanding o f m atter in its condensed (liquid or solid) state have 
gone hand  in hand  with the advances o f civilization and technology since the 
first use o f primitive tools. So im portan t has the control o f condensed m atter 
been to  m an th a t historical ages -  the Stone Age, the Bronze Age, the Iron 
Age -  have often been nam ed after the m aterial dom inating the technology of 
the time. Serious scientific study o f condensed m atter began shortly after the 
Newtonian revolution. By the end o f the nineteenth century, the foundations of 
our understanding o f  the m acroscopic properties o f m atter were firmly in place. 
Thermodynamics, hydrodynam ics and elasticity together provided an essentially 
complete description o f the static and dynam ic properties o f gases, liquids and 
solids at length scales long com pared to m olecular lengths. These theories rem ain 
valid today. By the early and m id-twentieth century, new ideas, m ost notably 
quantum  mechanics and new experim ental probes, such as scattering and optical 
spectroscopy, had  been introduced. These established the atom ic nature o f m atter 
and opened the door for investigations and understanding o f condensed m atter 
at the m icroscopic level. The study o f quantum  properties o f solids began 
in the 1920s and continues today in w hat we m ight term  “conventional solid 
state physics”. This field includes accomplishments ranging from  electronic band 
theory, which explains metals, insulators and semiconductors, to the theory of 
superconductivity and the quantum  Hall effect. The fundam ental problem s of 
how to trea t the effects o f  the strong C oulom b interaction in m any electron 
systems and the effects o f lattice disorder rem ain only partially resolved to  this 
day.

The second half o f the tw entieth century has seen a new set o f paradigm s in tro
duced into physics, originating in condensed m atter and spreading to o ther areas. 
The idea is to  span length scales, to  see w hat rem ains as an observer steps back 
from the microscopics o f  a system and then keeps stepping back. X-ray, neutron 
and light scattering have become powerful probes o f structure from  microscopic 
to near m acroscopic length scales. The study o f critical phenom ena has led to the 
notions o f scaling and universality and has spawned the renorm alization group, 
which shows how identical behavior a t long length scales can arise from  widely 
different microscopic interactions. A t the same time, the concepts o f broken 
symmetry and order param eters have emerged as unifying theoretical concepts 
applicable no t only to  condensed m atter physics but also to  particle physics and

xvii
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even to  cosmology. These theoretical advances have provided a fram ework for 
describing condensed m atter phases: liquid crystals, superfluid helium, incom 
m ensurate crystals, quasicrystals and systems in one and two dimensions, as well 
as classical fluids and regular periodic solids.

In spite o f  these unifying advances, conventional solid state physics and “soft” 
condensed m atter physics (which includes the study o f m any statistical problems 
such as critical phenom ena as well as the study o f soft m aterial such as fluids and 
liquid crystals) have very m uch rem ained distinct fields. The present book grew 
out o f the conviction th a t graduate program s in physics should offer a course 
in the broad subject o f condensed m atter physics, a course th a t would prepare 
students to  begin research in any area o f this vast, yet still expanding, field. O ur 
experience was tha t students learned either conventional solid state physics or 
soft condensed m atter physics, and tha t each group rem ained blissfully ignorant 
o f the other. We therefore developed, and began to teach, a one-year course in 
condensed m atter physics at the University o f Pennsylvania.

The first semester o f this course was designed to  establish a general framework, 
based on concepts o f symmetry, for approaching condensed phases, from  high- 
tem perature fluids to  low -tem perature quantum  crystals. It included an overview 
of the great variety o f condensed systems found in nature and a description of 
their symmetry in term s o f order param eters. It then discussed phase transitions, 
elasticity, hydrodynam ics and topological defect structure in term s o f these order 
param eters. It revisited m any o f the problems o f the nineteenth century from  a 
m odern viewpoint. The second semester treated subjects norm ally associated with 
conventional solid state physics and m any-body theory: norm al Fermi liquids, 
electrons, phonons, m agnetism  and superconductivity. However, these topics were 
taught within the general fram ework established during the first semester. None 
o f the concepts in the first semester involved quantum  mechanics in an essential 
way, whereas those in the second semester did. We, therefore, in our own minds, 
referred to  the first semester as “h =  0” and the second semester as “fi φ  0”. The 
first semester also dealt m uch m ore extensively with “soft” systems, such as liquid 
crystals or microemulsions, and we sometimes referred to  the first semester as 
“soft” condensed m atter physics and to the second semester as “h a rd ” condensed 
m atter physics. The concepts to  be covered in the first semester were, however, 
quite general and applied to both  “soft” and “h ard ” systems. We have each 
taught the full year course described above m any times to  second-year graduate 
students at both  the University o f Pennsylvania and Princeton University.

The present book evolved from  notes prepared for the first semester o f the 
course. While there are several excellent texts dealing with h Φ 0 solid state 
physics and with m any-body physics, we have been unable to  find a text dealing 
with h =  0, or soft condensed m atter physics, to recom m end to our students or 
colleagues. Different aspects o f this subject are available in the research literature 
and in several, sometimes material-specific, books. We, and others, have long 
felt th a t there is an acute need for a text on m odern aspects o f  condensed
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m atter physics, one th a t would present a unified picture o f structures other 
than periodic solids, th a t would treat broken symmetry, critical phenom ena and 
the renorm alization group, and tha t would explore the role o f fluctuations and 
topological defects in determ ining the existence o f order and the nature o f phase 
transitions. This book is an attem pt to address this need.

W hat do you need to  make use o f this book? Some knowledge o f quantum  
mechanics would be helpful bu t no t essential. Statistical mechanics is an im portant 
prerequisite and is used throughout the book. (A lthough C hapter 3 provides a 
review o f statistical mechanics, it is intended as a refresher to define notation 
rather than  as a substitute for prior exposure.) A course in solid state physics 
would be helpful, but again no t absolutely essential. If  you are a field theorist, 
the book should m ake nice bedtim e reading and introduce you to  some really 
interesting relevant physics. The book is m eant as a first course in condensed 
m atter physics for second-year graduate students regardless o f their field of 
specialization. It relies m ore on a general background o f physical understanding 
and m athem atical tools appropriate to th a t level than  it does on any specific 
previous course.

Though originally intended as a text for graduate courses, the book should 
also serve as a reference text for researchers in condensed m atter physics, m a
terials science, chemistry, engineering and applied physics. We have attem pted 
to cover each subject as completely as possible, beginning with simple ideas and 
ending with advanced concepts. Thus, for example, we present mean-field theory 
in a variety o f  guises, beginning with Bragg-Williams theory, but also including 
variational and field-theoretic approaches; or we cover descriptive aspects o f 
topological defects and m ore advanced concepts like lattice duality transform a
tions. Parts o f the book could be, and some have been, used in m ore elementary 
courses such as undergraduate solid state physics, statistical mechanics or m ate
rials science. A t the o ther extreme, in m any scientific argum ents with colleagues 
and com petitors, we have found the notes for this text an invaluable resource in 
proving either our point or theirs.

The text as it stands is suitable for a full year graduate course, although 
we have never taught it as such. Chapters 1-6 establish the fundamentals. 
They introduce the systems to  be studied, present experim ental and theoretical 
tools, set up mean-field theories and show how they break down, investigate 
critical phenom ena, and discuss symmetry breaking and the resulting generalized 
elasticity. We usually teach all o f C hapters 1-6 and parts o f the rem aining four 
chapters (usually all o f C hapter 9 on topological defects and bits and pieces o f the 
other three chapters). On occasion, we have, instead o f including all o f C hapter 9, 
taught Chapters 7 and 8 on dynam ical processes and hydrodynam ics, followed 
by parts o f C hapter 10 on dom ain walls, kinks and solitons. W hen the whole 
year sequence was taught, we sometimes taught C hapters 1-6 and C hapter 9 in 
the first semester, followed by parts o f C hapters 7 and 8 in the second semester, 
before moving on to  m any-body physics. Though we have generally taught this



xx Preface

text as a part o f  the full year sequence discussed above, we believe it can serve 
as an excellent text book for a second semester o f  statistical mechanics, as a 
secondary text for a course in m any-body physics, and as a stand alone text for 
condensed m atter physics.

Each chapter concludes with a set o f problems. We have tried to include 
problem s at all levels o f difficulty. M any problem s are, however, challenging, even 
for seasoned professionals. W here possible, we have tried to provide answers or 
answer clues for the m ore difficult problems.

Astonishingly, none o f our friends or colleagues has tried to  dissuade us from  
com pleting this book. Some have had a direct or indirect influence on both  the 
content and style o f this book. The pedagogical and research approaches o f Phil 
A nderson, PG . de Gennes, Bert H alperin, Paul M artin  and D avid N elson can be 
seen th roughout the book. We received constant encouragem ent and help from  
Shlomo Alexander, M ark  Azbel, Daniel Fisher, G ary Grest, Scott M ilner, Burt 
Ovrut, Phil Pincus, D avid Pine, Jacques Prost, Cyrus Safinya, D avid Weitz and 
Tom Witten. We are extremely grateful to  Phil Nelson, who read every word of 
the m anuscript, corrected m any m isprints and m ade num erous suggestions for 
improving the text, to  Tetsuji Tokihiro for using prelim inary notes as a basis 
for a course a t the University o f Tokyo and for providing a lengthy list o f 
corrections, to R ay Goldstein, M ark  Robbins, and Holger Stark for pointing out 
errors right up to  the publication date, and to  num erous students and postdocs 
at Penn and Princeton who read and com m ented on various versions o f the notes 
leading to  the final m anuscript. We are also grateful to  Chris Henley and Josh 
Socolar for using the unfinished m anuscript in courses they taught at Cornell and 
D uke University, respectively. Finally, we are grateful to  Exxon Research and 
Engineering Co. for providing a friendly environm ent where m any discussions 
about this book took place. We owe particular thanks to Jodi Forlizzi for m ost 
o f the artwork.



1 _______________

Overview

1.1 Condensed matter physics

Imagine th a t we knew all o f the fundam ental laws o f nature, understood them  
completely, and could identify all o f  the elementary particles. W ould we be able 
to explain all physical phenom ena with this knowledge? We could do a good job  
of predicting how a single particle moves in an applied potential, and we could 
equally well predict the m otion o f two interacting particles (by separating center of 
mass and interparticle coordinates). But there are only a few problems involving 
three particles th a t we could solve exactly. The phenom ena we commonly observe 
involve no t two or three but o f order 1027 particles (e.g., in a liter o f  w ater); 
there is little hope o f finding an analytical solution for the m otion o f all o f these 
particles. M oreover, it is no t clear th a t such a solution, even if it existed, would 
be useful. We cannot possibly observe the m otion o f each o f 1027 particles. We 
can, however, observe m acroscopic variables, such as particle density, m om entum  
density, o r m agnetization, and measure their fluctuations and response to  external 
fields. It is these observables th a t characterize and distinguish the m any different 
thermodynamically stable phases o f m atter: liquids flow, solids are rigid; some 
m atter is transparent, o ther m atter is colored; there are insulators, metals and 
semiconductors, and so on.

Condensed m atter physics provides a fram ework for describing and determining 
what happens to large groups o f particles when they interact via presum ably well- 
known forces. N atu re  provides us with an alm ost unlimited variety o f m any-body 
systems, from  dilute gases and quantum  solids to  living cells and quark-gluon 
plasmas. Collections o f even the simplest atom s exist in a num ber o f different 
states. Helium, for example, can be found no t only in gaseous, liquid, and solid 
phases bu t also as a non-viscous superfluid at low tem peratures. Condensed m at
ter physics is the study o f all o f these m any-body states o f  m atter. Its paradigm s 
can and do provide insight into fields as diverse as biology and particle physics.



2 1 Overview

Indeed, m any o f the seminal ideas o f m odern theories o f fundam ental interactions, 
such as broken symmetry, had  their origins in condensed m atter physics.

Condensed m atter physics deals with m any-body interacting systems. However, 
it builds on, and in turn  contributes to, o ther fields. I t requires a knowledge o f the 
fundam ental force laws between atom s and molecules and the properties o f small 
groups o f  these particles; it thus builds on atomic and m olecular physics as well as 
on classical and quantum  mechanics. Since it focuses on macroscopic properties 
rather than  trajectories o f individual particles, condensed m atter physics requires 
an understanding o f  how things behave under different averaging processes; 
it builds on statistical mechanics and thermodynamics. Because m ost o f the 
m acroscopic variables o f interest vary slowly in space, their statistical mechanics 
can be described by continuum  field theories o f  the type first introduced in 
particle physics; m odern condensed m atter physics thus builds on quantum  field 
theory.

Probably the m ost im portant unifying concept to  emerge from  the study of 
condensed m atter physics is th a t m acroscopic properties are governed by conser
vation laws and broken symmetries. In  a system o f particles, particle num ber, 
energy, and m om entum  are conserved. A t high tem peratures, all such systems 
are disordered, uncorrelated, uniform  and isotropic. The probability o f finding 
a particle at a given point in space is independent o f the position o f th a t point 
in space and independent o f w hether there is another particle nearby. This high- 
tem perature state has the full ro tational and translational symmetry o f  free space. 
The low-frequency dynamical properties o f  this state are controlled entirely by 
hydrodynam ical equations, which in tu rn  are determ ined by conservation laws. 
As tem perature is lowered, new therm odynam ically stable states condense. These 
states have progressively lower symmetry. For example, a periodic crystal is 
invariant with respect to  only a discrete set o f translations rather than  to  the 
continuum  o f translations th a t leave the high-tem perature state unchanged. Asso
ciated with each broken symmetry are distortions, defects, and dynamical modes 
tha t provide paths to  restore the symmetry o f the original high-tem perature state. 
The properties o f  each broken-symmetry phase are largely controlled by these 
distortions, defects, and modes. A crystalline solid for example can be sheared. 
The energy o f shear distortions is determ ined by an elastic constant, which is 
a particular rigidity associated with broken translational symmetry. There are 
shear sound modes in crystals no t found in the high-tem perature isotropic phase. 
Finally, there are various defects tha t in terrupt an otherwise ideal crystal structure.

Conservation laws and broken symmetries are equally im portant in classical 
and quantum  systems. Their consequences, when expressed in the appropriate 
language, are to a considerable degree independent o f w hether the underlying 
particle dynamics is classical or quantum  mechanical. Thus, general tru ths about 
all o f nature’s phases can be obtained by studying classical ra ther than  quantum  
systems. This book will explore condensed m atter physics in a largely classical 
context. M any o f its ideas, however, apply quite generally.
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1.2 An example - H20

1 Gaseous and liquid states

To see how some o f these ideas work, let us consider our experience with 
a rather com m on m aterial -  water. A lthough the w ater molecule is no t the 
physicist’s ideal (argon would probably be closer to ideal because o f its filled 
atomic shell, spherically symmetric shape, and isotropic interparticle interactions), 
our experience with the phase transitions and different states o f w ater is more 
extensive. A t high tem perature, w ater is steam or water vapor. Its kinetic energy 
dominates over its potential energy, and, as a result, it exists in a state th a t is 
isotropic and hom ogeneous and th a t fills any volume allowed it. This gaseous or 
fluid phase has complete translational and rotational symmetry. There is equal 
probability o f finding a molecule anywhere in the containing volume. The density 
is uniform. There are very few correlations between the positions o f the molecules. 
If the gas were ideal, then the pointlike particles would completely ignore the 
presence o f  each other.

If we look at this gas, the water vapor in the atm osphere, we do no t see it. 
In order for som ething th a t has no direct absorptions at the optical frequency 
to be seen, it m ust scatter light. T hat means there m ust be a m ism atch in the 
refractive index over some distance. In  m ost cases, the refractive index is directly 
proportional to  the density. Since the density o f the gas is uniform, there are 
no index variations, and there is no scattering. O f course, there will always 
be fluctuations in the density, but, to  be seen, they m ust have a length scale 
comparable to  the wavelength o f light.

Now let us lower the tem perature, i.e., the average kinetic energy. As the poten
tial energy becomes m ore im portant, specific interm olecular interactions come into 
play. For neutral water molecules, the dom inant interaction is the dipole-dipole 
interaction, which for particular configurations is attractive. A t short distances, 
comparable to  the charge separation in the dipoles, the individual charges attract 
each other m ore strongly than  the dipole approxim ation would predict. This 
stronger, m ore orientationally-dependent interaction, is called hydrogen bonding. 
A ttraction tends to  enhance density fluctuations: each molecule would prefer to 
spend m ost o f its time in a region where there are other molecules rather than  
in one where there are none. This clustering leads no t only to  a lower energy but 
also to  a lower entropy. As tem perature is lowered, density fluctuations brought 
about by clustering grow in am plitude and persist for longer times. The larger 
fluctuations take longer to develop and longer to decay. Increased size dictates 
a slower dynamics. Density is still uniform  but only when averaged over large 
regions o f  space or over long intervals o f time. The end result o f these attractive 
interactions is the form ation o f another fluid phase, a liquid phase (water) whose 
density is greater than  th a t o f the gas phase. The principal physical quantity 
distinguishing the liquid and gas phases is their density.
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Fig. 1.2.1. The phase diagram for water.

2 The liquid-gas phase transition

Now suppose we have a closed container o f  water vapor at a density o f 0.322 
g/cc at room  tem perature. As the tem perature is lowered, density fluctuations 
continue to grow and live longer. The system now no longer looks hom ogeneous: 
there are regions with greater and lesser density. As the size o f these regions 
approaches the wavelength o f visible light, scattering increases dram atically -  the 
system looks “milky” (milk has droplets o f fat whose diam eter is o f  order one 
m icron (1μ) and com parable to  the wavelength o f visible light ~  0.5/i -  th a t is 
why it looks “milky”). This is the phenom enon o f critical opalescence and critical 
slowing down (the divergence o f length and time scales). Finally, the size and 
size range o f fluctuations become so large th a t some high- or low-density regions 
span the container. They also live long enough th a t the denser regions fall and 
the lighter ones rise in the gravitational field. The denser regions coalesce on the 
bottom , and the dense liquid and less-dense gas phases separate. Once again each 
o f the phases is hom ogeneous and nonscattering. The only evidence we have that 
the two phases differ is tha t they are separated by a meniscus, m ade visible by 
the difference in the index o f refraction o f  the two phases.

This m ost com m on condensation or phase transition from a gas to  a liquid 
is different from m ost o f the o ther phase transitions we will encounter. The 
symmetry o f the two phases is the same, and there is no loss o f symmetry in 
going to  the low -tem perature phase (both gas and liquid are fluid phases). This 
is reflected in the fact th a t in the phase diagram  shown in Fig. 1.2.1, it is possible, 
by going around the critical point, to  go from the gas phase to the liquid phase 
w ithout traversing any phase boundary.

The scenario in the above paragraph  resulted from  a special choice o f density 
and does no t correspond to our usual experience with water condensation. W hen



1.2 An example - H 20 5

water is no t a t the critical density (0.322 g/cc) in a closed container, som ething else 
happens. As tem perature is lowered (at pressures below the critical pressure), there 
is a discontinuous change in the therm odynam ically stable state as the gas-liquid 
phase boundary  is crossed. Consider now the gas phase at some tem perature. 
Its average density is hom ogeneous and uniform. There will, however, be rare 
fluctuations creating droplets o f the higher-density liquid phase. As tem perature 
is lowered, the num ber and size o f these droplets will grow, but none will become 
very large nor persist for a very long time. W hen the tem perature is lowered 
beyond the gas-liquid phase boundary, the sample does no t hom ogeneously and 
instantaneously change to  the higher-density liquid phase. R ather, droplets o f the 
liquid phase, already present by virtue o f  fluctuations in the gas phase, will grow 
larger and persist for longer times. Long before the average size o f these droplets 
diverges, a few droplets will grow to be very large, m ost often nucleating on a dust 
particle or a salt molecule. They become large enough that, ra ther than  decaying, 
they grow with time and absorb surrounding droplets and gas molecules as they 
grow. Their size is determ ined by kinetics, by how fast molecules can diffuse to 
their outer surface and be incorporated into their masses. As the size o f these 
dense droplets becomes com parable to  or larger than  the wavelength o f visible 
light, they scatter light strongly. This is w hat is responsible for the milky whiteness 
of clouds (Fig. 1.2.2), which are suspended droplets o f water. This is no t critical 
opalescence, but its effect is similar. The growth o f droplets at the discontinuous 
gas-liquid transition is m ore rapid  than  the growth o f fluctuations a t the critical 
point. This is one o f the characteristic differences between discontinuous, or 
first-order, transitions and continuous, or second-order, transitions.

If  we apply pressure to the gas, its density changes, i.e., it is compressible. 
At the critical point, the liquid and gas phases with different densities are in 
equilibrium. Pressure can cause transform ation o f some volume o f gas into the 
denser liquid phase with no cost in energy: a small pressure change leads to  a 
large density change. There is a divergent rate o f change o f  density with pressure, 
i.e., a divergent compressibility. M ost o f the continuous transitions tha t we will 
study are signaled by the divergence at a critical tem perature o f a quantity  usually 
referred to as a susceptibility. The compressibility at the liquid-gas transition is 
an example o f such a susceptibility. The diverging compressibility at the liquid- 
gas transition can literally be seen via critical opalescence. The diverging size 
and slowing down o f fluctuations are just another m anifestation o f the same 
phenomenon tha t produces a diverging compressibility.

3 Spatial correlations in the liquid state

The liquid state is different from  the gaseous state, if no t by symmetry then 
by other properties: density and compressibility, for example. Less obvious is 
that the particles in the liquid are m uch m ore correlated. The distance between 
particles is now set by the trade-off between the repulsive and attractive parts
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Fig. 1.2.2. Clouds are droplets of water or ice with characteristic size 1-10μ. 
The inhomogeneous density on the scale of the wavelength of visible light 
(~  0.5μ) is responsible for the strong multiple scattering and white or milky 
appearance. It is similar to the phenomenon of critical opalescence observed 
in second-order phase transitions.

o f the interparticle interactions. A lthough the density is uniform, the correlation 
between the positions o f neighboring atom s is strong. If  there is a particle a t one 
point, there is no chance th a t another will sit on top o f it and a good chance that 
another will be a particle-diam eter away.

We now proceed to cool the system further. The desire o f attractive interactions 
to bring particles close together has largely been satisfied by the form ation o f 
the high-density nearly incompressible liquid. The local packing o f molecules
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is determined predom inantly by the repulsive interaction, which prevents atoms 
from overlapping. W hen particles are pushed together, the electronic energy 
increases very rapidly because particles with the same spin cannot occupy the 
same point in space (exclusion principle) and because electrons with any spin 
repel each other via the direct Coulom b interaction. In  a simpler liquid, say liquid 
argon, the repulsive interaction would be well described as a hard-wall potential 
at twice the atomic radius. Such a hard-sphere model gives us the essence of 
the liquid and solid physics o f m any systems. A ttraction  wants to bring atoms 
together. H ard-sphere repulsion leads to a discrete set o f local configurations tha t 
take m axim um  advantage o f attractive interactions. A tom s w ant to form  triangles 
and then tetrahedra  and then fill the triangular faces o f  the tetrahedra to form 
larger clusters. Two things prevent this. First, therm al energy keeps atom s from 
packing too tightly in the liquid phase. Secondly, the local algorithm  for packing 
atoms as densely as possible by m aking te trahedra  from  all exposed triangular 
faces and so on cannot be continued indefinitely w ithout the introduction of 
voids tha t are disfavored by the attractive interaction: it is impossible to  fill 
space by packing tetrahedra or icosahedra. There is a sort o f frustration arising 
from the inability o f the system to satisfy simultaneously local packing rules 
and global packing constraints. This process, however, paints a reasonably good 
picture o f the structure o f simple liquids and their atomic correlations. The strong 
correlations -  local order -  become increasingly more im portant as tem perature 
is decreased. In order to see correlations at this interm olecular length scale, 
we have to  probe with X-rays or neutrons which can probe this characteristic 
distance.

Liquid w ater behaves in m uch the same way as liquid argon, bu t the complex 
shape o f water molecules and the com plicated interactions between them  lead 
to interesting differences between argon and water. The oxygen in a water 
molecule bonds its two hydrogens at an angle o f 105° and arranges its four other 
electrons in two lone-pair bonds. To keep out o f each other’s way, the four bonds 
point toward the vertices o f  a tetrahedron. The liquid gains attractive energy 
by pointing the negative lone pairs tow ard the positive hydrogen atom s (this is 
an alternative description o f the hydrogen bonding tha t is responsible for the 
structures o f water and ice as well as m uch o f biology). The w ater molecules 
try to form chains or clumps in which oxygens are tetrahedrally arranged but in 
which the twisted dum bbell molecules at the same time do no t overlap. Liquid 
water gets its condensation energy from  these directional bonds. Correlations 
again build up in response to  these geometrical constraints. A n X -ray scattering 
study o f water has been analyzed to show the density o f molecules around a 
molecule located at the origin. In Fig. 1.2.3, we see th a t the density is depressed 
near the central molecule, increases in a shell o f order a m olecular distance 
away, and then oscillates and decays to  the uniform  density a t fairly short 
distances. N ote also th a t correlations increase significantly as the water is chilled.
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Fig. 1.2.3. The radial distribution function for liquid water is the probability 
distribution for water molecules surrounding a water molecule. There is an 
excluded region close to the central molecule, then an increased density for 
close neighbors, then an oscillating decrease in correlations to the average 
density at distances of a couple of molecular diameters. [A.H. Narton, W.D. 
Danford, and H.A. Levy, Disc. Faraday Soc., 43, 97 (1967).]

4 Ice -  crystallized water

O ur experience tells us that, at some poin t on cooling, water takes on a different 
form -  ice. Ice is a solid, and the first thing we notice about it is tha t it does not 
flow like water. A solid is rigid, it resists shear. But there is a m ore fundam ental 
difference between ice and water. The molecules in ice are arranged in a uniform  
repetitive way on a periodic lattice. The crystal structure o f ice is illustrated in 
Fig. 1.2.4. I t consists o f layers o f rippled hexagons in which neighboring atom s do 
n o t touch but in which the preferred local tetrahedral arrangem ent o f oxygens is 
alm ost m aintained. A lthough we cannot see the periodic lattice directly with our 
eyes, we can easily see some o f its consequences. The hexagonal p lanar structure 
is responsible for the faceting planes and six-fold ro tation symmetry o f the ice 
crystals we find as snowflakes.

In  the far simpler case o f argon, the structure o f the solid phase is determ ined
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Fig. 1.2.4. Crystal structure of common ice. Note the directionality of the 
hydrogen bonds and the approximate tetrahedral coordination of each 
oxygen atom. The structure is a hexagonal “wurzite” form.

by the hard-sphere constraint at short distances and by the attractive interaction 
at somewhat larger distances. The attraction prefers as m any close neighbors as 
possible and favors the densest periodic packing o f  spheres consistent with the 
hard-sphere repulsion. This is the FC C  (face-centered cubic) structure with cubic 
symmetry consisting o f hexagonal planes o f close-packed spheres stacked on top 
of each other.

In a liquid, there are substantial local correlations in the positions o f particles. 
Hard-sphere repulsion prevents two molecules from  overlapping so tha t there 
will be no molecules within a m olecular diam eter o f a given molecule. There will 
certainly be several molecules about a diam eter away and, as a result, a density 
of molecules greater than  the average. By about four to six diam eters away, 
however, the density o f particles will differ little from  the average (Fig. 1.2.3). 
Knowledge o f the position o f one molecule gives essentially no inform ation about 
the positions o f  far away molecules. The situation in a crystal is quite different. 
Molecules occupy, on average, sites on a periodic lattice. The position o f one 
molecule (to specify an origin) and m aybe one other (to specify a direction) will 
determine the positions o f all o ther molecules out to infinity (or at least to  the 
end of the crystallite).



10 1 Overview

5 Broken symmetry and rigidity

A crystal is no t isotropic and hom ogeneous like a liquid. R ather than  being 
invariant with respect to  arbitrary  rotations or displacements, it is invariant only 
under those operations, such as translation by a lattice spacing, tha t leave the 
periodic lattice unchanged. Since it is invariant under fewer operations, a crystal 
has a lower symmetry than  a liquid. The transition from  the liquid to  the crystal 
breaks the symmetry o f the liquid state, and the crystal is often referred to  as a 
broken-sym m etry phase. The set o f  rotations and translations leaving the liquid 
phase unchanged form a continuous group, and the crystal state has a broken 
continuous symmetry. Translations o f a crystal by distances less than  a lattice 
spacing produce a crystal th a t is no t an identical copy o f  the untranslated lattice. 
Such uniform  translations do not, however, change the energy o f the crystal. 
There is, therefore, a continuous m anifold o f crystalline ground states with the 
same energy.

The probability o f finding a water molecule a t a particular position in space 
depends on the positions o f  distant molecules in the crystal. The crystal looks 
m uch m ore ordered than  the liquid. How can we characterize the difference 
between the two states? Average density does no t provide a good characterization, 
although the average density o f  liquid and crystal phases do differ (ice has a lower 
density than  water a t 0°C; m ost solids have a slightly higher density than  the 
liquids with which they are in equilibrium). There is long-range order in the 
crystal associated with its periodic density. Molecules in a crystal are situated 
on the set o f periodically arranged m athem atical points called a lattice. We 
can tell w hether there is long-range periodic order in the same way we test for 
periodicity in anything -  by taking a Fourier transform  and looking for discrete 
peaks in its spectrum. Scattering waves from  a crystal is the experimental way o f 
taking the spatial Fourier transform  because the m atrix element, (k | sample | k '), 
between incident and scattered plane waves | k) and | k ') is ju st the Fourier 
transform  o f the sample perturbation  evaluated at k — k'. So it is the existence of 
a discrete spatial Fourier spectrum  th a t distinguishes a crystal from  a liquid, i.e. 
the existence o f “Bragg spots” in the scattering spectrum.

The Fourier spectrum  or scattering pattern  does no t change when the sam 
ple is displaced as a whole; it is only sensitive to  the relative positions of 
molecules. (It is interferences o f waves scattered from  the molecules at their 
various positions th a t add up to give the Bragg spots.) The molecules are held 
in their positions by interactions with their neighbors; but even in the solid, 
individual molecules and groups o f molecules are subjected to therm al (or quan
tum) fluctuations tha t lead to instantaneous configurations in which molecules 
are no t arranged on an ideal periodic lattice. We can obtain an estimate of 
the m agnitude o f m olecular displacements at finite tem perature by consider
ing the ice to be an elastic m edium  and using the equipartition theorem. An 
ideal crystal consists o f periodically repeated unit cells with a particular size
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and shape. D istortions o f the unit cell are described by strains x /a ,  which 
are displacements o f one part o f the cell relative to another by a distance x 
divided by the characteristic dimension a o f the unit cell. The fact tha t there 
is a continuum  o f strains determ ined by a continuous variable x is intim ately 
associated with the fact tha t a continuous symmetry is broken in going from 
the liquid to  the crystal state. The stress, o r force per unit area, required to 
produce such a strain is G x/a,  where G is an elastic m odulus (for either shear 
or compression) which provides a m easure o f the rigidity o f the crystal phase. 
The force on a unit cell associated with a stress is thus —a2 G x/a  = —kx,  where 
k =  Ga is an effective harm onic spring constant. The equipartition theorem  
states th a t the average potential energy at tem perature T  o f a harm onic os
cillator with spring constant k  is k (x 2) / 2 =  kBT / 2 or th a t the m ean-square 
displacement is (x2) =  kBT / k ,  where kB is the Boltzm ann constant. Thus, the 
mean-square displacem ent in a crystal is inversely proportional to an elastic m od
ulus: (x2) oc k BT /G a .  I f  any o f the elastic m oduli are zero, then a mean-square 
displacement will diverge. Once a random  displacem ent is com parable in size 
to a lattice constant, the periodic order and the discrete peaks in the Fourier 
spectrum are destroyed. Therefore, the rigidity is a necessary condition fo r  the 
existence o f  the periodicity. We will find in general that, associated with each 
phase transition to  a state with a broken continuous symmetry, there will be a 
new rigidity or elastic constant preventing therm al fluctuations from  destroying 
the new state.

The density in a high-tem perature gas or liquid is uniform, and the probability 
of finding a molecule is independent o f position in space. In  a crystal, there is a 
higher probability o f finding a molecule at one point than  at another. How was 
the higher probability point chosen? There was nothing in the original problem 
favoring one point over another. There m ust be a m echanism to restore this lost 
or broken symmetry. It is found in the long-wavelength excitations o f the system. 
The energies involved in distorting the periodic system depend on the relative 
displacement o f neighboring molecules. We m ight expect th a t the dynamical 
modes o f such a system are elastic waves. Conventional com pressional-sound 
modes exist in water as well as in ice; shear sound modes, on the o ther hand, 
exist in ice but no t in water. These m odes have frequencies ω th a t vary linearly 
with wave vector q : ω =  cq, where c is the sound velocity and q =  2 π /λ ,  where 
λ is the wavelength. In  the long-wavelength limit, the frequency or energy of 
the mode approaches zero. There is no restoring force against a long-wavelength 
displacement. M echanically, this is a result o f the fact tha t a t long wavelengths 
we can get a reasonable displacem ent o f a molecule with just an infinitesimal 
change in each bond length over a large num ber o f bonds. Physically, it is the 
consequence o f the fact tha t a uniform  translation o f the system does no t cost any 
energy. We can find the origin for the ice lattice with equal probability anywhere 
in space, but once we have located it, the rest o f the m olecular positions are 
fixed. The appearance o f a hydrodynam ic (that is long-wavelength) m ode with
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zero frequency is another general feature o f every transition yielding a broken 
continuous symmetry.

6 Dislocations -  topological defects

There is another property o f ice with which you may be familiar (depending on 
where you live): it flows. The rigidity, which we discussed above, is a measure of 
the resistance o f ice to deform ation. If  applied forces or stresses are sufficiently 
weak, ice will respond by distorting or straining in a tim e-independent way. 
(The shear m odulus is defined in the limit o f zero stress.) W hen the stress is 
released, ice returns to  its initial undistorted form. However, as stresses increase, 
ice will eventually flow. It will distort continuously with time, and when the 
stress is removed it will no t return to its original shape. It has undergone plastic 
deformation. The m ost dram atic effects associated with this flow are seen in 
glaciers.

We m ight imagine tha t ice could flow if all o f the bonds between its hexagonal 
planes were broken so tha t they could slide over one another. A quick estim ation 
tells us th a t a “yield” stress o f essentially the shear m odulus would be required 
to do this. But it has been found tha t there is considerable flow or “creep” well 
below this value, often five orders o f m agnitude below. Perhaps no t all o f the 
bonds in the plane have to be broken in order for the ice to  flow. Imagine that 
we cut half o f the bonds in the plane, move them  over one lattice to  the left and 
reattach them  as depicted in Fig. 1.2.5. We pay the price o f a line o f cut bonds 
and some strain energy, bu t since everything matches up far away from  the line, 
the energy cost is finite. Now we can move this line defect or “dislocation” quite 
readily since it means breaking a line o f bonds and rem aking them  one site over. 
Each time we do this the whole crystal on top moves a little in the direction of 
the dislocation m otion. This edge dislocation “glides” easily in the plane and 
allows the ice to shear above and below the plane.

The m otion o f dislocations is w hat allows for creep and dynamic recrystal
lization in ice glaciers. The pinning o f dislocations and dissipation associated 
with dislocation m otion are responsible for m ost o f the mechanical properties 
o f crystalline solids. W hat makes dislocations possible is a com bination o f the 
periodicity o f the ideal crystalline state and the elasticity o f th a t state. A dis
placem ent o f the ideal crystal by one lattice spacing leads to an identical crystal. 
It is thus possible to  cut a crystal along a half plane, displace the crystal above 
tha t plane by one lattice spacing, and “glue” it to the undisplaced crystal below 
tha t plane. Far from  the edge o f the half plane, there is a slightly strained but 
otherwise perfect crystal. This construction yields a dislocation whose existence 
is determ ined by the nature and topology o f the m anifold o f displacements tha t 
leave the energy o f the solid unchanged. It is a topological defect. Like rigidity, 
topological defects are a general feature o f broken continuous symmetries.
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Fig. 1.2.5. An edge dislocation in ice. The dislocation motion is more 
complex than in simpler materials since it also leaves defects in the hydrogen 
bonding which must be relaxed by diffusion. [J.C. Poirier, Creep o f  Crystals 
(Cambridge University Press, 1985).]

7 Universality o f  the water example

Water is a part o f our everyday experience. M any o f its properties discussed 
here, when properly interpreted, are universal. They are found throughout 
the realm o f condensed m atter physics. A t high tem perature, kinetic energy 
dominates over potential energy, and equilibrium  phases o f m atter are isotropic 
and homogeneous. As tem perature is lowered there are phase transitions to more 
strongly correlated states. These transitions can be continuous (like the liquid-gas 
transition at the critical density) or discontinuous (like the boiling o f water). A t 
continuous transitions, characteristic lengths, susceptibilities, and relaxation times 
diverge. A t discontinuous transitions, there is the phenom enon o f nucleation. A t 
sufficiently low tem peratures, when potential energy is truly dom inant over kinetic 
energy, equilibrium  states (like ice) will in general have a lower symmetry than 
the high-tem perature phase. If  the broken symmetry is continuous, then the 
broken-symmetry phase is characterized by a rigidity (like the elastic m odulus of 
ice), low-frequency dynam ical modes (shear sound waves), and topological defects 
(dislocations). Table 1.2.1 lists properties o f some broken-sym m etry phases.

The water-ice transition provides an example o f a transition in which a contin
uous symmetry is broken. There are transitions in which a discrete symmetry is
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broken. The m ost fam iliar o f these is the transition to  the ferromagnetic state of 
an Ising model. Spins in an Ising model can point only up or down so th a t spin- 
flip is the only nontrivial symmetry operation th a t leaves the high-tem perature 
param agnetic state with random ly aligned spins unchanged. There are only two 
equivalent low -tem perature ground states: tha t with all spins up and tha t with 
all spins down, and there are no low-energy excitations taking the system from 
one ground state to another. The elementary excitations are dom ain walls sep
arating up spin from  down spin regions. There are no low-energy excitations 
characterized by a rigidity or low-frequency hydrodynam ic modes as there are in 
states with a broken continuous symmetry. Thus, the w ater example does not 
provide a good description o f low -tem perature broken-discrete-symmetry systems. 
It continues to provide, however, a rem arkably correct description o f m any of 
the properties o f the high-tem perature phase of these systems.

Crystalline ice breaks both  the translational and rotational symmetry o f the 
fluid w ater phase. I t has a very low symmetry. Physical systems with symmetry 
intermediate between the highest symmetry fluid and the lowest symmetry crystal 
phases also occur in nature. Liquid crystalline mesophases successively break 
the symmetries o f the fluid phase. A n isotropic fluid is invariant with respect to 
arbitrary translations in any direction and with respect to ro tations about any 
axis. The nem atic phase is invariant with respect to  arbitrary translations but 
only with respect to  arbitrary  ro tations about a single preferred axis: it is uniaxial. 
The smectic-/! phase is uniaxial and breaks translational symmetry along a single 
direction. Discotic phases break translational symmetry along two directions and 
are invariant only with respect to discrete rotations. These phases and others will 
be explored throughout this book. They are reviewed in Table 1.2.2.

8 Fluctuations and spatial dimension

Water is an example from  our real three-dim ensional world. There are m any 
materials and systems, however, th a t behave as though they were either one- or 
two-dimensional ra ther than  three-dimensional. Furtherm ore, theoretical models 
can be form ulated in any spatial dimension, and it is quite instructive to  do so. As 
spatial dimension is increased, fluctuations become less and less im portant. Above 
a critical dim ension dc, fluctuations become so un im portant tha t mean-field the
ory, a simple approxim ation scheme, provides an analytically correct description 
of continuous phase transitions and essentially numerically correct descriptions 
of both low- and high-tem perature phases. As dimension is reduced, fluctuations 
become increasingly im portant. They are quite im portant at continuous transi
tions in three dimensions even though mean-field theory continues to  provide a 
very good qualitative description.

Below three dimensions, fluctuations become so violent tha t they can destroy 
the ordered state and finite-tem perature phase transitions. In one dimension, 
fluctuations destroy all long-range order and phase transitions. This is essentially
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Table 1.2.2. Sequence o f  phases with decreasing symmetry from  the 
highest-symmetry isotropic fluid to the lowest-symmetry crystalline solid.

Phase Invariances Order

Isotropic all translations and rotations
Nematic all rotations about n axis, rotations

by π ±  to n, all translations 
Biaxial rotations by π about n and -L to n,
nematic all translations
Smectic-Λ same rotational invariances as

nematic, all translations _L to n and 
translations by lattice vector || to n 

Smectic-C same translational as smectic-/!,
rotation by π about n and -L n 

Hexatic same translational as smectic-/!,
rotations by 2π/6 about n and 
by π _L to n 

Discotic same rotational as hexatic, all
translations along n and by 
lattice spacings _L to n 

Crystal discrete rotations in all directions,
translations by lattice vectors in 
all directions

none
uniaxial orientational

biaxial orientational

uniaxial orientational 
ID periodic density

biaxial orientational 
ID periodic density 
six-fold orientational 
ID periodic density

six-fold orientational 
2D periodic density

discrete orientational 
3D periodic density

a problem  o f connectivity. The only way one end o f a one-dimensional system 
knows w hat is going on at the other end is via inform ation transm itted directly 
along the chain. For an infinitely long system, any fluctuation cuts the flow 
o f inform ation and hence the order. Since there are always fluctuations at any 
finite tem perature, a one-dimensional system cannot be ordered except at zero 
tem perature. In  two-dimensional systems, there are m any paths th a t can connect 
one part o f the system to the others. F luctuations are strong enough to  destroy 
long-range order in systems with broken continuous symmetry but no t necessarily 
strong enough to destroy phase transitions. F luctuations in two dimensions do 
no t destroy long-range order in systems with a broken discrete symmetry.

9 Overview o f book

This book presents an overview o f condensed m atter physics tha t follows the water 
example ju st discussed. Properties o f condensed m atter systems depend on their 
symmetry and structure, which in tu rn  depend on the nature o f their constituent 
particles. We, therefore, begin in C hapter 2 by exploring the different symmetry 
phases and structures th a t occur in nature. We will find th a t these structures 
depend on the nature and  shape o f particles from  which they are composed. 
For example, spherical particles usually form close-packed solids, whereas rigid 
bar-like molecules form anisotropic crystals and liquid crystals. We are interested
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in averaged quantities such as susceptibilities and tw o-point correlation functions 
that can be m easured experimentally. These are best described by the m achinery 
of therm odynam ics and statistical mechanics, which we review in C hapter 3. 
Phase transitions, such as those from  w ater to  ice or from  liquid to  gas, are 
among the m ost striking phenom ena we observe. These are studied first in 
mean-field theory in C hapter 4. M ean-field theory provides a qualitatively correct 
description o f m ost phase transitions. In C hapter 5, we study how fluctuations 
modify mean-field theory. We show how fluctuations lead to a breakdow n of 
mean-field theory below an upper critical dim ension dc. Each phase with a broken 
continuous symmetry is characterized by a generalized elasticity characterized by 
rigidities such as the shear m odulus o f ice. Static properties of broken-continuous- 
symmetry systems, from  simple spin models to  defected crystals, are explored in 
Chapter 6. Emphasis is placed on therm al fluctuations o f elastic modes, which 
become increasingly violent as spatial dimension is lowered, until finally, at the 
lower critical dim ension d^, they destroy order altogether. The long-wavelength, 
low-frequency dynamics o f a given phase is determ ined by its conservation laws 
and the nature o f its broken continuous symmetries. The dynamics o f liquid water 
is controlled by its five conservation laws (mass, energy, and three com ponents 
of mom entum ), whereas the dynamics o f ice is controlled by its shear and 
bulk rigidities in addition to  its conservation laws. In  C hapter 7 we develop a 
general language for describing dynamical phenom ena, which is a generalization 
to dynamics o f the tim e-independent statistical mechanics of C hapter 3. Then, 
in C hapter 8, we set up a general formalism for determ ining the hydrodynam ics 
of any broken-sym m etry system and derive the hydrodynam ic equations for a 
number o f particular systems. The dynam ical correlation functions predicted by 
these equations reduce in the zero-frequency limit to  those obtained statically 
in Chapters 4 to  6. Associated with each broken symmetry are defects whose 
presence tends to  restore the high-tem perature disordered state. In  ice, these 
defects are topological dislocations. In systems with a broken discrete symmetry, 
they are dom ain walls. C hapter 9 is devoted to topological defects and C hapter
10 discusses dom ain walls. Both chapters begin with a description o f the nature 
of these defects and  then investigate their energy and the nature o f interactions 
among them.

1.3 Energies and potentials

1 Energy scales

The characteristic distance on an atomic scale is the angstrom  (10~8 cm). The 
diameter o f electron orbits, the size o f atoms, and the distance between atom s in 
condensed systems (e.g. solids) are all o f this order. A t the angstrom  length scale, 
electrostatic energies are of order
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Fig. 1.3.1. Two hydrogen atoms with protons labeled a and b and electrons 
labeled 1 and 2.

e2/ ( l  A) ~  2.3 x 10~n erg, 14eV or 160,000K. (1.3.1)

The kinetic energy associated with localizing an electron in a box o f side one 
angstrom  is

The above two energies are com parable (of course tha t is why atom s are o f this 
size) and are both  much larger than  room  tem perature 300 K  ~  0.025 eV. Thus, 
if we had  a large num ber o f ions with equal num bers o f charges o f opposite signs, 
we could form a very stable ionic salt like N aC l with a binding energy o f several 
eV per atom. Similarly, it is possible to approxim ate the binding energy o f a m etal 
by allowing some subset o f the total num ber o f electrons to  have wavefunctions 
extended over the entire solid rather than  localized on an atomic site. This lowers 
the kinetic energy by several eV per electron. Interparticle forces are in essence 
determ ined by the above effects: C oulom b attraction  between opposite charges 
and the lowering o f kinetic energy by delocalization o f quantum  wavefunctions 
to reduce kinetic energy. The im plem entation o f these effects is, however, not 
trivial when m any atom s or m any electrons are present.

We now w ant to  look at an example o f the effective interaction between two 
neutral atom s as a function o f the separation o f their nuclei. The easiest system 
we can imagine is two hydrogen atoms. We adopt the coordinate system shown 
in Fig. 1.3.1, labeling the protons with letters and the electrons with numbers. 
Proton a is located at the origin (Ra =  0), and proton b is located at position 
Rft =  R =  Rez. Electron 1 is a t position xi =  ri and electron 2 is a t X2 =  R +  r2.

Since we have presum ably solved Schrodinger’s equation for the eigenstates 
and energies o f individual hydrogen atoms, we separate the H am iltonian into a 
part, o, for two separate atom s and a rem ainder, J f ' ,  treated  as a perturbation:

o contains the kinetic energy o f the two electrons and the interaction o f each 
electron with its nucleus:

fi2(l/A )2/2m ~  6.1 x 10~12 erg, 3.8 eV or 44 ,000K. (1.3.2)

2 Van der Waals attraction

tJP ___  ■}/£> _ i_  ■}/£>!
•Jl —  -JC  ο  “Γ  Ή  · (1.3.3)
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<>■«>

where m is the electron mass and π ,2 =  l^ul- The H am iltonian Jf"  includes 
the Coulom b attraction  between each proton and the opposite electron and the 
Coulomb repulsion between the protons and between electrons:

2 2 2 2 P P P P
^ '  = - w + --------------------- . (1.3.5)R rn  r i6 rja

where R  =  |R| is the separation between protons, r n  = | R  +  Γ2 — ri | is the
separation between electrons, and ru, = | ri — R | and r2a = | R +  Γ2 I are the
separations between electrons and opposite nuclei.

The solution to  0 can simply be obtained by using a product o f hydrogenic
wavefunctions on the separate atoms. Let φ„(r) be the eigenfunction o f the
hydrogen atom  with energy

me*
=  (L3-6) 2fr n2

Then, the eigenfunctions o f o are

Ψρ(1,2) =  0n(ri)0m (r2) (1.3.7)

with
J f  0Ψ ρ(1,2) =  (En + Emyj>p(l, 2), (1.3.8)

where the index p stands for the pair (n, m) and where the shorthand convention 
1 ξ  n ,  2 =  r2 is understood. In general, we will have to take into account 
the indistinguishability o f the electrons, but first we will treat the case where 
atoms are separated by a distance considerably larger than  an atomic radius, ao 
(=  ft2/m e2 ~  0.53 A), so tha t the individual wavefunctions do no t overlap. In  this 
large separation, R  »  ao limit, we can approxim ate the perturbation  H am iltonian 
as a dipole-dipole interaction, 

e2
~  (xi*2 +  y iy i  ~  2ziz2). (1-3.9)

We will now consider only the ground state wavefunction since excited states 
have energies considerably above conventional tem peratures. To lowest order in 
perturbation theory, the expectation values o f ri and r2 are zero in the ground 
state. In second order perturbation  theory, the energy shift is obtained by taking 
the squared m atrix elements to  excited states, dividing by the excitation energies, 
and summing over all excited sta tes:

AE =  y  ^ 1 ,  (1.3.10)
p Eo E p

where

(1.3.11)

j p [ ( 0 » ( l ) | x i l M l ) M „ ( 2 ) | x 2|0o(2)> +  ···]
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The required atomic m atrix  elements are the “dipole” m atrix elements. In  atomic 
physics, it is conventional to denote the sum

■  -  Σ  < > ■ * * >

as the atomic polarizability (the m acroscopic static dielectric constant o f a collec
tion o f  these atom s with density n is ju st e =  1 +  Anna.). Since we are starting with 
the ground state, second order perturbation  theory always reduces the energy, 
and we are left from  Eq. (1.3.9) with a net attraction  between atom s o f the form

Α Ε ~ - ° ψ .  (1.3.13)

The same equation is applicable for the interaction between any pair o f neutral 
atom s or molecules a t large separation. Thus, we have found tha t there is always 
an attractive interaction between neutral particles tha t dies off as R ~ 6 at large 
separation and tha t is proportional to the product o f atomic polarizabilities. This 
interaction is conventionally called the Van der Waals attraction. Between neutral 
atom s at atomic distances it is o f order 10-2 eV.

3 Molecular hydrogen -  the Heitler-London approach

If  we let the protons move closer together in our original two hydrogen atom  
problem, the Pauli exclusion principle requires th a t the two-electron wavefunction 
be properly antisym m etrized with respect to interchange o f electrons:

T ( r ! ,s i ; r2 ,s 2) =  - T ( r 2,s2 ;r! ,s i) , (1.3.14)

where we now explicitly include the spins si and S2. Since there is no spin-orbit 
coupling in our Ham iltonian, we can separate the spin and position variables:

Ψ (γι,8 ι ; γ2,82) =  y ( r i , r 2)x(si,s2) . (1.3.15)

The spatial wavefunction can then be taken as a com bination o f products of 
hydrogenic wavefunctions o f the individual electrons. The Pauli principle requires 
tha t the spin function be antisymmetric if the spatial function is symmetric under 
interchange o f electrons and vice versa. Ψ  thus has a spin singlet (s) and a spin 
triplet (i) part:

Ψ 5(1,2) =  Ν 3[φ„(Τι)φ„,(Τ2) +  </>m(ri)</>n(r2)]Xs(Sl,S2)

(1.3.16)

Ψ ,(1,2) =  Νί[φ„(Τι)φη (ΐ2 ) — </>m(ri)</>n(r2)]Xt(Sl,S2), 

where N s and N t are norm alization constants and χ8 and χ, are, respectively, the 
singlet and triplet spin wavefunctions.

The particular form we have chosen for the wavefunctions is due to  Heitler and 
London. It does no t allow two electrons to occupy the same site and, therefore,
has a built in correlation tha t reduces the Coulom b repulsion between electrons,
thereby anticipating the effects o f J f ' .  O ur H am iltonian is independent o f the 
electron spins. Thus, the only way the spin variables affect the energies o f our
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K  =  »[1 ±  J92] - 1, (1.3.18)

problem is in the determ ination o f  the symmetry o f  the spatial wavefunctions. We 
will, therefore, suppress them  in w hat follows and deal only with the Is hydrogen 
wavefunctions, φ α(ι) = φο(\·, — Ra) with a = a,b  and i =  1,2. The triplet and 
single wavefunctions are therefore

V>* =  N s,tW a m b(2) ±  φ„(ί)φα(2)] . (1.3.17)

The norm alization constant can be obtained by requiring f  x¥ ' x¥ d x id x 2 =  1. 
The result is

where

β = J  Pab(Dd3x i  (1.3.19)

is the overlap integral and

Pab( 1) =  Φ:(1)Φ„(1) (1.3.20)

is the overlap charge density. p af>(l) is a strong function o f the separation o f 
the atoms since it represents the extent to which the unperturbed wavefunctions 
occupy the same point in space. The charge densities,

Pa( 1) =  Φ ίΜ Φ αΜ ,
pb( 2) = φ1(2)φ„(2), (1.3.21)

with f  pa(l)d3x i  =  1 o f  the unperturbed atom ic orbitals will also be o f  some use 
in what follows.

Lowest order perturbation  theory makes a nonzero contribution to the energy 
shift, which is evaluated from  f  x¥ ' j t f ’,x¥d3rld3r2 · The result can be expressed as

"  ΐ r r w  (1'3'22)
where Q represents the interaction between the time average charge cloud on 
separate unperturbed atom s and J  is the exchange integral, which appears as a
result o f  the symmetry o f  the spatial wavefunction under interchange o f electrons.
The precise forms o f  Q and J  follow from  the the perturbation Ham iltonian,

e2 e2 e2 e2
=  -  + --------------------- . (1.3.23)

R r12 ra2 rbl
The quantity Q = Qi +  Q2 is then the sum o f the C oulom b repulsions between 
electron clouds and between protons:

Qi =  ί Pa(D— Pb(2)d3x 1d3x 2 +  (1.3.24)J r12 K
and the Coulom b attraction o f  each electron with the opposite p ro to n :

Qi = ~ 2  [  pb(2)— pa(l)d3x i d3x 2 - 2  f p b(2)— d3x 2 . (1.3.25)
J ra 2 J ra 2

The exchange integral J  =  J\ +  J 2 is the sum o f the Coulom b repulsion between
overlap charges,
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J i =  pab(^)— pab(2)d3x 1d3x 2, (1.3.26)
J r i2

and the attraction  between overlap charge densities and the p ro to n s: 
r e2

J2 = - 2  pab( 1)— pab(2)d3x ld3x 2
J m

-  —2β f pab(l)— d3xi.  (1.3.27)
J fbl

The norm alization o f  the electron wavefunctions and Eq. (1.3.20) were used to 
obtain  the final forms o f Eqs. (1.3.25) and (1.3.27).

For large separation, this form ulation actually predicts incorrect results. There 
is no overlap charge density between widely separated hydrogen atoms, so that 
J2 is zero. In this case, the first term  in Q would dom inate and predict a repulsion 
between hydrogen atoms, whereas we have seen tha t the correct result is tha t 
there should be Van der W aals attraction. W hen there is a small overlap, the 
second term  in J  dominates. There is a repulsion o f the small overlap region 
with itself, bu t an attraction  o f  the overlap density with both  protons (with 
their full charge) is stronger. N ote tha t the net result is attractive only when 
the system is in the singlet state, as seen in the sign associated with the spin 
configuration in Eq. (1.3.18). This is called the bonding orbital. I f  the electron 
spins are aligned (triplet), then the effect o f  J  is repulsive. This is called the 
antibonding orbital. The binding energy o f  the hydrogen molecule comes mostly 
from  the buildup o f  the overlap charge density between the protons. To see this 
explicitly, notice tha t the probability o f  finding an electron in the center o f  the 
bond changes in going from  the bonding to  the antibonding configuration, as 
shown in Fig. 1.3.2.

The energies o f  the bonding and  antibonding states for m olecular hydrogen 
within the H eitler-London approxim ation are shown in Fig. 1.3.3. Qualitatively 
the binding energy and its dependence on internuclear separation are correct, 
although in detail the actual binding is greater than  the calculation gives.

4 Hard-sphere repulsion

The interparticle interaction has the same qualitative form  for a vast num ber o f
different atom s and molecules. There is an attractive interaction, which at large 
distances approaches the Van der W aals behavior, 1 / R 6. There is a m inim um  
energy on the atom ic scale followed by an abrupt increase in repulsion. The 
equilibrium  separation is at the bottom  o f a highly anharm onic potential. The 
sharp rise in the potential at short distances for the bonding state is the result o f 
the rapid increase in the first term  in the exchange integral as the overlap charge 
densities increase. This “hard-sphere” repulsion is com m on to the interaction o f 
m ost atom s and molecules at short distances. In o ther more realistic models, it 
results from  a com bination o f  the repulsion o f  the overlapping electron densities,
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(a) - (b)

Fig. 1.3.2. Schematic representation of (a) bonding and (b) antibonding 
charge densities for the hydrogen molecule. The bonding charge density 
shown as the solid curve in (a) is p =  pa( 1) +  pt (l) +  2fipah(\). The 
antibonding charge density shown as the solid curve in (b) is p =  pa( l ) +  
Pi(l) — 2(ipah(\). The individual charge densities pa(l) and pb(2) centered, 
respectively, at nuclei (1) and (2) are the dashed curves in both (a) and (b),

R (10~6 cm)

Fig. 1.3.3. The energies and E+ of antibonding and bonding orbitals 
calculated using Heitler-London theory and the observed energy of the 
hydrogen molecule as a function of separation R  of hydrogen atoms.

the exclusion principle lim iting the volume which each electron can occupy 
(and hence increasing the kinetic energy), and the Coulom bic repulsion o f  the 
nuclei.

In m any o f the systems th a t we will study, strong short-range repulsion plays 
a particularly im portan t role in determ ining local and later global structures and
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Fig. 1.3.4. The Lennard-Jones potential [Eq. (1.3.28)] showing the R~12 
repulsive core and the R ~6 attractive tail. The potential passes through zero 
at R /σ  =  1.0 and has a minimum indicated by the arrow at 
R/σ  = 21/6 *  1.12.

the nature o f  interparticle correlations. The actual form o f the repulsion potential 
depends, o f  course, on the particu lar atom s or molecules under consideration. 
However, for simple m odeling it is often taken as a potential th a t varies in a 
convenient way bu t much m ore rapidly than  any o f  the attractive potentials in 
the problem. Hence com m on forms for the short-range p art o f  the potential are 
a step function (“hard  sphere”, U =  oo for R  < Ro), R ~ 12 or exp(Ro/R). For 
example, one o f the m ost com m on models for an interparticle interaction is the 
Lennard-Jones or “6-12”potential,

shown in Fig. 1.3.4. The norm alization o f  this potential is such th a t it is equal to 
zero at R  = σ  and to  —e a t its m inim um  at R  =  21/6σ.

One o f  the m ost interesting results from  the study o f m olecular hydrogen is the 
presence o f  a spin-dependent interaction o f  a m agnitude given by electrostatic 
forces. The exchange integral J  is o f  order 3 — 4 eV in the case o f hydrogen, and 
it is com parable in o ther systems. As we have seen, it arises from the requirem ent 
tha t the symmetry o f  the orbital part o f  the wavefunction be com plem entary to 
tha t o f  the spin part to  m ake the total wavefunction antisymmetric. Nonetheless, 
it is an energy associated with the spin arrangem ent, so th a t flipping a spin

(1.3.28)

5 Exchange interaction and magnetism
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requires an energy change o f order 2J. For the simple case we have treated, the 
spin interaction alone can, therefore, be written in the form

Spin =  2 J g \ ■ a 2 (1.3.29)

(where =  st/h  is the unitless Pauli spin operator), which will be useful later in a 
less restrictive context when we study magnetism. In fact, m ost m agnetism  found 
in nature is due to this exchange interaction. The interaction o f  the elementary 
magnetic dipoles associated with electron spins is orders o f  m agnitude too small 
to explain m agnetism  at tem peratures com parable to  room  tem perature. The 
dipole interaction between Bohr m agnetons at angstrom  distances is

/4 / ( lA ) 3 ~  10~4 eV ~  IK . (1.3.30)

However, since the d ipolar interaction is long range (it dies out only as 1 / R 3, 
whereas the exchange interaction decays exponentially as it depends on electron 
overlap), it may have im portant m acroscopic effects, for example in the form  of 
demagnetization fields.

The exchange interaction between electrons in unfilled atom ic shells due to 
the formation o f  bonds is negative, i.e. it favors the form ation o f  a singlet. 
Ferromagnetic exchange, favoring parallel spin alignment, is also possible, bu t 
usually results from  the existence o f  degenerate levels on the same atom  or 
molecule. This can be seen by noting tha t in the expression for J,  Eqs. (1.3.26) 
and (1.3.27), we m ay choose φ α and φι, as degenerate states on the same atom. 
In that case, the second or bonding J2 term  in the expression for J  does no t exist 
since the electron-nucleus C oulom b interaction has already been accounted for in 
the solution for the single electron wavefunctions. W hat is left, therefore, is only 
the repulsive first term  in J. This is the prim ary argum ent leading to  “H und’s 
rule” in atomic physics, which says tha t the m inim um  energy is achieved by 
maximizing the spin alignment in degenerate orbitals. To use this ferromagnetic 
interaction between spins on neighboring atoms, there m ust be an additional 
interatomic “bonding” tha t takes advantage o f the intra-atom ic degeneracy.

6 The hydrogen molecule, molecular orbitals, and bands in 
metals

There is a different approxim ate treatm ent o f  the hydrogen atom  th a t leads to 
an understanding o f  the role tha t delocalization energy (kinetic energy lowering) 
plays in interparticle interactions and later for the form ation o f  energy bands 
in solids. The H eitler-London approach starts from  the viewpoint th a t the 
dominant interaction is the C oulom b repulsion o f the electrons. It, therefore, 
uses a wavefunction in which the electrons are correlated apart, never sharing the 
same atom. In the molecular-orbital approxim ation, the one-electron-tw o-proton 
problem (H ^ m olecular hydrogen ion) is solved first and the Coulom b repulsion 
is treated as a perturbation  (if a t all).
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The one-electron H am iltonian is taken as 
fi2V? e2 e2

^0,mo =  ~ ----------------  (1.3.31)2m ra i rbl
and the perturbation  (Coulom b interaction between electrons) as

e2
J f n  =  — . (1.3.32)

r 12
The actual solution o f the one-electron problem  is no longer trivial, bu t an 
approxim ate wavefunction can be constructed from  the atomic wavefunctions φ α 
and <f>b centered at protons a and b :

Φ± = 2~1/2[φα( \)  +  <t>b(x·)]· (1.3.33)

These wavefunctions are called “linear combination o f  atomic orbitals” (LCAO) 
and are sketched in Fig. 1.3.5. For ground state wavefunctions, the LCAOs o f 
Eq. (1.3.33) have energies

£+  =  £o± im o· (1.3.34)

The one-electron energies are split from  the single-atom case by 2imo, a fraction 
o f  the localization energy (~  h2/2 m R 2) or, alternatively, by the attraction o f  the 
additional charge density in the middle to  the protons, imo =  fpab(l) (e2/rib)dri, 
which is similar to the second term  in the exchange integral. We now treat these 
levels as we would orbitals o f  an atom. I f  we have two electrons, we ju st pu t them  
with opposite spins in the lowest energy state. The result is tha t we have lowered 
the energy by imo per electron as com pared to two isolated hydrogen atoms. 
However, we lose a great deal o f  energy because o f the Coulom b repulsion. The 
two-electron wavefunction, which is properly symmetrized, has one electron on 
each site only ha lf the time, and both  electrons on the same site h a lf the time. 
This is the price tha t is payed for having an uncorrelated wavefunction,

Ψ (1,2) =  φ +( ί )φ +(2)

= \[φ a ( ί )  +  φ b (m φ a (2 )  +  φb(2)] (1.3.35)

=  ^ [ φ α( ί )φ α(2) +  φ α( 1 )^ (2 )  +  φ„(ί)φα(2) +  φb(l)φb(2)\.

The same process can be attem pted for four atoms, as depicted in Fig. 1.3.6, or 
for an infinite num ber o f  atoms. First we find the one-electron energies and then 
we fill them  up according to the exclusion principle.

I f  we started with one electron per atom, or anything bu t an even num ber o f 
electrons per atom, the net result is a lowering o f the energy. I f  the num ber o f 
levels (equal to the num ber o f  atom s we start with) is very large, as for delocalized 
electrons in a metal, the spectrum  becomes alm ost continuous. For one electron 
per atom, the binding energy per electron or per atom  is then o f  the order o f
tmo/2.

In practice, the H eitler-London approxim ation yields better results for small 
molecules such as H 2 bu t no t as good results for large molecules, where the cor-
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Fig. 1.3.5. (a) The +  (top) and — (top) wavefunctions of Eq. (1.3.33). (b) 
Energy levels for separated hydrogen atoms and for the hydrogen molecule. 
The binding energy EB per electron of the hydrogen molecule is one-half the 
difference between the energies of the separated atoms and the ground state 
of the molecule in which the lowest energy state is occupied by a spin up and 
a spin down electron.

~' A V - V A ~ _____  ----------------------< z r  ..............
______________ \ e e
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\

(a) (b)

Fig. 1.3.6. (a) Wavefunctions and (b) energy levels of a four-hydrogen-atom 
molecule. Each atom contributes one electron to the molecule. The energy 
levels of the separated atoms split into four levels corresponding to the 
wavefunctions as shown. In the ground state, each of the two lowest energy 
states is occupied by two electrons of opposite spin giving rise to a binding 
energy Eb per electron, (c) Energy bands in a solid, showing occupied and 
empty states in the ground state and the binding energy per electron.
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related wavefunctions, in any event, become too difficult to  handle conveniently. 
F or small systems the Coulom b correlations are particularly im portant, but they 
become slightly less im portan t than  the kinetic energy effects for large systems.
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2
Structure and scattering

Large collections o f  particles can condense into an alm ost limitless variety o f 
equilibrium and nonequilibrium  structures. These structures can be characterized 
by the average positions o f  the particles and by the interparticle spatial corre
lations. Periodic solids, with their regular arrangem ents o f  particles, are m ore 
ordered and have lower symmetry than  fluids with their random  arrangem ents o f 
particles in therm al m otion. There are a num ber o f  equilibrium therm odynam ic 
phases th a t have higher symmetry than  periodic solids bu t lower symmetry than  
fluids. Typically interacting particles a t low density a n d /o r  high tem perature form 
a gaseous phase characterized by minimal interparticle correlations. As tem per
ature is lowered o r density increased, a liquid with strong local correlations but 
with the same symmetries as a gas can form. U pon further cooling, various 
lower-symmetry phases may form. A t the lowest tem peratures, the equilibrium 
phase o f  m ost systems o f particles is a highly ordered low-symmetry crystalline 
solid. Nonequilibrium  structures such as aggregates can have unusual symmetries 
not found in equilibrium structures.

In this chapter, we will investigate some o f the prevalent structures found in 
nature and develop a language to describe their order and symmetry. We will 
also study how these structures can be probed with current experim ental m eth
ods. Though tools such as scanning force and tunneling microscopes can now 
provide direct images o f  charge and particle density, a t least near surfaces, m ost 
inform ation about bulk structure, especially at the angstrom  scale, is obtained via 
scattering o f  neutrons, electrons, o r photons. In  this chapter, we will focus on elas
tic o r quasi-elastic scattering in which changes in the energy o f  scattered particles 
are not probed. We will consider inelastic scattering in detail in C hapter 7.

2.1 Elementary scattering theory -  Bragg’s law

The easiest example o f  scattering yielding structural inform ation is th a t o f  Bragg 
scattering o f  a wave from  a set o f  partially reflecting equally spaced parallel 
planes. A n incident wave will be diffracted by the set o f  planes, its intensity being 
m odulated by constructive o r destructive interference. For an infinite set o f  such 
planes (with infinitesimal reflection coefficient) the only surviving reflection is one 
for which there is constructive interference between waves reflected by each set o f

29
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Fig. 2.1.1. Scattering from parallel planes showing the origin of Bragg’s law. 
The planes are separated by a distance d. The incident wave vector is k and 
the scattered wave vector is k'. The magnitude of both k and k' is 2π/λ, and 
the path difference between waves partially reflected from successive planes 
is 2d sin Θ.

neighboring planes. Thus, the difference in path  length between waves reflected 
from  adjacent planes separated by a distance d m ust be an integral m ultiple o f 
the wavelength λ  as illustrated in Fig. 2.1.1. This leads to  Bragg’s law,

2d sin θ =  ηλ,  (2.1.1)

where n is an integer and Θ is defined in Fig. 2.1.1. (Note th a t the angle between 
incident and scattered particles is 2Θ.) As we shall see, a m ore sophisticated 
analysis gives the same result, bu t m ost discussions o f  scattering phenom ena 
tend to  center around the simple description given above. T hat is, the scattered 
intensity at angle 2Θ reflects a fluctuation or inhom ogeneity o f  the system with 
periodicity A/(2 sin0).

In a slightly more advanced approach, the quantum  m echanical transition rate 
between plane wave states o f  scattered particles is calculated. Let |k) and |k') be 
the incident (incoming) and final (outgoing) plane wave states o f  the scattered 
particle with respective m om enta hk and hk'. I f  the scattered particle interacts 
with the scattering m edium  via a potential U (and the interaction is sufficiently 
weak tha t only lowest order scattering need be considered for the entire sample), 
then by Ferm i’s golden rule, the transition rate between |k) and |k') is proportional 
to the square o f  the m atrix element,

M kM, =  (k |l/ |k ')  =  j d dxe~ikxU (x)eik x, (2.1.2)

where U (\)  is the scattering potential in the coordinate representation o f the 
scattered particle. We use here the unnorm alized wavefunction (x|k) =  e'k x for 
the scattered particle. We also treat the x as a vector in a (/-dimensional space. 
For m ost physical systems, d is two, three, or possibly one. It is, however, useful
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to imagine generalizations o f  d to o ther dimensions. The differential cross-section 
cPa/dQ per unit solid angle o f  the final wave vector k ' is

d2a 2 π , , ,
I n  ~  T |M ^ '  · (2-L3)

Eq. (2.1.3) represents a static cross-section obtained experimentally by integrating 
over all possible energy transfers to  the medium. In  practice, this integration is 
naturally accomplished by X-ray diffraction bu t no t by neutron diffraction. In 
this and the next several chapters, we will be interested only in static ra ther than
dynamic phenom ena, and we will use Eq. (2.1.3) for the scattering cross-section.
In C hapter 7, we will see how the static approxim ation is derived from  a full 
dynamical description.

In m ultiparticle systems, the scattering potential is the sum o f term s arising 
from each o f the individual atom s in the system:

l/(x ) =  Σ  ~  x«)’ i2·1·4)
a

where xa is the position o f  the atom  arbitrarily labeled a. The m atrix element in 
<Ρσ/άΩ then has the form

(k\U\k') = Σ  f  e~‘k x u «(x  ~  χ > ' ν ·χΛ .  (2.1.5)
a

This can be placed in a more convenient form  by taking Ra =  x — xa so tha t 
the scattering “ form factor” (corresponding to the m agnitude and direction o f 
the scattering from  each individual atom ) appears multiplicatively times a factor 
with inform ation about the atom ic positions:

(k\U \kr) = Σ  [ e~'kiXj+lly>U*(R*)e'k' iXj+Rj>dJ
a J

=  J 2 [ j  e - ^ U M d t R J e - * ^

=  Σ  UM e - iqx‘. (2.1.6)
a

Here the scattering wave vector is q ξ  k — k', and C/a(q) is the atomic form  factor  
or Fourier transform  o f the atom ic potential. The m om entum  transferred from 
the scattered particle to the sample is hq. (An alternative convention in which 
hq =  hkr — hk is the m om entum  gained by the scattered particle is often used, 
but the present convention is preferable for inelastic scattering.) The differential 
cross-section is proportional to the m atrix element [Eq. (2.1.6)] squared:

\(k\U\k')\2 = Σ  ^ (q )[/;(q )e -* -V « ·* » '. (2.1.7)
a,a'

Eq. (2.1.7) expresses the scattering m atrix element for a particular configuration, 
specified by the position vectors xa, o f  atoms in the sample. A typical scattering 
geometry illustrating k, k', and q is shown in Fig. 2.1.2.
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sam ple

q

Fig. 2.1.2. Typical scattering geometry showing the incident, final, and 
scattering wave vectors k, k', and q =  k — k'.

I f  the positions o f  the atom s are rigidly fixed, as they would be in a classical 
system at absolute zero, then Eqs. (2.1.7) and (2.1.3) correctly give the cross- 
section. In  real materials, particles move about, probing large regions o f  phase 
space determ ined by the rules o f  statistical mechanics, and some ensemble average 
o f  the ideal cross-section is required. I f  our detector accepts all particles scattered 
by a certain wave vector independent o f  their energy change (effectively integrating 
over frequency), then each scattering event takes a snapshot o f  the sample. 
Since d a ta  are taken over a period o f  time tha t is long com pared to  therm al 
equilibration times, the different snapshots correspond to a time average over 
m any sample configurations. Assuming th a t time averaging and averages over 
all allowed configurations (ensemble averages -  denoted by angular brackets ( )) 
are equivalent (i.e., th a t the system is ergodic) we have the static o r quasi-elastic 
limit.

I f  the atom s are identical, then the form factor, |C/a(q)|2, in Eq. (2.1.7) comes 
outside the sum, and the cross-section for scattering from  a statistical system 
becomes

depends only on the positions o f  the atom s in the scattering m edium  and not 
on the nature o f  the interaction between atom s and the scattering probe. We 
will call /(q ) the structure function. For a system o f  N  atoms, / ( q) contains a 
sum  o f N 2 complex num bers with phases determ ined by the positions o f  all N  
particles. I f  the relative positions o f  the atom s are random  (as for an ideal gas) 
then the only term s tha t do no t average to  zero are those with a =  a ' for which 
Σ α α ' Σ α· In this case, / ( q) increases linearly with N  (rather than  with N 2),
i.e., J(q) is extensive. F or fluid phases, where relative positions are no t random  
for some close neighbor particles, / ( q) rem ains extensive. An intensive version o f

{d2a/dQ.) ~  |t /a(q)|2 /(q), (2 .1 .8)
where the function

(2.1.9)
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the structure function (independent o f  N )  is obtained by dividing / ( q) by N  or 
V. The resulting function,

S(q) =  Ν '  Ί ( q) or S(q) =  V~ Ί ( q), (2.1.10)

is called the structure factor. The first definition is m ore commonly used for 
classical fluids, whereas the second is used m ore often for quantum  fluids. They 
clearly differ from  each other only by a factor o f  the particle density n = 
N / V .  We will generally employ the second convention in this book unless 
otherwise specified. However, m ost experim ental da ta  are presented in the first 
(dimensionless) form.

In this section, we have seen th a t the differential cross-section for scattering 
o f  plane-wave states provides direct inform ation about the spatial structure o f  
many-particle systems. I t is im portant to understand bo th  the generality and the 
limitations o f  the formulae we have derived. First, the derivation applies to  any 
plane-wave states. Thus it applies to  the scattering o f  quantum  particles such as 
neutrons, photons (light), and electrons, provided the quasi-elastic approxim ation 
applies. Secondly, the scattering form ula [Eq. (2.1.8)] was derived using the Fermi 
golden rule th a t results when only the lowest order term  in an expansion in 
the scattering potential is retained. It is an approxim ation tha t is valid only 
so long as single scattering events dom inate the cross-section. This is true if  the 
interaction potential is small. I f  the scattering potential is large, multiple scattering 
events become im portant, and in terpretation o f  scattering cross-sections becomes 
much m ore difficult. Scattering as a tool to  probe structure is m ost useful 
when the scattering particles interact only weakly with the m edium  under study. 
Quantitatively this says th a t the scattering m ean-free-path o f  the probe particle 
should be much larger than  the thickness o f  the sample being probed.

2.2 Photons, neutrons, or electrons

From  Bragg’s law [Eq. (2.1.1)] it is clear th a t the wavelength o f  the particle 
to be scattered m ust be smaller than  twice the nearest neighbor distance, i.e., 
λ < 2d. The m aterials with which we usually work have interparticle spacing on 
the angstrom  scale, and we must, therefore, consider w hat energies the scattered 
particles m ust have to correspond to  these wavelengths and w hat potentials these 
particles scatter from.

For photons, the dispersion relation relating energy e to  wave num ber k = 2 π /λ
is

e =  hu> = hck — he/λ .  (2.2.1)

Visible light has e ~  1 eV and λ =  0.4 — 0.7 x  104A, which is suitable for probing 
structure on the scale o f  a micron. Scattering in this case is from  variations in 
the dielectric constant or index o f  refraction. Probing structure a t the angstrom  
scale requires photons with energy ~  104 eV, and scattering is from  variations
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in the dielectric constant caused by variations in the electronic charge density. 
Typically, X-rays in this range can penetrate up to  a millimeter o f  m atter and 
thus can provide “bu lk” inform ation.

Electrons with mass me have a dispersion relation 

fi2fe2 h2
e = ^  =  2- 2·2·22 me 2 meAl

A wavelength o f λ  =  lA  corresponds to an energy e ~  100 eV. Scattering is from 
the electrostatic potential, which is often large. Unless thin (~  1 micron thick) 
samples are used, there is a problem  with m ultiple scattering.

N eutrons (with mass mn) have a similar dispersion bu t with a much larger 
mass, e = h2k2/ l m n =  /j2/(2m„A2). For λ  =  lA , e =  O.leV ~  400 K. This means 
th a t room  tem perature or “therm al” neutrons have the correct energy to  probe 
angstrom  scales. Scattering is from  nuclear forces or from  electron spins (since 
the neutron itself has a spin).

Heavier charged particles (e.g. ions) tend to interact too strongly with the 
electrostatic potentials and are, therefore, used m ore frequently as probes o f 
surface structure to  avoid m ultiple scattering.

The energies o f  typical excitations (e.g. the average kinetic energy o f a particle 
in a fluid) in condensed m atter systems are o f  order a fraction o f an eV. This 
is m uch less than  the energy o f X-rays bu t o f  the same order as the energy 
o f  neutrons needed to  probe structure a t the angstrom  scale. A t the moment, 
it is difficult to detect energy changes o f  0.1 eV in a 104 eV photon. For 
this reason, X-ray scattering detects all photons scattered in a given direction 
regardless o f  energy change. Thus, X-rays scatter quasi-elastically and measure 
the static structure factor S(q). Changes in neutron energy o f  order 0.1 eV are 
easy to detect, and neutrons are used extensively to  study dynam ical excitations 
in condensed systems. Presently, X -ray scattering is a more useful probe for 
determ ining the static structure o f  m ost materials. W ithin the past decade, laser 
light scattering has come into its own (via time correlation spectroscopy) for 
studying the dynamics o f  relatively slow processes (~  1-10~6 s) at m icron length 
scales.

2.3 The density operator and its correlation functions

The structure function clearly contains inform ation about the average relative 
positions o f  atoms. We will now show tha t it is in fact a Fourier transform  o f 
a correlation function o f  the density o f  particles. The num ber density operator 
specifying the num ber o f  particles per unit volume at position x [ =  (x, y, z ) in 
three dimensions] in space is defined as

n(x) = δ(χ  ~  x «)· (2.3.1)
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In quantum  systems, xa is the position operator for particle a ; in classical systems, 
it is the dynam ical variable specifying the position o f  particle a. In either case, 
n(x) can be regarded as an “opera to r” in tha t it is a function o f  the dynamical 
variables xa. The ensemble average (see C hapter 3 for a review o f  ensembles and 
therm odynam ic averages) o f  the density operator is the average density (n(x)) 
at x. In homogeneous, isotropic fluids, (n(x)) is independent o f  x and is simply 
the average density n = N / V .  (The sum over delta functions in Eq. (2.3.1) has 
units o f  density since its volume integral is ju st the num ber o f  particles.) The 
independence o f  (n(x)) on either the m agnitude or direction o f  x is a reflection o f 
the ro tational and translational invariance o f  the fluid state. All directions and 
positions in space are equivalent, and there can be no x dependence o f  (n(x)). In 
crystals, (n(x)) becomes a periodic function o f  x, and, as we shall discuss in more 
detail shortly, bo th  rotational and translational invariance are broken.

Correlation functions o f  the density are ensemble averages o f  products o f 
the density operator a t different points in space. The m ost im portan t o f  these 
functions is the tw o-point density-density correlation function,

C„„(xi,x2) =  (n(xi)n(x2))

=  ( ^ < 5 ( * i  - x a)<5(x2 -x a ') ) ·  (2.3.2)
Of,o'

The structure function, Eq. (2.1.9), is simply a Fourier transform  o f this function:

J(q) =  J  e~'q'(xi~xi\n ( x i )n (x 2 ))ddx id dx 2

=  M q M -q ) ) ,  (2.3.3)

where

n(q) =  f  ddxe~"l'xn ( \)  =  ^  e~'qx* (2.3.4)
J a

is the Fourier transform  o f the density. Thus, scattering measures the density- 
density correlation function. Note, however, tha t C„„(xi,x2) can be reconstructed 
from J(q) only if  C„„(xi, x2) depends only on xi —x2 as is the case in hom ogeneous 
fluids bu t no t in periodic solids.

There are several m ore functions related to the density-density correlation
function th a t are conventionally used. In the lim it o f  large separation, |xj — x2| —►
oo, and C„„(xi,x2) tends to  the product, (n(xi))(n(x2)), o f  the average densities. 
The Ursell function ,f

S„„(xi,x2) =  C„„(xi,x2) — (n(xi))(n(x2))

=  ([«(xi) -  (n(xi))] [«(*2) -  (n(x2))])

=  (<5n(xi)<5n(x2)), (2.3.5)

decays to  zero for distances |xi — x2| larger than  some characteristic length, 
usually o f  the order o f  interparticle separations except near phase transitions.

t  In the classical literature, the Ursell function is usually defined as 
(Sn(\j )dn(\2 )) -  (n(xi))<5(x| -  x 2), which differs from Eq. (2.3.5) by —( n ( X |  ))<5(xj -  x2).

yjk
高亮
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The second form o f  Eq. (2.3.5) shows th a t S„„(xi,xi) is a measure o f  fluctuations 
δη(χι ) o f  the local density from  the average density, while S„„(xi,x2) is a measure 
o f  the spatial correlations o f  these fluctuations.

Since the spatial range o f  S„„(xi,x2) is short, its Fourier transform ,

defined as a double integral over position times an inverse power o f  the volume 
V = f  ddx, is an intensive quantity  th a t becomes independent o f  V  in the large 
volume limit. The (n(xi))(n(x2)) p art o f  / ( q), on the o ther hand, has two powers 
o f  the volume:

I f  (n(q)) =  f  ddxe~l<l'x (n(x)} is nonzero, it will be proportional to  the volume, so 
tha t the first term  in Eq. (2.3.7) is proportional to  V 2. In  liquids, (n(q)) =  V (n)<5q,o 
is nonzero only for q =  0, and there is a V 2 contribution to J(q) only for forward 
scattering. In this case, the structure factor [Eq. (2.1.10)] becomes

where we have used =  (27r)3<5(q). (See Appendix A2 for a review o f  Fourier 
transform s.) Thus for isotropic, hom ogeneous fluids, the structure function and 
the Fourier transform  o f the Ursell function are identical except a t q =  0. In an 
ideal gas, S„„(q) =  (n) independent o f  q. In  periodic solids, as we shall see shortly, 
(n(q)) is nonzero on a lattice o f  vectors G  giving rise to V 2 contributions to  / ( q) 
(or equivalently (5-function contributions to S(q)) at m any scattering angles. The 
general form  for the structure factor from  Eqs. (2.3.7) and (2.1.10) is:

Again S„„(q) is intensive, bu t the first term  has contributions proportional to  the 
volume.

One o f the m ost convenient functions for visualizing how structure and cor
relations are related to  the interparticle forces and the scattering is the pair 
distribution function, g (x i,x 2), defined via

N ote th a t xa cannot be xy since the term  a =  a! is excluded from  the sum. Given 
a particle a t χχ, g (x i,x 2) is the probability o f  finding a different particle a t X2 

(actually in a volume ddx  about x2 and norm alized by the density). The pair

s «n(<l) = y J  ddx lddx 2e ,q (xi X2)S„„(xi,x2), (2.3.6)

(2.3.7)

S(q) =  S„„(q) +  {n)2(2n)3S(q), (2.3.8)

(2.3.9)

(n (x i))g (x i,x2)(n(x2)) ξ  ( ^ < 5 ( x i - x„)<5(x2 - x * ) )
αφ<ί

(2.3.10)

~ ( Σ  δ (Χΐ ~  χ *)^(χ 2 -  X«))

(n(xi)n(x2)) -  (n(xi))<5(xi -  x2).
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distribution function is particularly useful when the system is hom ogeneous and 
translationally invariant. In th a t case g (x i,x 2) —► g(xi — X2), and

(n)2g(xi -  x2) =  ψ  f  ddx 2( Σ δ (χ ι ~  χ «)^ (χ 2 -  V ) )

= l Σ  ψ f +  X2 -  Χα)^(Χ2 -  x«')
'  »5t«' J  1

=  - ^ ( 5 Z ^ ( x - x a +  xa')), (2.3.11)
α=̂=α'

where we introduced x =  xi — x2. Since the sum over a! runs over all possible
values o f  the difference xa — χ α- for each value o f  xa, each term  in the sum over
a! is identical, and

g(x) =  ^ r - ( ^ i ( x - x a +  x0)). (2.3.12)

A direct and intuitive m ethod o f determ ining g(x) follows from  this equation. 
Choose a configuration o f  particle positions (such as depicted in Fig. 2.3.1) in 
the ensemble o f  perm itted configurations, and choose a coordinate system so 
that a particle, which we label with a 0, is a t the origin. Then the integral 
o f (n)g(x) over a volume element o f  size ddx  a t x is simply the num ber o f 
particles in th a t volume element. Thus g(x) can be determ ined by counting the 
num ber o f  particles in a small volume ddx  at separation x from a particle a t the 
origin. The average o f  this num ber over all (many) particles placed at the origin 
divided by (n)ddx  is g(x). In an uncorrelated system, such as an ideal gas, the 
probability o f  finding a particle a t any position is uniform  and is independent 
o f the positions o f  o ther particles. In this case, g(x) does no t depend on x, and 
g(x) =  (1 —N ~ l ) —> 1 because f  (n)g(x)ddx  =  ( N —1). As interparticle interactions 
are increased, spatial correlations build up and lead to  nontrivial structure in 
g(x). (Sometimes the correlated part is explicitly written as g(x) =  1 +  h(\), where 
h(x) is the pair correlation function.)  From  Eqs. (2.3.11), (2.3.2), and (2.3.5), the 
scattering intensity for homogeneous, isotropic fluids is directly written in term s o f 
g(x) as

S(q) =  <n)[l +  <n> j  g ( x ) e - ^ d dx]. (2.3.13)

We will use g(x) extensively in the next section to  describe qualitatively some 
interesting structures. N ote th a t g(x) =  1 in an ideal gas. This leads to  S(q) =  
(n)[l +  (n)(27t)3(5(q)] in agreem ent with Eq. (2.3.8) when S„„ =  (n). W hen the 
system is, in addition, isotropic, g(x) —► g(r), where r =  |x|. In this case, g(r) is 
known as the radial distribution function.
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Fig. 2.3.1. Typical atomic configuration in a hard-sphere fluid. The pair 
distribution function can be obtained by choosing an arbitrary particle as the 
origin and counting the number of atoms whose centers lie within a distance 
dr of a circle of radius r of the origin.

2.4 Liquids and gases

Both liquids and gases are fluids. Fluids are spatially homogeneous and rotationally 
isotropic. This means th a t the average environm ent o f  any point in a fluid is 
identical to th a t o f  any other point and independent o f  direction. Thus the 
average properties o f  a fluid are invariant with respect to spatially uniform  
translations through any vector R and with respect to  arbitrary  rotations about 
any axis. I t is instructive to  see how these two invariance properties necessarily 
imply tha t densities are spatially uniform  and  th a t tw o-point correlation functions 
depend only on the m agnitude o f  the difference between two spatial coordinates. 
Translational invariance implies

(n(x)) =  (n(x +  R)). (2.4.1)
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The displacement vector R is arbitrary. In  particular, we can choose it to  be equal 
to —x so tha t (n(x)) is equal to  the density (n(0)) at the origin for every x. Thus 
(n(x)) does no t depend on x. Similarly,

C„„(xi,x2) =  C„„(x i +  R ,x2 +  R). (2.4.2)

Here, the choice R =  —x2 implies C„„(xi,x2) =  C„„(xi — x2,0) =  C„„(xi — x2) 
depends only on xi -  x2. R otational invariance implies

C„„(X! -  x2) =  Cnn($ (x \  -  x2)) (2.4.3)

for any ro tation m atrix  and thus th a t Cm (x i — x2) =  C„„(|xi — x2|) is a function 
o f the m agnitude |xi — x2|. These symmetries then imply

(n(qi)n(q2)) =  J ddx i J / x 2e-i<ll'Xle-,<l2'X2C„„(xi,x2)

=  Cnn(q i)(2n)dSd(qi +  k ), (2.4.4)

where qi =  |qi | and

Cnn(q) =  J  ddxe~i<l'xCnn(\x\). (2.4.5)

Thus for a flu id ,/(q ) =  VC„„(q).

The set o f  operations tha t leave a system unchanged form a group called the 
symmetry group. The group o f arbitrary  translations, rotations, and reflections 
is the Euclidean group. Since a fluid is invariant under all o f  these operations, 
its symmetry group is the Euclidean group. Fluids have the highest possible 
symmetry (i.e., they have the largest num ber o f  symmetry operations). All o ther 
equilibrium phases o f  m atter are invariant only under some subgroup o f  the 
Euclidean group and have lower symmetry than  fluid phases. The description 
and consequences o f  reduced symmetry will be a m ajor focus o f  this book.

W hat is conventionally m eant by a liquid is a fluid phase with a high den
sity. Unlike m any o f the o ther condensed phases tha t we will study, it is not 
distinguished from its higher tem perature gas phase by a symmetry change. In 
fact, it is possible to  go continuously from  the liquid to the gas phase by going 
around a critical po in t (see Fig. 3.1.4 for a typical phase diagram). Except for 
ideal gases (which do no t exist), there are always interactions and correlations 
between particles and consequently a pair distribution function th a t differs from 
unity and reflects these correlations. The usual distinction between gas and liquid 
comes only when the two coexist and a meniscus can be observed. In this case 
the phase separation between the dense and less dense phases is caused by the 
presence o f  an attractive interaction. However, the correlations in the liquid (and 
the correlations which eventually break the symmetries o f  the liquid state) are 
primarily due to the repulsive interactions. A typical form for the interparticle 
potential is the 6-12 or Lennard-Jones potential o f  Eq. (1.3.28) and Fig. 1.3.4. It 
has a steep short-range repulsive p art and a longer-range attractive part.
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r /a

Fig. 2.4.1. The radial distribution function for a hard-sphere fluid for three 
different volume fractions (i.e., ratio of volume occupied by hard spheres to 
total volume). These curves were generated numerically using the 
Percus-Yevick equation.

1 Hard-sphere liquids

I f  in fact the repulsive part dom inates the correlations, then the simplest physical 
model o f  a liquid we m ight take would involve an exclusion o f  the interpenetration 
o f  the particles. This is m ost easily represented by a hard-sphere interaction. 
A lthough this seems like an immense trivialization o f  the problem, there is a 
good deal o f  unusual and unexpected physics to be found in hard-sphere models 
((7(f) =  oo, r < ro, U(r) =  0, r > ro)· W hat will the radial distribution function 
look like for such a potential? It is clear tha t g(r) will have a hole up to r = ro, 
and th a t g(r) m ust rise above one at further distances to  conserve the total density, 
bu t will there be further correlations?

The Bernal model o f  random -close-packing o f  hard  spheres is a useful model 
for a liquid (or equally for an am orphous solid or a glass) for which the above 
questions can easily be addressed. R andom  packings o f  hard  spheres can be 
generated by experim ent (e.g. by packing ball-bearings or perhaps peas) o r by 
com puter simulation. A two-dimensional sim ulation for the packing o f  hard  discs 
is shown in Fig. 2.3.1. From  this picture, it is clear tha t there are strong short- 
range correlations in the positions o f  particles. There is a near-neighbor shell 
consisting o f approxim ately six particles (twelve in three dimensions), then a dip 
in density caused by exclusion from this shell, then a next shell, etc. However, the
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Fig. 2.4.2. The radial distribution function for the Bernal model and the 
experimentally observed radial distribution function for liquid argon. [J.M. 
Ziman, Models o f  Disorder (Cambridge University Press, 1979), p. 79.]

correlations rapidly die out on the scale o f several particle diameters. The radial 
distribution function from Bernal’s studies o f ball-bearings in  a bag are com pared 
to g(r) from early neutron scattering experiments in  Fig. 2.4.2. M ore recent 
scattering experim ents produce the static structure factor and radial distribution 
function shown Figs. 2.4.3 and 2.4.4. The hard-sphere model is no t a t all bad  in 
describing the liquid correlations beyond the hard-sphere radius, and considerably 
more work is required to  do better or to  obtain an analytic theory.

Note tha t there is a strong peak in  g(r) at the average nearest neighbor spacing 
rm as would be expected from the fact tha t g(r) is proportional to the num ber of 
particles in  a spherical shell a distance r from a given particle. There are other 
less pronounced peaks at average next nearest and further neighbor separations. 
These peaks are reflected in the structure factor as peaks at wave vectors equal 
to 2π over a separation. Thus, the largest peak in S(k) is a t k & 2n/r„„.

Some other rem arks about hard-sphere systems.

•  The density (volume fraction) o f  random  close packed spheres (uniform  size) in 
three dimensions is 0.638. This com pares to  a density o f  0.7405 for the periodic 
close packing o f  spheres in  the FC C  (face-centered cubic) or H C P (hexagonal 
close packed) crystalline phases.

•  A  hard-sphere system is atherm al (i.e., there is no tem perature dependence 
to its phase diagram ) because all o f  the energies are either zero or infinite, 
and hence all term s involving exponentials with tem perature in  the partition  
function are either zero or unity.
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r  (A)

Fig. 2.4.3. The radial distribution function g(r) for liquid argon at 85 K 
(density 2.13 x 1022cm-3) as determined by neutron diffraction. [J.L. Yarnell 
M J. Katz, R.G. Wenzel, and S.H. Koenig, Phys. Rev. A  7, 2130 (1973).]

9(A)

Fig. 2.4.4. The static structure factor S(q) for liquid argon for the same 
conditions as Fig. 2.4.3. [J.L. Yarnell, M J. Katz, R.G. Wenzel, and S.H. 
Koenig, Phys. Rev. A  7, 2130 (1973).]
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• Nonetheless there is a solid-liquid phase transition as a function o f  particle 
density. O n the phase boundary a liquid with 0.495 volume fraction is in 
equilibrium with an  FC C  solid with 0.545 volume fraction.

These are the results o f  m any com puter simulations. They appear to  be relevant 
for m any o f the studied solid-liquid transitions observed, for example, in  noble 
gases.

2.5 Crystalline solids

1 Unit cells and the direct lattice

M any condensed systems, for example all o f  the elements except helium, form 
crystalline solid phases a t atm ospheric pressure a t sufficiently low tem peratures. 
A  perfect crystal consists o f  a space-filling array  o f  periodically repeated identical 
copies o f  a single structural unit containing some distribution o f  mass and charge. 
A n example o f  a two-dimensional crystal is shown in Fig. 2.5.1. In  the simplest 
case, the structural unit contains a single atom ; m ore generally, it may contain  
many different atom s or a continuous variation in  the m ass density about some 
mean. The repeated structural unit is called a unit cell. The unit cell with the 
smallest possible volume is called a primitive unit cell. I f  the unit cell contains 
more than  one atom, the positions o f  the atom s relative to  the center o f  the cell are 
called the basis. Equivalent points in  unit cells in a d-dimensional perfect crystal 
lie on a periodic lattice, called a Bravais lattice, consisting o f  a m athem atical array 
o f points. A ny lattice point can  be specified by an  integral linear com bination o f 
independent primitive translation  vectors, a i,...,a d, (for a d-dimensional lattice):

Ri =  h»i +  /2a 2 +  — +  Id&d, (2.5.1)

where 1 =  (h,...,ld) is a d-dimensional vector with com ponents (1 indexes 
a particular unit cell, Ri specifies its position in real space.) The set o f  vectors 
ai, ...,ai  completely define the m athem atical lattice. A  translation  vector, or lattice 
vector, connects equivalent points in the lattice,

T  =  R, -  Rf (2.5.2)

for any 1 and 1'.
The lattice o f  points in  coordinate space is often called the direct lattice. All 

vectors in  the set defined by Eq. (2.5.1) have a m agnitude greater than  or equal to 
that o f  the shortest length vector connecting vertices in  a primitive unit cell. As 
is shown in Fig. 2.5.1, the set o f  primitive translation vectors for a lattice is not 
unique. It is always possible, however, to  choose the set so th a t it contains the 
shortest vector in the lattice. The set o f  vectors T  are closed under the operations 
of addition and m ultiplication by a m inus sign; i.e., if  vectors Ti and T 2 are 
vectors in the periodic lattice, then the vectors + T i, + T 2, T i + T 2, and + T | + T 2
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Fig. 2.5.1. A two-dimensional crystal consisting of identical unit cells 
periodically repeated to fill space. Two sets of primitive translation vectors 
are shown.

are also. This closure property generalizes to nonperiodic lattices, as we shall see 
in Secs. 2.10 and 2.11.

There is no unique choice for a primitive unit cell o f a Bravais lattice. One 
choice is the parallelepiped whose edges are the primitive translation  vectors. 
In  three dimensions, the volume o f the unit cell is thus v0 =  ai · (a2 x  83). A n 
alternative com m only used unit cell is the Wigner-Seitz unit cell obtained by 
constructing perpendicular bisectors to all lattice vectors emerging from a given 
lattice point. The smallest volume enclosed by planes constructed in  this way 
defines the Wigner-Seitz cell. The construction o f the Wigner-Seitz cell for a 
two-dimensional lattice is shown in Fig. 2.5.2.

A  complete description o f a perfect crystal requires the specification o f a 
periodic lattice and the d istribution o f  m ass in the unit cell surrounding each 
lattice point. In  an  ideal crystal consisting o f a single type o f (pointlike) atom  
located at each lattice site, the num ber density is simply

n(x) =  ^ < 5 ( x - R , )  . (2.5.3)
1

If  the lattice has a basis with atom s o f mass ma located at sites ca in the unit cell, 
the mass density is

p(x) =  ^ 2  maS(x  -  Ri -  ca). (2.5.4)
l,a

The mass density o f a perfect crystal is invariant with respect to translations 
through a lattice vector: p(x) = p (x  +  T). There are no perfect crystals in nature 
with a mass density given precisely by Eq. (2.5.4). Therm al or quantum  mechanical 
fluctuations cause instantaneous deviations from this ideal form. In  addition any
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Fig. 2.5.2. Construction of the Wigner-Seitz unit cell for a low symmetry 
lattice in two dimensions. Lattice sites are indicated by black dots. Full lines, 
whose perpendicular bisectors are dashed lines, connect the central lattice 
site to other sites. The Wigner-Seitz cell is shaded. All Wigner-Seitz cells, 
except those of the square and rectangular lattices, are hexagonal.

real crystal will have imperfections o f various sorts (vacancies, dislocations, etc.). 
Nevertheless, the average density,

<p(x)) =  (p(x +  T)), (2.5.5)

has the periodicity o f a perfect crystal. A  physical crystal is a m aterial whose 
average mass density is a periodic function o f space.

2 The reciprocal lattice

Associated with any periodic lattice is a set o f  equispaced parallel planes con
taining all lattice points as shown in Fig. 2.5.3. Each set o f these planes can be 
defined by its norm al vector G. Lattice vectors in a given plane perpendicular to 
G  satisfy G  · T  =  const. For this set o f parallel planes all lattice vectors lie in 
some plane which satisfies :

G  · T  =  2nn  (2.5.6)

for some integer n. The coefficient 2π is chosen by convention so th a t exp(iG-T) =  
1. Any point x„ (not just a lattice point T) in the nth plane associated with G 
satisfies G  ■ x„ =  2πη. The difference x„ — x„_i between points in adjacent planes 
satisfies G  · (x„ — x„_i) =  2π. The distance I between adjacent planes is the 
com ponent o f x„ — x„_i parallel to  G. Thus / =  2π / 1G|. For any set o f  primitive 
translation vectors, a i,.. . ,a d, it is always possible to construct a set o f reciprocal 
vectors, b i ,...,bd satisfying
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Fig. 2.5.3. Some sets of equispaced parallel planes containing all sites in a 
square lattice. The set of long dashed planes is perpendicular to the vector G.

In  three dimensions, bi = 2 π (α 2 x  a 3)/[a i · (a2 x  83)], and  b2 and b3 are obtained 
from bi by cyclically perm uting a i, a2, and 83. A ny vector satisfying Eq. (2.5.6) 
can be written as

G  =  nibi +  · · · +  njbd, (2.5.8)

where n \ , ..., rid are positive or negative integers or zero. The vectors G, therefore, 
form a periodic lattice, called a reciprocal lattice, with primitive translation vectors 
bi,...,bd. The Wigner-Seitz unit cell for the reciprocal lattice is called the first 
Brillouin zone.

3 Periodic functions

Any periodic function o f position /(x )  =  / ( x + T )  can be decom posed into Fourier 
com ponents with wave vectors in  the reciprocal lattice (see A ppendix 2A ):

m  = J 2 f o e iG'X· (2.5.9)
G

This can be derived by taking the general Fourier transform  o f /(x ) :

/ ( q ) =  J  d?xe-*xf(x) =  J 2 f Q ^ * e ~ iq'(x+T)/ ( x  +  T)

=  | X V iq'Tj  J^d dx f(x )e ~ i'i'x, (2.5.10)

where f 0 m eans an  integral over a un it cell. The sum over T  in  the last expression
is equal to the num ber N c o f  cells in  the lattice if  q is a reciprocal lattice vector
and is zero otherwise. Therefore,

m  =  N cv0 £  <5q,G/ G =  J 2 (2 n )dS(q -  G ) / G, (2.5.11)
G G
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where

f c  =  -  f ddx f(x )e ~ iG·*, (2.5.12)
vo J

where vo is the volume o f a unit cell. The Fourier representation o f Eq. (2.5.9) 
applies, in particular, if / (x )  is the scattering potential U(x) [Eq. (2.1.5)], the 
average mass density, (p(x)), or num ber density, (n(x)):

< n ( x ) ) = £ ( n Gy G-x. (2.5.13)
G

Thus, the average num ber density in a periodic solid is fully specified by its 
Fourier com ponents (no) a t reciprocal lattice vectors G.

4 Bragg scattering

If scatterers are rigidly fixed at sites on a periodic lattice, the scattering m atrix 
element [Eq. (2.1.2)] becomes

M kM, = V j 2 u GSiG, (2.5.14)
G

where q =  k — k' is the difference between incident and outgoing wave vectors. 
The scattering cross-section then becomes

^  =  ^ 2 E l t /Gl2\ G .  (2.5.15)

Thus, there will be peaks in the scattering pattern  a t every reciprocal lattice vector 
with intensity proportional to  the square o f the volume o f the sample and to  the 
square o f the Fourier com ponent o f the scattering potential at wave vector G. 
These are the Bragg scattering peaks o f the solid. As we shall see in Chapter 7, 
the scattering into Bragg peaks is elastic so th a t the m agnitude o f the incident 
and scattered wave vectors is the same, i.e., |k| =  |k '|. This leads to a variation of 
Bragg’s law, know n as the Laue condition, which states tha t incoming wave vectors 
which lie on the perpendicular bisectors o f reciprocal lattice vectors (i.e., on the 
Brillouin zone faces) will be scattered. This can be seen by setting q =  G. Then

k' =  k -  G,

|k '|2 =  |k |2 +  |G |2 — 2k ■ G  , (2.5.16)

k ' (G /2 ) =  |G /2 |2.

These relations are equivalent to  the simple Bragg condition (2.1.1) as can be 
seen by substituting |G | =  2π /d  and |k| =  2 π /λ  into the above and recalling 
that Θ in Eq. (2.1.1) is the angle between k and the scattering planes rather than  
the norm al to the planes. In  Fig. 2.5.4 we see tha t when an  incident wave lies on 
a Brillouin zone face it is Bragg scattered across the zone to  the opposite face.

We will now study in m ore detail the scattering from  crystals. The structure 
factor [Eq. (2.1.10)] is
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Fig. 2.5.4. Illustration of the Laue condition that Bragg scattering occurs 
when the incident wave vector k lies on the perpendicular bisector of a 
reciprocal lattice vector G.

(2.5.17)
G

and the intensity o f the Bragg peak at G  is proportional to  the square |(mg)I2 of 
the Fourier com ponent o f  the density at G. Along with the dom inant scattering 
into Bragg peaks, there is also diffuse scattering at non-Bragg angles given by 
S„„(q). The simplest crystal is one in which there is a single atom  rigidly fixed at 
each lattice site. In  this case, no =  for every G, and the Ursell function S„„(q) 
is identically zero. Thus if the atom ic form factor were unity, the X-ray scattering 
pattern  would consist o f  equally intense peaks at every reciprocal lattice vector. 
The atom ic form factor generally dies off at large q so th a t the intensities of 
Bragg peaks would die off a t large G  even for this idealized model o f  rigidly 
fixed atoms. In  a som ewhat m ore complex model crystal, each unit cell has a 
basis consisting o f two or m ore rigidly fixed identical atoms, located at positions 
ca relative to  the origin o f  the cell [Eq. (2.5.4)]. A n example o f  such a crystal is 
the two-dimensional honeycom b crystal shown in Fig. 2.5.5. In  this case,

with ci =  0 and c2 =  (ai +  2a2)/3 . For the honeycom b lattice, the intensities of 
the Bragg peaks will vary. For o ther lattices, there m ay actually be extinctions at 
particular reciprocal lattice vectors. Physically this can be understood as resulting 
whenever the atom s in the basis form  planes th a t lie ha lf way between lattice 
planes and, therefore, cause destructive interference where previously there was 
constructive interference. Thus, even though one can in general expect Bragg 
peaks at every reciprocal lattice vector, the d istribution o f  m atter in  a unit cell 
m ay actually lead to zero intensity at some peaks.

(2.5.18)
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Fig. 2.5.5. The two-dimensional honeycomb lattice showing the primitive 
translation vectors and the two-atom unit cell.

The two examples just given assum ed the atom s in the crystal were rigidly 
fixed. In  real systems, this is never the case. Q uantum  mechanics and finite 
tem perature always lead to  fluctuations about the ideal rigid state tha t in tu rn  
cause the intensity o f Bragg peaks at large G  to decrease exponentially with the 
Debye-Waller factors tha t will be discussed in  Chapters 6 and 7. In  addition, 
when atom ic positions are no t fixed, the Ursell function is nonzero, and there 
will be a diffuse scattering background arising from  S„„(q) in Eq. (2.5.17). Crystal 
imperfections such as dislocation and  vacancies also reduce the high-G  scattering 
intensity. The generalization o f the above discussion to crystals with m any 
types o f atom s is straightforw ard and does no t lead to  qualitatively different 
behavior.

2.6 Symmetry and crystal structure

Consider a crystal fixed in  some laboratory  fram e o f reference. A n observer in the 
same laboratory  fram e will identify the crystal by its spatially periodic density. 
If  the crystal is now translated  through a lattice vector T, it will be absolutely 
indistinguishable from  the untranslated  crystal to the fixed observer. Translations 
by lattice vectors are symmetry operations tha t leave the density o f the crystal 
invariant. The set o f  all lattice translations form  a group, and the crystal is said 
to be invariant under operations in  this group. Crystals are also invariant under 
point group operations consisting o f rotations, reflections, and inversions about 
special symmetry points. For example, the triangular lattice shown in Fig. 2.6.1a 
is invariant under ro tations o f 2πρ /6  for p =  0,..., 5 about any lattice point. A 
six-fold symmetry axis passes through each lattice point. The lattice in  Fig. 2.6.1a 
is also invariant under reflections through the six lines passing through nearest 
and next nearest neighbor lattice sites as shown in Fig. 2.6.1b. It has six m irror 
planes. The triangular lattice with a basis in Fig. 2.6.1c, on the o ther hand, is



50 2 Structure and scattering

(a) (c)

Fig. 2.6.1. (a) A triangular lattice showing lattice sites as dark circles. Bonds 
connecting nearest neighbor sites are shown as full lines. Also shown is the 
honeycomb lattice of the centers of triangles (indicated by lighter circles 
connected by dashed lines) formed by connecting nearest neighbor sites of 
the triangular lattice. Note that the bonds connecting nearest neighbor sites 
of the honeycomb lattice are perpendicular bisectors of the bonds of the 
triangular lattice and vice versa. Lattices in two dimensions whose bonds 
have this property are said to be dual. Every two-dimensional lattice has a 
dual lattice obtained by constructing perpendicular bisectors to its bonds, (b) 
The undecorated Wigner-Seitz unit cell of the triangular lattice showing 
six-fold rotational symmetry and six mirror planes indicated by dashed lines, 
(c) A decorated Wigner-Seitz unit cell with only three-fold symmetry and no 
mirror planes.

invariant only under ro tations through 2πρ/3  and no t under reflections; it has
three-fold ro tational symmetry bu t no m irror planes.

1 Two-dimensional Bravais lattices

Molecules and finite size objects can have symmetry axes o f arbitrary  order. The 
requirem ent th a t a crystal be invariant under translations through any vector 
in  its direct lattice, which, as we have seen, contains no vector shorter than  
some m inim um  length vector, places severe restrictions on possible ro tational 
symmetries. To illustrate how this comes about, we will show tha t it is impossible 
for a periodic crystal to have five-fold symmetry, i.e., to be invariant with respect 
to ro tations through 2π/5 . Assume th a t a crystal does have five-fold symmetry, 
and let ao =  (1,0) be the shortest vector in the lattice. Since the crystal is assumed 
to have five-fold symmetry, the vectors a„ =  [cos(27tn/5), sin(27in/5)], with n an 
integer, m ust also be in its direct lattice. But by the closure property o f any 
lattice, the vector
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a i

Fig. 2.6.2. The five vectors a„ =  [c o s (2t m / 5), sin(2Tin/5)] generated by 
applying five-fold symmetry operations to the vector ao. The vector ai +  a4 is 
parallel to and shorter than the vector ao.

T  =  +  ai

=  [cos(87i / 5 ) +  cos(27i/5), sin(87i / 5) +  sin(27i/5)]

=  τ_ 1( 1 , 0 ) =  T_ 1a0, (2 .6. 1 )

where τ =  (1 +  \/5 ) /2  =  2cos(27i/10), m ust also be in  the direct lattice. The 
num ber τ is a special irrational num ber called the golden mean tha t satisfies τ2 =  
τ + 1. The vector T, as illustrated in Fig. 2.6.2, is shorter than  ao, contradicting the 
assum ption th a t ao was the shortest vector in the lattice. Thus, it is impossible for 
a  periodic lattice in two dimensions to have five-fold symmetry. Similar argum ents 
rule out all periodic lattices in two dimensions with other than  two-, three-, four-, 
or six-fold symmetry. These restrictions lead to  only five distinct types o f Bravais 
lattices in two dimensions, as illustrated in Fig. 2.6.3. Point groups th a t are 
compatible with periodic translational symmetry are called crystallographic point 
groups. N ote tha t the centered rectangular lattice is formed by placing a lattice 
site a t the center o f rectangles (with sides ai and a2) in  a rectangular lattice. 
The primitive unit cell o f the rectangular lattice with edges equal to  the primitive 
translation vectors is a non-prim itive unit cell for the centered rectangular lattice. 
This rectangular non-prim itive unit cell is called the conventional unit cell o f the 
centered rectangular lattice.

The triangular lattice with six-fold symmetry deserves special attention. It is 
the two-dimensional lattice with the highest rotational symmetry. In  addition, the 
densest possible packing o f hard  circles o f  radius R  is obtained by placing their 
centers on a triangular lattice with lattice param eter a = 2R  as shown in Fig. 2.6.4. 
N ote tha t each circle is tangent to  six other circles. A  lattice in  d-dimensions 
that provides the densest possible packing o f hard  spheres is said to  be close
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Fig. 2.6.3. The five two-dimensional Bravais lattices: (a) square, (b) oblique, 
(c) rectangular, (d) centered rectangular, and (e) hexagonal lattice, ai and Λι 
are primitive translation vectors and φ is the angle between ai and a2. 
Wigner-Seitz unit cells are shaded. The conventional unit cell of the centered 
rectangular lattice is enclosed with dashed lines.

packed. The triangular lattice is the only close packed lattice in two dimensions. 
The fractional area occupied by the hard  circles is the area o f a circle divided 
by the area o f  the hexagonal Wigner-Seitz cell with side o f length s =  2 R /^ 3 :  
n R 2/(3sR ) =  π ^ β /6  =  0.907R. (Note th a t the vacant spaces between circles lie 
on a honeycom b lattice (Fig. 2.5.5) with two sites per unit cell.) The primitive 
translation vectors o f  the direct triangular lattice can be chosen as
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Fig. 2.6.4. Close packed hard circles on a triangular lattice. The centers of 
the circles are at lattice sites of the triangular lattice shown in Fig. 2.6.1a. 
The empty spaces between circles lie on a honeycomb lattice. The two 
inequivalent sites in the lattice are marked with +  and ·, respectively.

ai =  a (l,0 ),

a2 =  a(cos27i/3, sin27i/3) =  a(—1/2, >/3/2), (2.6.2)

and those for the reciprocal triangular lattice as

b' = i^k(cos"/6'sin”/6) = ̂ ,V5A1/2)·
b> =  ,2 '6'3»

These vectors satisfy the orthogonality relations, Eq. (2.5.7).

2 Three-dimensional Bravais lattices

In three dimensions, there are 14 distinct Bravais lattices, as shown in Fig. 2.6.5. 
They range from  the highest symmetry cubic lattices with four three-fold and 
three four-fold axes and three m irror planes to the triclinic lattice whose point 
group consists only o f the inversion operation. There are three types o f cubic 
lattices: the simple cubic (SC), the body-centered cubic (BCC), and face-centered 
cubic (FCC). The primitive translation vectors o f the SC lattice are the edges of 
a  cube. Its primitive unit cell is a conventional cube. Those for the BCC lattice 
point to the centers o f non-prim itive conventional cubic unit cells o f side a :

ai =  ^ α (Ι ,Ι ,Ι );  a2 =  ^ a ( - l ,  1,1); a3 =  ^ a ( l , - l ,  1), (2.6.4)

whereas those for the FC C  lattice point to face centers o f the non-prim itive cubic 
cell:

ai =  i a ( U ,0 ) ;  a2 =  i a ( 0 , l , l ) ;  a3 =  ^ ( 1 , 0 , 1). (2.6.5)
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Table 2.6.1. The 14 Bravais lattices in three dimensions.

System

Number of 
lattices 
in system

Lattice
symbols

Restrictions on 
conventional cell 
axes and angles

Triclinic 1 P a Φ b Φ c 
tχ φ β φ γ

Monoclinic 2 P,C a Φ b Φ c 
a =  y =  90° φ  β

Orthorhombic 4 P>C,I,F a Φ b Φ c 
a =  β =  y =  90°

Tetragonal 2 P,I a =  b Φ c 
a =  β =  y =  90°

Cubic 3 P or SC 
I or BCC 
F of FCC

a = b =  c 
a =  β =  y =  90°

Trigonal 1 R a = b =  c
a =  0 =  y <  120°, φ  90°

Hexagonal 1 P a = b Φ c 
a =  β =  90° 
y =  120°

The primitive unit cells for the BCC and FC C  lattices are no t cubes. F rom  the 
definition o f the reciprocal lattice, it can be shown tha t the po in t group symmetry 
o f the direct and reciprocal lattices is the same. The reciprocal lattice o f the SC 
lattice is clearly an SC lattice. I t is also clear tha t the reciprocal lattice o f a BCC 
lattice is neither SC nor BCC so it m ust be FCC. Similarly, the reciprocal lattice 
o f an FC C  lattice is a BCC lattice. The Bragg scattering patterns from SC, BCC, 
and FC C  lattices are, therefore, different. The FC C  structure is o f particular 
interest because it has the largest num ber o f nearest neighbors ( 1 2 ) as well as 
the highest symmetry. The conventional unit cell o f all o f the cubic lattices is the 
unit cube with all sides equal and 90° angles between all edges. This is, however, 
no t the primitive unit cell o f either the BCC or FC C  lattice. The W igner-Seitz 
unit cells for the BCC and FC C  lattices are shown in Fig. 2.6.6.

Lattices with lower than  cubic symmetry have conventional unit cells tha t are 
anisotropic and can have angles between edges tha t differ from  90° as shown 
in Fig. 2.6.5 and outlined in Table 2.6.1. The lengths o f the unit cell edges 
are com m only denoted by the symbols a, b and c. In  tetragonal, trigonal, and 
hexagonal lattices, b =  c. The ratio  c /a  provides a m easure o f the anisotropy of 
these lattices.
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T etragonal

O rthorhom bic

Monoclinic

Trigonal Trigonal and  hexagonal

Triclinic

Fig. 2.6.5. The 14 Bravais lattices in three dimensions. The lengths a, b and c 
and angles α, β  and y defining the unit cell are shown at the bottom left of 
the figure.
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(a) (b)

Fig. 2.6.6. Wigner-Seitz unit cells for (a) the BCC lattice and (b) the FCC 
lattice.

3 Close packed structures

We have seen th a t the centers o f  close packed circles in two dimensions lie at the 
lattice points o f a triangular lattice. Three-dim ensional close packed structures 
can be obtained by stacking two-dim ensional planes o f close packed spheres. 
Im agine first a single close packed plane. A  second close packed plane can be 
placed on top o f the first to provide m axim um  density by placing its spheres 
above either o f the two sites o f the unit cell o f the honeycom b lattice o f vacant 
spaces in the first plane (i.e., either the +  or the ·  in Fig. 2.6.4). Similarly, a third 
plane can be placed on top o f the second in one o f two ways, and so on. The 
spheres in any plane packed in this way lie on a triangular lattice with one of 
three origins: the origin o f the first plane or at one o f the sites o f the first unit 
cell o f the honeycom b lattice o f vacant spaces in the first plane. It is custom ary 
to  label the three possible lattices A, B  and C. Any sequence o f planes in which 
the label changes from one plane to  the next leads to  a close packed structure in 
which the to tal volume fraction filled by the spheres is «  0.74.

Two sequences occur the m ost often and deserve special attention. The first is 
the FC C  structure in which planes perpendicular to the (1,1,1) axis form two- 
dim ensional triangular lattices. The stacking sequence is A B C A B C  ■ ■ ·. The second 
is the hexagonal close packed lattice (HCP) whose sequence is A B A B A B  · · ·. The 
H C P  lattice has two atom s per unit cell and a c /a  ratio  o f (8 /3 )1/ 2 =  1.633. 
It is com m on practice to refer to two atom  per unit cell hexagonal lattices as 
H C P lattices even if their c /a  ratio  differs slightly from  the above ideal. Thus, 
for example, zinc is said to  have an H C P  structure even though c /a  =  1.86. (Of 
the elements, 23 crystallize as FCC, 21 as HCP, and 14 as BCC, indicating the 
tendency o f crystals to be bo th  close packed and highly symmetric.)
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a l

Fig. 2.6.7. A two-dimensional lattice with a glide plane AA'.

Though the sequence nom enclature for stacked hexagonal structures is m ost 
commonly used for FC C  and H C P  structures, it can be applied to  other systems, 
such as molecules intercalated between graphite layers. In  these systems, random  
or large unit cell stacking structures can occur.

4 Space groups

The group o f all translations and rotations tha t leave a crystal invariant is called 
the space group. Often the space group consists only o f po in t group operations 
about symmetry points and translations by vectors in the direct lattice. In  this, the 
symmorphic case, the space group is a direct product o f the po in t group and the 
translation group. In  some cases, however, there may be operations in the space 
group consisting o f a com bination o f point group and translation  operations tha t 
individually are no t in the space group. A n example o f such an operation is 
illustrated by the lattice shown in Fig. 2.6.7. This is a lattice with a m ulti-atom  
basis and primitive translation vectors a i =  (2,0) and a2 =  (0,2). The lattice is 
not invariant under reflection about the line AA'. I t is, however, invariant under 
first a reflection through the line AA! followed by a translation through the vector 
a j /2  no t in the direct lattice. The line A A ' is a two-dimensional version o f a 
glide plane. A  symmetry operation involving a ro tation  about some symmetry 
axis followed by a translation through a vector no t in the direct lattice along the 
symmetry axis gives rise to a screw axis. Space groups w ith glide planes or screw 
axes are called nonsymmorphic.
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2.7 Liquid crystals

We have looked at two extreme forms o f condensed m atter: homogeneous, 
isotropic liquids with an average structure tha t is invariant under arbitrary 
ro tations and translations, and crystalline solids with average structures that 
are invariant only with respect to certain discrete lattice translations and point 
group operations com prising the space group. The liquid state has short-range 
order bu t no long-range order: it has the highest possible symmetry. The 
crystalline solid state has long-range positional and rotational order; it has a 
m uch lower symmetry than  the liquid state and can have the lowest possible 
symmetry consistent with a regular filling o f space. Between these extremes, 
there are systems th a t exhibit short-range correlations in some directions and 
long-range order in others and th a t have symmetries interm ediate between those 
o f liquids and the crystals. One form o f this interm ediate order is orientational 
order. In a periodic crystal, there is only a discrete set o f directions defined 
by vectors between nearest neighbor particles, which occupy sites on a lattice. 
These directions are the same throughout the lattice and define a long-range 
orientational order often called bond-angle order. Rem arkably, it is possible to 
have long-range orientational order in the absence o f translational order.

Am ong the m aterials tha t show interm ediate order, the m ost widely studied are 
liquid crystals. Some examples o f  liquid crystal forming molecules are shown in 
Fig. 2.7.1. The molecules are highly anisotropic, and to  a good approxim ation can 
be m odeled as rigid rods or ellipsoids o f revolution with lengths I greater than 
their widths a as shown in Fig. 2.7.2. As is the case with solids, the orientational 
order is caused mostly by the repulsive interactions.f

1 Isotropic, nematic and cholesteric phases

A t high tem peratures the axes o f the anisotropic molecules are random ly oriented 
and their centers o f mass are random ly distributed as depicted in Fig. 2.7.3a. 
Globally the system is an isotropic liquid. The structure factor (Fig. 2.7.4a) is 
isotropic bu t shows liquid-like rings at wave num bers corresponding to the two 
characteristic lengths o f the individual molecules -  their length I and diam eter a.

f  The names o f the different liquid crystalline phases are due to G. Friedel who studied many of 
their properties in the first part of the twentieth century. Nematic is from the Greek νημσ  for 
thread. When observed between crossed polarizers, the defects in nematics produce a  threadlike 
structure. Smectics are from σμβ'/μα for soap from which many layered mesophases are made. 
Cholesteryl nonanoate was the first liquid crystal discovered by R. Reinitzer and O. Lehman (in 
the late nineteenth century) and gives its name to cholesterics. Lyotropic refers to liquid crystals 
which undergo phase changes as a  function of solvent concentration while thermotropics change 
with temperature as a  control parameter. The names “smectic-/!” “smectic-C”, etc. merely 
indicate the historical order in which the phases were discovered. There is not the slightest clue 
about the arrangement o f the molecules, the symmetries or the physical properties in the letter 
designation. [G. Friedel, Ann. Physique (Paris) 18, 273 (1922); F. Reinitzer, Monatsch Chem. 9, 
421 (1988); O. Lehman, Z. Physikal Chem. 4, 462 (1989).]
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4,4’ - dim ethyloxyazoxybenzene (p-azoxyanisole)

h3co-----/)------------------ n =  n------  och3

118.2C 135.3C

solid -< ► TV -< ► I
29.57k J 0.57kJ

2-(4-n-pentylphenyl)-5-(4-n-pentyloxyphenyl)-pyrim idine

:N

c5h„o /)------ /)----------------- /) c5h„

J\ /ΓΛ  .Γ Λ  //
7 9 C  102.7 C  113.8 C  144C 2 1 0 C

solid -< ► Sm-G  M. ► Sm-F  M ► Sm -C -< ► Sm-Λ ► I
34.98kJ 0.58kJ 0.5kJ 11.45kJ 0.2kJ

4-n-pentylbenzenethio-4’-n-heptyloxybenzoate (7S5)

o

c7h15o -----/)----------------- c -------s------ /)----------------c5h,

3 7 C  8 1 C
Sm -C M  ► N  M  ► I

Fig. 2.7.1. Some molecules forming liquid crystal phases and their phase 
sequences as a function of temperature. The benzene rings give rigidity to the 
molecules.

W hen the isotropic liquid is cooled, the first phase tha t condenses is the 
nematic (TV) phase in which long molecules align so th a t they are on average 
parallel to  a particular direction specified by a unit vector n called the director. 
The positions o f  the m olecular centers o f m ass rem ain random ly distributed as 
they are in an isotropic fluid. The nem atic phase breaks ro tational isotropy bu t 
not translational invariance. Rotations about an axis parallel to  n leave the 
nem atic phase unchanged, whereas ro tations about axes perpendicular to  n do 
not. The nem atic phase still has an axial rotational symmetry. If  each molecule 
is regarded as a rigid rod whose long axis makes an angle Θ with respect to 
n, then a m easure o f the degree o f order in the nem atic phase is provided by
S =  (cos2 Θ — -j). O nsager (1949) has shown tha t the transition from the isotropic
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(a) (b)

Fig. 2.7.2. (a) Space filling model for the molecule 7S5 (Fig. 2.7.1). (b) Model 
of (a) as a rigid rod or ellipsoid of revolution with length I and diameter a.

to the nem atic phase is predom inantly a result o f the shape o f the molecules 
and excluded volume (anisotropic, hard  core repulsion). His calculation preceded 
the sim ulations o f the transition o f hard  spheres from liquid to solid. Basically 
it is easier to  achieve a high packing density o f  m atchsticks by aligning their 
axes along a com m on direction ra ther than  by allowing them  to be random ly 
oriented. (This consideration enters the therm odynam ics by way o f an increase 
in entropy for the aligned state.) The structure factor o f the nem atic phase 
reflects the breaking o f rotational symmetry. It is axially symmetric in any plane 
perpendicular to n bu t has only two-fold symmetry in any plane containing n. 
The intensity o f the large wave num ber (short distance) sphere o f the isotropic 
phase is com pressed tow ard the plane perpendicular to n whereas the intensity 
o f  the small wave num ber sphere is com pressed tow ard the n axis. Two possible 
forms for the X-ray intensity from  the nem atic phase are shown in Figs. 2.7.4b 
and c. In the first there are diffuse spots at q =  qon with qo = 2π /I, and in the 
second there are diffuse rings centered at the same values o f  q.

Chiral molecules (such as cholesterol nonanoate shown in Fig. 2.7.5a) are 
molecules with no m irror plane. W hen such molecules are added to  a nem atic 
liquid crystal, a twisted or chiral nematic (Ν ')  state results. This state is often 
referred to as the cholesteric state. In this state, the direction o f average m olecular 
alignm ent rotates in a helical pattern  as shown in Fig. 2.7.5b. The pitch (distance
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between equivalent planes) depends on the concentration and degree o f  chirality 
o f the chiral molecules bu t is typically o f  order several thousand angstrom s. This 
means th a t cholesterics Bragg scatter visible light. Their X -ray scattering intensity 
is, however, generally similar to  tha t o f  a nematic.

2 Smectics-A and -C

As tem perature is further reduced, molecules begin to segregate into planes giving 
rise to a smectic-A (Sm-Λ) liquid crystal. The usual picture o f  this smectic phase is 
one with molecules situated in well-defined layers with a spacing tha t is essentially 
the rod length as shown in Fig. 2.7.3c. There is liquid-like m otion o f  the rods in 
each layer and  no correlation o f the positions o f  the molecules from  one layer to 
the next. In smectic-,4 liquid crystals, molecules are aligned perpendicular to  the 
layers. The introduction o f  the layering indicates the presence o f  a mass density 
wave perpendicular to the layers. There is, therefore, positional correlation in 
the system which can be described as a sinusoidal m odulation o f  the average 
m olecular num ber-density,

(n(x)) =  n0 +  2nqa cos(q0z), (2.7.1)

where qo =  2π /Ι  and  the z-axis is along the layer norm als and  parallel to n. The 
Fourier transform  o f this equation leads to two Bragg peaks away from  q =  0 in 
the structure function:

S(q) =  l(»4o)l2(27t)3^ (q z  -  <Zoez) +  <$(qz +  <z0e2)]. (2.7.2)

We shall see in C hapter 6 th a t therm al fluctuations destroy the ideal long-range 
periodic order o f  the smectic phase and  th a t there are power-law singularities 
rather than  delta-function spikes in S(q) at q =  +qoez. Thus, the peaks in the 
smectic structure function are called quasi-Bragg rather than  Bragg peaks, and 
smectics are thus said to  be characterized by quasi-long-range order (QLRO) 
rather than  true long-range order (LRO). As the smectic phase is approached on 
cooling from  the nem atic phase, the diffuse spots (Fig. 2.7.4b) in the nem atic 
structure factor sharpen and eventually becom e the quasi-Bragg peaks o f  the 
smectic phase. A n experim ental intensity profile o f  these peaks is shown in 
Fig. 2.7.6. The transition  from  the nem atic to  the smectic-Λ phase can be second 
order with the mass density am plitude growing continuously from  zero as we 
will see in m ore detail in C hapter 4. The experim ental structure factor o f  m ost 
therm otropic smectics has only two quasi-Bragg peaks (at ±qo ) indicating tha t 
the single sine-wave in Eq. (2.7.1) is a good representation o f  the actual density 
in the smectic in contrast to  the square wave w ith m any Fourier com ponents 
implied by the usual schematic representation (Fig. 2.7.3c).

In some systems, molecules align along an  axis tilted relative to the smectic 
planes as shown in Fig. 2.7.3d. This is the smectic-C phase. I t has a lower 
symmetry than  the smectic-/! phase because the tilted molecules pick out a 
special direction in the smectic plane, i.e., their projections in the xy-plane align,
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Fig. 2.7.3. Schematic representation of the position and orientation of 
anisotropic molecules in (a) the isotropic, (b) the nematic, (c) the smectic-,4, 
and (d) the smectic-C phases. The direction of average molecular alignment 
in all but the isotropic phase is specified by a unit vector n. The layer normal 
in the smectic phases is indicated by the unit vector N. In the smectic-,4 
phase, n is parallel to N, whereas in the smectic-C phase, it is not. In the text 
N =  ez is parallel to the z-axis. (c) and (d) also show the arrangement of 
molecules in the smectic planes in the smectic-,4 and -C phases. In the 
smectic-C phase, the projections of molecular axes onto the plane 
perpendicular to N align on average along the c-director.
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Fig. 2.7.4. Schematic representation of X-ray scattering intensities profiles 
from (a) the isotropic, (b) and (c) the nematic, (d) the smectic-,4, and (e) and 
(f) the smectic-C phases. All intensities profiles are cross-sections in a plane 
containing the director n. The full three-dimensional profiles for (a) through 
(d) are obtained by rotating the cross-sectional profiles about n. (b) and (c) 
apply, respectively, to nematic phases near transitions to the smectic-,4 and 
smectic-C phases. The former has diffuse spots at q =  +q0n whereas the 
latter has diffuse rings in the plane perpendicular to n very nearly centered at 
q =  +(2π//)η. The smectic-,4 phase has quasi-Bragg peaks at q =  +q0n, and 
the smectic-C phase has peaks at q =  ±<?0N where q'0 is very nearly 
2n/(/cos0) where Θ is the angle between N and n. (e) and (f) are identical 
except for alignment of axes. The full three-dimensional scattering profile for 
the smectic-C phase is not invariant with respect to rotations about n.
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H SC

(a)

(b)

Fig. 2.7.5. (a) Cholesterol nonanoate molecule, (b) Schematic representation 
of the molecules in the cholesteric phase. The director n =  (cos k®z, sin kaz, 0) 
rotates in a helical fashion. Because no physical quantities depend on the 
sign of n, the physical pitch of the cholesteric phase is P = π /ko rather than 
2n/ko.

like the molecules in a nematic, along a com m on direction denoted by a unit 
vector c, called the c-director. There are in fact transitions from  the smectic-/! to 
the smectic-C phase in which the tilt angle grows continuously from  zero. The 
structure factor o f the nem atic phase just above a smectic-C phase has diffuse 
rings rather than  diffuse spots as shown in Fig. 2.7.4c.

The nematic-to-smectic-/4 transition provides insight into how to describe the 
transition from  the isotropic liquid to  a conventional crystalline phase. Instead
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Fig. 2.7.6. S(q) for q «  q0n (a) in the nematic phase far from the 
nematic-to-smectic-A (NA) transition, (b) in the nematic phase near the NA  
transition, and (c) in the smectic-,4 phase. Here t = (T  — TNA) /T NA is the 
reduced temperature where TNA is the NA transition temperature.
[Courtesy of Cyrus Safinya, MIT thesis (1981).]

o f introducing a single density wave, we could imagine the developm ent o f m any 
density waves (corresponding to  the reciprocal lattice vectors as in Eq. (2.5.8)) 
with several directions and  a com plete set o f harmonics. The usual liquid- 
solid transition, however, is first order (discontinuous), so th a t the density wave 
am plitudes do no t grow sm oothly from  zero.

3 H exa tic  phases

W hen smectic-/! phases are cooled, they condense into w hat was historically called 
a smectic-β  phase. I t is now known th a t a smectic-β  phase can be a crystalline-#
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phase with a three-dim ensional crystal structure and Bragg scattering at points 
in a three-dim ensional reciprocal lattice. In  some cases, however, the smectic-β  
phase is no t a true crystal. It has hexagonal orientational order m anifested by 
the developm ent o f a six-fold m odulation in the intensity o f  the diffuse ring at 
q =  2 π /a in the X-ray scattering intensity o f the smectic-/! phase. W hereas 
the smectic-/! phase is invariant with respect to  arbitrary  rotations abou t n, 
this hexatic-B  phase is invariant only with respect to  rotations o f  2 π /6  about 
n.

In  Fig. 2.7.7, X -ray scattering scans from  the m aterial 650BC (whose m olecular 
structure is also shown in the figure) are shown for different directions in reciprocal 
space. In  a three-dim ensionally ordered crystal (which occurs below 60°C), the 
layers would contain hexagonal arrays o f the molecules, and the scattering 
corresponding to intralayer correlations would give hexagonal Bragg spots. The 
scattering vector in Fig. 2.7.7 is q =  (Qy cos χ, sin χ, Q± ) with χ m easured 
relative to  a m axim um  in the in-plane intensity. The scans shown are for interlayer 
correlations [S(6±, Q\\ =  0)], intralayer positional correlation [S(gx =  0, )], and
intralayer orientational correlations [S(gx =  0, Q\\ =  6n,o,x)]· The la tter scan is 
called a χ -scan. A t high tem perature in the smectic-,4 phase, the χ -scan gives 
uniform  intensity indicating the absence o f any in-plane orientational order. As 
tem perature is lowered below 68°C, the intensity becomes a periodic function of 
χ  with period six, i.e., it can be expressed as a Fourier series

S ( Q ± , Q \ \ , X ) =  X ]S 6 p (e ± ,e n )c o s ( 6 p x )  (2.7.3)
p

in χ. This is the signature o f  six-fold bond-orientational order o f  the smectic-# 
phase. There is long-range orientational order in the plane bu t no long-range 
positional order. Just below the transition to  the hexatic-B phase, only the first 
harm onic S6((?±, is measurable. As tem perature is further lowered, m ore 
and  m ore harm onics appear in the χ -scan so th a t eventually a Bragg peak 
characteristic o f long-range crystalline order o f the crystalline-# phase appears 
for tem perature below 64° C.

The existence o f  long-range orientational order in hexatics is in a sense quite 
rem arkable. The breaking o f rotational symmetry in the nem atic phase is easy to 
accept. The molecules com prising the nem atic phase have a rigid core produced 
by strong chemical bonds. O rientational order is produced by the collective 
alignm ent o f  rigid bar-like molecules. In  hexatics, on the o ther hand, there is 
no chemical bond between neighboring molecules, and  orientational order is a 
reflection o f the long-range alignm ent o f the position vectors connecting nearest 
neighbor molecules as depicted in Fig. 2.7.8. In  fact the hexatic-bond-angle 
order can be viewed as resulting from  the loss o f long-range positional but 
no t orientational order o f  a hexagonal crystal. Indeed, the original theoretical 
prediction o f the hexatic phase was based on this kind o f reasoning. A measure
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Fig. 2.7.7. (a) χ-averaged X-ray scattering intensity for a Qt scan (closed 
circles) and a Q± scan in the B  phase of 650BC. The Q« scale has been 
expanded relative to the Q± scale. The scattering along Q± is a diffuse rod. 
The resolution width for the Q± scan (Δ β ι =  0.006A * ) was too small to 
illustrate. The inset describes the three scan directions, (b) χ-scans at three 
different temperatures: (i) in the smectic-,4 phase; (ii) just below the 
smectic-v4-to-B transition; and (iii) well into the B  phase. [R. Pindak, D.E. 
Moncton, S.C. Davey, and J.W. Goodby, Phys. Rev. Lett. 46, 1135 (1981).]



68 2 Structure and scattering

o f the degree o f hexatic order is provided by Ψβ =  e6‘e, where Θ is the angle that 
the vector between neighboring molecules makes with the x-axis.

H exatic order and the m olecular tilt order o f the smectic-C phase can coexist 
leading to  smectic-F, -I, and  -L  phases depicted in Fig. 2.7.9. Further cooling 
leads to  crystalline phases.

The breaking o f rotational bu t no t translational symmetry is reflected in the 
pair correlation function g(x, x'). Because translational symmetry is no t broken, 
the density (n(x)) =  (n) is independent o f  x, and  g (x ,x ') =  g(x — x') is a function 
o f the difference y =  x — x' =  (yx, yy). However, because rotational symmetry is 
broken, g(y) is no t a function o f y  =  |y| only. R ather, it can be expanded in an 
angular Fourier series,

g(y±, y ii) =  go(y±, y «) Σ  Ψβρ&-u )e6ίρθ> (2·7·4)
P

where Ψο =  1 and  yx =  (yx, 0) in polar coordinates. The param eters xiJ(,p( y ± , y \ ) 
like Sep [Eq. (2.7.3)] to  which they are related m easure the degree o f hexatic order. 
W hen yx is equal to  the average in-plane nearest neighbor separation and  yj = 0 ,  
Ψ 6ρ is essentially , where θαβ  is the angle the vector connecting nearest
neighbor molecules a and  β  makes with the x-axis. A derivation o f this result is 
outlined in Problem  2.8.

4 D iscotic phases

The nem atic and  smectic phases just discussed are generally found in m aterials 
consisting o f rod-like molecules. Plate-like rather than  rod-like molecules such as 
those shown in Fig. 2.7.10 can form  discotic nem atic phases, in which the plate 
norm als are aligned, as well as phases with crystalline order in two dimensions 
and  liquid-like order in the th ird  direction (Fig. 2.7.11). The latter are called 
columnar. The plate-like molecules segregate into colum ns with the plate norm als 
either parallel to  or tilted a t an  angle to  the colum nar axes. There is no long- 
range positional order within a column. The colum ns themselves form  any o f the 
two-dimensional crystals.

5 L yo tro p ic  liquid crysta ls and  m icroem ulsions

In the preceding discussion, we have focused on liquid crystals whose phases 
change in response to  changes in the tem perature. They are called thermotropic
liquid crystals. Liquid crystalline phases also appear in response to  changes in 
concentrations o f  water, oil, surfactants, or other species in a wide variety o f 
m olecular mixtures. These are called lyotropic liquid crystals and  are generally 
form ed by am phiphilic molecules consisting o f two parts th a t repel each other 
a n d /o r  are soluble in different solvents. The m ost widely studied o f such systems 
are those com posed o f molecules called lipids with hydrophilic (water “liking”) 
and  hydrophobic (water “fearing”) parts. The hydrophobic part consists o f one
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(a)

Fig. 2.7.8. (a) Separated groups of nearest neighbor atoms in a hexagonal 
crystalline phase. Atoms occupy lattice sites on a triangular lattice, indicated 
by grid lines. Each atom has six nearest neighbors forming a hexagon in 
orientational registry with the lattice. There is both long-range translational 
and orientational order. The figure at the side shows the hexagonal pattern 
of Bragg peaks in the X-ray scattering intensity at the shortest reciprocal 
lattice vectors, (b) Separated groups of atoms in a hexatic phase. Each atom 
has six nearest neighbors forming a local hexagon. Distant hexagons have 
the same orientation relative to some fixed axis. Atoms do not, however, 
occupy sites of a triangular lattice. There is long-range orientational but no 
long-range positional order. (While the orientational order would be easy to 
understand if the particles were on an oriented substrate or coupled with 
translational order, orientational order of spherical particles is remarkable in 
cases where neither a substrate nor crystalline order is present as in the case 
schematized above.) The figure at the side shows the X-ray scattering 
intensity from a hexatic phase. The intensity has a six-fold symmetry but no 
Bragg peaks. The scattering intensities are for three-dimensional systems. In 
two dimensions, fluctuations (as we shall see in Chapter 6) modify these 
intensities.
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Fig. 2.7.9. Schematic representation of local hexagonal clusters in tilted 
hexatic phases. In these phases, molecules are tilted relative to the layer 
normals as in the smectic-C phase. Each molecule has six nearest neighbors 
(which in general occupy positions on a distorted rather than a regular 
hexagon). In the smectic-F phase, the c-director points to the midpoint of the 
bond connecting adjacent nearest neighbors (i.e., to next-nearest neighbors). 
In the smectic-/ phase, it points to nearest neighbors, and in the smectic-L 
phase it points in a direction between next-nearest and nearest neighbors.
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Fig. 2.7.10. Some plate-like molecules forming discotic liquid crystalline 
phases.

or two hydrocarbon chains containing 8 to 20 carbon atoms. The hydrophilic 
group generally has a charge or a dipole moment. Examples o f  lipids are shown 
in Fig. 2.7.12 (p. 72).

W hen in contact with water, lipids will self-organize into structures in which 
hydrophobic tails are shielded from  contact with water. Com m on structures 
include spherical and cylindrical micelles, inverted micelles, bilayer sheets, and 
vesicles, as depicted in Fig. 2.7.13 (p. 73). The origin o f  these geometrical 
structures can often be understood in term s o f  the packing o f lipids o f  different 
shapes. These structures can arrange into a bewildering array o f equilibrium
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(a)

(b)

(c)

Fig. 2.7.11. Plate-like molecules in (a) a discotic nematic, (b) a hexagonal 
columnar discotic, and (c) a rectangular columnar discotic.

phases, including nematic, lam ellar (smectic), and colum nar phases. A phase 
diagram  showing different equilibrium  structures is shown in Fig. 2.7.14 (p. 74). 
An am using example o f  a phase with three-dim ensional crystalline symmetry 
(cubic) is the “plum ber’s nightm are” phase shown in Fig. 2.7.15 in which there is 
a  single connected bilayer surface separating two identical water regions.

The hydrophobic hydrocarbon tails o f  am phiphiles are soluble in oil, whereas 
their hydrophilic charged heads dissolve in water. Amphiphiles can, therefore, be 
used to  create equilibrium  bulk mixtures o f  w ater and oil by providing m onolayer 
interfaces between w ater and oil. These equilibrium  mixtures o f  water, oil, and 
surfactant (the amphiphiles) are called microemulsions. They exhibit phases similar 
to those o f  water-lipid mixtures. A lam ellar phase and a random  bicontinuous 
phase are depicted schematically in Fig. 2.7.16 (p. 75).

2.8 One- and two-dimensional order in 
three-dimensional materials

The smectic-/! and -C phases provide examples o f  order tha t is no t complete -  
a type o f one-dimensional ordering in a three-dim ensional system. A nother type 
o f  one-dimensional order, which is reciprocal to smectic order, is tha t o f  one

X J
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(a) (b)

Fig. 2.7.12. Examples of lipids: (a) SDS, a soap with a single tail, and (b) 
DMPC, a phospholipid with two tails. Phospholipids are the primary 
constituents of cell walls.

dim ensional chains. The scattering from  a single chain consisting o f  periodically 
spaced mass points can be calculated from  the density function

(n(x)> =  ρ 0δ(χ)δ(γ) £  δ (ζ ~  Pc)> (2·8·1)
p

where p is an integer and c is the distance between plates. The Fourier transform  
o f  the density,

(nq) =  f  poS(x)e~~,qxXS(y)e~~'qry δ(ζ — pc)e~u,zZdxdydz  
J  P

=  p o ^ 2 e ~ lq‘pc =  2n(p0/ c ) ^ 2 d ( q z — 2nn/c),  (2.8.2 )

P »

consists o f  a series o f  equally spaced delta-functions along the z-axis and is 
independent o f  qx and qr  The scattering intensity implied by Eq. (2.8.2) is 
distributed evenly on a set o f  parallel sheets in q-space as shown in Fig. 2.8.1.

Now consider an array  o f  chains each with N\\ atom s arranged on a two- 
dim ensional lattice with N±  lattice vectors Rj. The density o f  atom s is then

n(x) =  Σ  <5(2)(χ ± -  Ri)<5(z - p c -  φ \ ) , (2.8.3)
lp
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cone spherical micelles 

(a)

cylindrical
micelles

tru n ca ted  cone
or wedge globular micelles

(c)

inverted
trunca ted

cone inverted micelles 

(b)

cylinder p lanar bilayers

(d)

tru n ca ted
cone bilayer vesicle

(e)

Fig. 2.7.13. Different local structures formed by lipids: (a) micelle, (b) 
inverted micelle, (c) cylindrical micelle, (d) flat bilayer, and (e) closed vesicle. 
Average shapes of the lipid molecules favoring the various structures are also 
shown. Note that asymmetric shapes favor nonzero curvature. [Adapted 
from J.N. Israellachvilli, Physics o f  Amphiphiles: Micelles, Vesicles and 
Microemulsions (North Holland, New York, 1985).]
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W ater C onten t (%)

Fig. 2.7.14. Phase diagram and schematic representation of phases of 
aliphatic chains in water showing micellar solutions, lamellar (La), and 
hexagonal columnar H\\ and / /  phases [courtesy S. Gruner].

Fig. 2.7.15. Schematic representation of a surfactant surface in the triply 
periodic “plumber’s nightmare” phase [D. M. Anderson, S. M. Gruner, and 
S. Leibler, Proc. Acad. Sci. USA 85, 5364 (1988)]. This phase has the 
symmetry of a periodic crystal.
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HoO

(a) (b)

Fig. 2.7.16. (a) A lamellar microemulsion phase with water, oil, and 
surfactant layers, (b) Schematic representation of a random bicontinuous 
phase in which there is a random surfactant surface separating oil and water 
regions.

where x =  (x± ,z) and the phase φ\ specifies the shift o f  the origin o f  the
periodically spaced masses on chain 1. The scattering intensity is

/(q ) =  e - »<?zc( p- p' ) e - i q ± - ( R ( 2 . 8 . 4 )

U '.p .p '

where [ ] signifies an  average over the variables φ\. I f  neighboring chains are 
uncorrelated, then φ\ will be an  independent random  variable a t each 1, and

=  |  J*  (2.8.5)

The sum in Eq. (2.8.4) can now be evaluated,

f  N 2± N 2 Z g  <5q,G i f  <lz =  0 ;

/ ( q) =  { (2.8.6)
i f e z ^ O .

Thus, there are real Bragg peaks in / ( q) with intensity Nj_N2 in the plane qz =  0 
th a t reflect the two-dim ensional lattice o f  chains. In addition, there are Bragg 
sheets with intensity N ± N 2 independent o f  q± a t qz =  2πη/c  (n is an  integer) 
reflecting the periodic order along each chain. Away from  qz =  0 the uncorrelated 
chains look just like the single one-dimensional chain but with a larger intensity. 
As correlations between chains build up, the phases φ\ cannot be treated as 
independent random  variables on each chain, and the average in Eq. (2.8.5) 
develops a nonzero value for 1 φ  X even when qz φ  0. These correlations lead
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(a) (b)

Fig. 2.8.1. (a) A one-dimensional periodic array of point scatterers with 
density given by Eq. (2.8.1) and (b) the scattering intensity in reciprocal 
space with delta-function intensity on sheets perpendicular to the c-axis.

Fig. 2.8.2. X-ray diffuse scattering pattern from the organic chain salt 
MNTSF-TCNQ showing one-dimensional order. The diffuse lines between 
the lines of Bragg peaks arise from one-dimensional order. The modulation 
in the intensity of these lines arises from correlations between 
one-dimensional chains. [Courtesy of J. Pouget.]

to  diffuse spots o f  intensity in the planes o f  the Bragg sheets tha t eventually 
develop into true Bragg peaks when long-range phase coherence between chains 
is established.

The above discussion assumes tha t each chain does indeed have ideal periodic 
order. W hen the chains are completely decoupled, however, they are effectively
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Fig. 2.8.3. The scattering intensity from a one-dimensional sine-wave density 
confined to the z-axis [Eq. (2.8.7)]. There are two Bragg planes at qz = ± q0 
but no Bragg plane at qz =  0.

one-dimensional solids. We will see in C hapter 6 th a t there can be no long-range 
order in a one-dim ensional system (with finite range forces). F luctuations will 
convert the ideal Bragg sheets into diffuse sheets in reciprocal space. Since m any 
scattering techniques look at a plane in q-space, the intersection o f  this plane 
with the diffuse sheets above gives diffuse lines. Correlations between chains 
will cause variations in the intensity o f  the diffuse lines, which, as discussed 
above, will become Bragg spots when long-range correlation is established. The 
developm ent from  diffuse streaks to Bragg spots is illustrated for an organic 
conductor M N T SF-T C N Q  in Fig. 2.8.2. The one-dimensional ordering is a 
density wave along individual chains in the crystal. The coupling between the 
density waves eventually leads to  their three-dim ensional order. For the case o f  a 
simple one-dim ensional sine wave there is only a single pair o f  diffuse sheets, as 
shown in Fig. 2.8.3:

(n(x)) =  p0<5(x)<5(y) sin(q0z),
(»q> =  (Po/c)[3(qz + q0) -  d(qz -  q0)]/2. (2.8.7)

N ote tha t a smectic with its real space layers produces a periodic chain in 
reciprocal space in the same way tha t a real space chain produces layers in 
reciprocal space. Also, just as for a real smectic, where only the first harm onic is 
present and only two spots appear in the scattering function, a single harm onic 
wave in one dim ension produces only two diffuse sheets.

2.9 Incommensurate structures

There are structures in nature th a t are neither random  nor periodic but tha t 
exhibit spatial m odulations with two or m ore relatively irrational periods. Such 
structures are called quasi-periodic. They usually result from  com petition between 
two different length scales.

A n example o f  a system with two com peting length scales producing incom 
m ensurate structures is tha t o f  noble gas (Xe, K r, etc.) atom s adsorbed on
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the surface o f  graphite, which has carbon atom s on a honeycom b lattice as 
shown in Fig. 2.9.1. The gas atom s (adatom s) would like to  condense into a 
two-dimensional liquid or solid phase with atom ic separations determ ined by 
their interatom ic (Lennard-Jones) potentials. In general, these preferred separa
tions differ from the lattice constants as o f  the substrate. Thus, if there were 
no interactions between the adatom s and the periodic potential o f  the substrate, 
the adatom s would form a periodic crystal with lattice constants an  arbitrary  
m ultiple (including irrational) o f  as . A n arbitrarily  small interaction between 
atom s and the periodic substrate potential will introduce six-fold anisotropy into 
adatom  correlations, converting the adatom  liquid phase to  a hexatic-like phase 
and causing the adatom  crystal phase to  align with the substrate.

I f  the periodic substrate potential is strong, adatom s will sit at particular sites 
in the graphite lattice and form lattices containing an  integral num ber o f  graphite 
unit cells. These are called commensurate lattices. In  the case o f  krypton, the 
hard-sphere radius is such tha t one atom  can occupy every third graphite hexagon 
as shown in Fig. 2.9.1. Since the adatom  lattice is rotated  by 30° relative to the 
substrate and has a lattice constant ^/3as , it is called a ^ 3  x ^/3R30° structure.

In  the opposite limit, when the periodic substrate potential is no t too large, 
the adatom  lattice will differ only slightly from  its ideal form, with m odulations 
in atom ic positions determ ined by the period o f  the graphite lattice. In this case, 
which can be interpreted as a limit o f  com m ensurate lattices in which the num ber 
Q o f  graphite unit cells per adatom  unit cell tends to  infinity, the adatom s are 
said to  form an incommensurate structure. Fig. 2.9.2 is a pressure-tem perature 
phase diagram  for K r on graphite, showing fluid (F), com m ensurate solid (C), 
and incom m ensurate solid (IC) phases.

Incom m ensurate structures are m ost easily visualized in one dimension. Sup
pose we have a one-dimensional m etal with atom s spaced periodically with 
separation a. The one-dimensional m etal has an instability tow ard forming a 
charge-density insulator at low tem peratures. Instead o f  having a hom ogeneous 
charge density, the system develops a spatial m odulation in the electron density 
which, because o f  coupling to  the lattice, induces a slight m odulation o f  atom ic 
positions. The deviation o f  the electron charge density from  its average spatially 
uniform  value is a periodic function o f  position th a t is well-approximated by a 
single cosine,

δρ(χ) =  pi cos(2nx/X), (2.9.1)

with a periodicity λ. I f  a /λ  is a rational num ber P /Q , where P  and Q are 
relatively prim e integers, a new unit cell can be formed from Q atom s o f the 
original linear chain, and the structure is com m ensurate. This case is illustrated in 
Fig. 2.9.3 for λ =  3.5a, P /Q  =  2 /7 , and Q =  7. I f  a /λ  is irrational, the m odulation 
is incom m ensurate. Any irrational num ber can be approached as a sequence o f 
rational num bers o f  the form P  / β  in the limit th a t Q —► oo.

One o f  the first m aterials (Tanisaki 1961) in which an incom m ensurate phase



r ( A  )

1/2 r 0

Fig. 2.9.1. Krypton (top) and xenon (bottom) on a graphite lattice. The size 
of krypton is such that it can occupy every third hexagon of the graphite 
lattice to produce a ^ 5 x  *J3R30° commensurate lattice. Xe is larger than Kr, 
and the Kr commensurate structure is prohibited. An incommensurate phase 
is often preferred. [R.J. Birgeneau and P. M. Horn, Science 232, 329 (1986).]

was observed was N a N 0 2. This crystal has a low tem perature (T  <  T f =  162.5°C) 
ferroelectric phase with a body-centered orthorhom bic lattice. The F-shaped N 0 2 
groups lie in the two-dim ensional (b, c) plane with their axes aligned along the b- 
axis as shown in Fig. 2.9.4. A t high tem peratures (T  >  =  164°C), the directions
o f the N O j groups are random ly oriented. A t interm ediate tem peratures the 
com ponent o f  the N 0 2 dipole along the 6-axis is a periodic function o f  position
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Fig. 2.9.2. Phase diagram of Kr on graphite exhibiting the fluid (F),
x sfi>R30J commensurate (C), reentrant fluid (RF), and incommensurate 

solid (IC) phases. S and L represent, respectively, bulk (i.e., multilayer) solid 
and liquid phases. [E.D. Sprecht, M. Sutton, R.J. Birgeneau, D.E. Moncton, 
and P.M. Horn, Phys. Rev. B30, 1589 (1984).]

Fig. 2.9.3. A schematic of a commensurate modulated structure. The solid 
sine wave is the charge density of wavelength λ = 2a /l ,  which couples to the 
undistorted lattice (top) to produce the commensurate distortion (middle).

such as tha t o f  Eq. (2.9.1) with λ  a  continuous function o f position for T f < T  < 
Tt. This periodic m odulation gives rise to  satellite peaks in the X -ray scattering 
a t wave vectors q =  G  +  (2n/X)b, where G  is a vector o f  the undistorted 
orthorhom bic reciprocal lattice. A nother example o f  an  incom m ensurate phase 
and  subsequent com m ensurate phase a t lower tem perature occurs in the two- 
dim ensional charge-density wave (CDW ) system lT-TaSe2 whose high and  low 
tem perature diffraction patterns are shown in Fig. 2.9.5 .

As we have seen, the signature o f  an  incom m ensurate crystal is the appear
ance o f  satellite peaks in the X -ray scattering intensity a t irrational multiples o f 
reciprocal lattice vectors o f  some underlying crystal. In general, if  the incom m en
surate m odulation is strong, there will be m any satellite peaks at positions [e.g. a t

hH1 a  1

λ 2λ
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Fig. 2.9.4. The (b, c) plane of the low-temperature ferroelectric phase of 
NaNOj.

Fig. 2.9.5. Diffraction patterns from lT-TaSe2. (a) The basal plane pattern at 
room temperature showing commensurate (13)1/2 superlattice peaks in 
addition to the brighter main Bragg peaks, (b) The basal plane diffraction 
pattern in the incommensurate phase above T  =  473K showing satellite 
peaks at incommensurate positions. [F.J. DiSalvo in Chemistry and Physics 
o f  One-Dimensional Metals, edited by H J. Keller (Plenum, New York, 1977).]
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q =  G ±s(2 jr/A )b  for any integer s], In  one dimension, the peaks in the scattering 
intensity will lie on a lattice with vectors

G =  ±pbi ±  qb2, (2.9.2)

where p and  q are integers and  where b\ =  2π / a and  b2 =  I n / λ, where a /λ  
is irrational. Thus the generalization o f the concept o f the reciprocal lattice to 
the incom m ensurate one-dimensional case requires a reciprocal lattice with two 
primitive translation vectors b\ and  b2, and  specification o f the positions o f Bragg 
peaks requires two integers ra ther than  the one required for a periodic reciprocal 
lattice.

A n im portan t property o f the incom m ensurate lattice defined by Eq. (2.9.2) is 
tha t it contains vectors o f arbitrarily  small m agnitude since for irrational b i/b 2, 
it is always possible to find integers p and  q such tha t \pb\ — qb2\ is less than  any 
preassigned num ber. This means th a t the vectors o f an  incom m ensurate reciprocal 
lattice form  a dense set in reciprocal space. There is large variation in the 
scattering intensities into Bragg peaks a t different points in the reciprocal lattice so 
th a t it is possible experimentally to  observe incom m ensurate structures. The above 
properties generalize to  higher-dim ensional lattices. A  general incom m ensurate 
lattice consists o f a set o f vectors closed under addition and  subtraction th a t can 
be expressed as an integral linear com bination o f r  primitive translation vectors 
with r greater than  the dim ensionality d o f the lattice.

2.10 Quasicrystals

In  Sec. 2.6, we showed th a t five-fold rotational symmetry is incom patible with the 
translational symmetry o f a two-dimensional periodic crystal. Similar argum ents 
rule out the existence o f a periodic crystal in three dimensions with the point 
group symmetry o f an icosahedron (Fig. 2.10.1), which has six five-fold, ten 
three-fold, and  fifteen two-fold axes. As a result, a fundam ental tenet o f  classical 
crystallography was th a t m aterials exhibiting icosahedral symmetry could not 
exist. In 1984, Shechtman, Blech, G ratias, and C ahn shook the foundations of 
crystallography when they reported an  electron diffraction pattern  for an  alloy 
o f A l-Μ η with the point-group symmetry o f an  icosahedron. This diffraction 
pattern  (Fig. 2.10.2) clearly shows five-, three-, and  two-fold axes characteristic 
o f icosahedral symmetry. The density o f  Bragg peaks in each plane is higher 
than  one would expect from  a periodic crystal. In  fact, it is easy to  see th a t the 
closure property o f any lattice immediately implies tha t a lattice with five-fold 
symmetry necessarily has colinear vectors with irrational m agnitude ratios, and, 
as discussed in the last section, has vectors with arbitrarily  small separations. 
In the pentagonal example considered in Sec. 2.6, the vector a4 +  ai is equal 
to  T-1ao. Fig. 2.10.3 shows all o f the points G  in a pentagonal lattice th a t can 
be expressed as Σ Α „ ά„, where a„ is one o f the five vectors pointing to  the
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Fig. 2.10.1. An icosahedron showing its 12 vertices, 20 triangular faces, and 
30 edges. The five-fold axes pass through the vertices, the three-fold axes 
through the centers of the faces, and the two-fold axes through the centers of 
the edges. The icosahedron with edges of unit length is inscribed in a cube. 
Its edges AA', BB', and CC' are, respectively, parallel to the ζ-, x-, and, 
y-axes of the cube. The coordinates of A, A', B, B', C, and C' are, 
respectively, (τ,0,+1), (+1,τ,0), and (0,+1,τ), where τ =  (1 +  \ β ) / 2  is the 
golden mean. The coordinates of P, Q and R  are, respectively, (1 +  τ, τ, l)/2, 
(1,1 + τ ,τ)/2 , and (τ ,Ι ,Ι  +  τ)/2.

vertices o f a pentagon [Eq. (2.6.1)] and A„ =  0 ,+ l ,+ 2  and  |G | <  4|ao|. The 
area o f  each point is proportional to |G x |_1, where G x =  and  where
a^- =  [cos4n(n — l) /5 ,s in 4 n (n  — l) /5 ] .  N ote the similarity between this pattern  
and the experim ental pattern  for A l-Μ η in the five-fold plane.

Pentagonal and  icosahedral reciprocal lattices are incom m ensurate lattices. 
Unlike the examples considered in the last section, however, the irrational ratio 
o f lengths is determ ined by the point group symmetry. Levine and  Steinhardt 
(1984) introduced the term  quasicrystal for this special type o f incom m ensurate 
structure.

Though arbitrarily  short vectors are perm itted in a reciprocal lattice, atom s in 
real space cannot be arbitrarily  close together. In  a periodic solid, the existence 
o f a shortest length in the primitive unit cell o f the direct lattice ensures tha t 
distances between atom s are greater than  some m inim um  distance. How can there 
be a m inim um  distance in a quasicrystal? The answer is provided by tilings o f a 
two-dimensional plane with five-fold symmetry invented by R. Penrose (1974) and
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Fig. 2.10.3. Points G in a reciprocal lattice with ten-fold symmetry (the 
presence of the negative of vectors converts five-fold to ten-fold symmetry) 
generated by ^  /4„a„ with A„ =  0 ,+ l ,+ 2  with |G|/|ao| <  4.

by their generalizations to icosahedral symmetry in three dimensions. Fig. 2.10.4 
shows a Penrose tiling o f a plane. The entire plane is filled with two types o f tiles 
or unit cells ra ther than  the single unit cell required to tile a plane periodically. 
The two types o f tiles are called “fa t” and  “skinny”. Each tile is decorated so that 
its different sides are distinguished, and  adjacent tiles m ust be joined so th a t they 
obey certain  m atching rules. There is a shortest distance between tile vertices, 
and  it is clearly possible to decorate the tiles with atom s in such a way th a t the 
atom s have a m inim um  separation. The diffraction pattern, first calculated by 
Levine and Steinhardt (1984), o f the icosahedral generalization o f Penrose tiles 
agrees well with the experim entally observed pattern.

2.11 Magnetic order

Spins in m agnetic systems can exhibit ordered phases whose variety rivals tha t 
o f the. crystalline and  liquid crystalline phases we have considered thus far. 
M agnetic systems have played a very im portan t role in the developm ent o f  our 
understanding o f broken symmetry and  how it arises, largely because they can 
be described with very simple models, which we will consider in some detail in 
succeeding chapters.

Often the spin degrees o f freedom  decouple from  the electron charge density.
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Fig. 2.10.4. Portion of Penrose tiling showing matching rules. Matching rules 
are enforced by the decoration shown on the tiles to the right. The rules are 
that the dark and dotted portions of one tile must join with the same 
portions of adjacent tiles. [Courtesy of Paul Steinhardt.]

Imagine th a t we have a crystalline solid where the atom s or molecules have unfilled 
shells and unpaired spins. In the case o f  transition metals o r the lanthanide or 
actinide elements, these electrons m ay be d o r /  electrons, which are tightly bound 
to the nuclei, have small radii, and may be thought o f as localized on atom ic sites 
with little overlap with electrons on neighboring atoms. Because o f  intra-atom ic 
electron C oulom b repulsion and spin-orbit coupling, the to tal spin, S, on a given 
atom  may be 1/2 or larger. Thus a good model for m any m agnetic systems is 
one in which spins localized a t sites on a periodic lattice interact only am ong 
themselves via an interaction o f the form  o f the exchange interaction discussed 
in Sec. 1.3.5. The only degrees o f  freedom  in such a model are those associated 
with the spin. The energy scales for spin-interactions can be quite different from  
those for inter-atom ic forces, and phase transitions in spin degrees o f freedom 
can occur w ithout significant changes in the crystal lattice.

A t high tem perature, spins are therm ally d isordered : they have no long-range 
orientational order. Because an  external m agnetic field H  leads to a partial
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alignment o f spins (via the — μβ · H  energy term , where μ  is the gyromagnetic 
ratio) and a m agnetization proportional to  and parallel to H , this disordered 
phase is called the paramagnetic phase. As tem perature is lowered, interactions 
am ong spins lead to  ordered structures such as those shown in Fig. 2.11.1. If  
only nearest neighbor spins interact, and they prefer to  be parallel (as they do 
if the exchange J  (Eq. 1.3.29) is positive), then a ferromagnetic phase results. If 
neighboring spins prefer to  be antiparallel, then antiferromagnetic phases with 
spins on different lattice sites alternating in sign results. The detailed form  of 
antiferrom agnetic order depends on the crystal lattice. O n lattices, such as the 
square lattice in two dimensions and the BCC lattice in three dimensions, th a t can 
be decom posed into two sublattices (with all nearest neighbors o f one lattice on 
the o ther -  “alternate lattices”), the state will consist o f up spins on one sublattice 
and down spins on the o ther as shown in Figs. 2.11.2a and c. O n the FC C  lattice, 
which cannot be decom posed into two sublattices, there is antiferrom agnetic 
order with spins parallel in planes norm al to the (111) axis, but alternating in 
sign from  plane to  plane as shown in Fig. 2.11.2d. N ote tha t the developm ent o f 
antiferrom agnetic order leads to  an increase o f  the size o f  the m agnetic unit cell 
and, therefore, to new m agnetic Bragg superlattice peaks and a reduced size of 
the unit cell in reciprocal space as shown for the square lattice in Fig. 2.11.2b. 
The unit cell size is doubled on both  the square and BCC lattices.

Various o ther ordered spin states are depicted in Fig. 2.11.1. These include 
ferrimagnetic states in which no t only the sign but also the m agnitude o f the 
spin alternates from  site to  site, canted and fan states with both  ferrom agnetic 
and antiferrom agnetic order, and helical states in which the spins precess in a 
helical fashion like the director in a cholesteric. Canted and fan phases usually 
result from  a com petition between local crystal fields and nearest neighbor 
interactions, whereas helical phases usually result from  the com petition between 
nearest neighbor and next nearest neighbor interactions.

Because neutrons have a spin and m agnetic m om ent, they interact with the 
electron spin density (via the m agnetic dipole interaction) as well as with the 
atom ic nuclei. Thus neutron scattering provides inform ation about magnetic 
order. The m agnetic scattering cross-section is proportional to  p 2, where the 
magnetic scattering length p  is given by

p o c ^ S * - [ M ( q ) - q ( M ( q ) - q ) ] ,  (2.11.1)

where Sn  is the neutron spin, M (q) is the transform  o f the m agnetization density, 
and y is the neutron moment. In  conventional neutron scattering the nucleus 
looks effectively like a point. In  m agnetic neutron scattering, there is a m agnetic 
form  factor th a t can give inform ation about the spin density in a unit cell in 
much the same way tha t the X -ray scattering form  factor gives us inform ation 
about the charge density in a unit cell.

The m agnetic scattering length p  is usually much smaller than  the nuclear 
scattering length b, and it is difficult to  see the magnetic scattering from  a crystal
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(e) (f) \/\/\

Fig. 2.11.1. Schematic representation of spins in (a) a paramagnetic, (b) a 
ferromagnetic, (c) an antiferromagnetic, (d) a ferrimagnetic, (e) a canted, (f) 
a fan, and (g) and (h) two helical phases. With the pitch axis parallel to the 
z-axis, the spins in the helical phases can be represented as 
S(x) =  (Sx cos/coz, Sx sinfcoz, Sz) where k0 is the twist wave vector. In (g) there 
is no spin component Sz along the pitch axis, whereas in (h) there is.

unless the m agnetic unit cell (and hence m agnetic reciprocal lattice vectors) 
differs from  the chemical cell. However, in certain scattering geometries (when 
the polarization o f the neutrons is perpendicular to  the scattering plane and 
parallel or antiparallel to  the sample magnetizations), the total scattering cross- 
section is proportional to  (ft — p)2. Then by changing the polarization it is 
possible to  separate the m agnetic and nuclear scattering. A n example o f  neutron 
scattering intensities from  M nO  showing the appearance o f superlattice Bragg 
peaks indicative o f  antiferrom agnetic order in shown in Fig. 2.11.3. These peaks 
are visible because the m agnetic unit cell differs from  the chemical unit cell, and 
there are m agnetic Bragg peaks a t positions where there are no nonm agnetic 
Bragg peaks.

Photons can also scatter from  the m agnetic m om ent o f the electron. This is 
a relativistic effect which is smaller than  conventional electron-photon (Com p
ton) scattering by a factor o f (hoj/mc2)2 where hoj is the energy o f the incident 
photon  (X-ray) and me2 is the electron rest mass energy. A lthough the in
tensity o f  the m agnetic scattering is down by approxim ately four orders o f 
m agnitude from  charge scattering, the availability o f intense photon  sources 
from  synchrotron radiation  makes such experiments possible. In Fig. 2.11.4 we
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Fig. 2.11.2. (a) Antiferromagnetic order on a square lattice showing the 
doubling of the unit cell size, (b) Bragg peaks for antiferromagnetic order on 
a square lattice. The solid circles indicate Bragg peaks from the chemical 
unit cell. The open circles indicate magnetic superlattice peaks, (c) 
Antiferromagnetic order on a BCC lattice, (d) Antiferromagnetic order on 
an FCC lattice. The atoms shown correspond to the Mn2+ ions in MnO.

show recent experim ents on the helical magnetic phase o f the rare earth  ele
m ent holmium. The m agnetic Bragg peaks from  the twist wave vector are seen 
to vary with tem perature as the sample is cooled below 130 K  in Fig. 2.11.4a. 
This is a particularly interesting case o f magnetic scattering since in general 
the twist wave vector may be incom m ensurate with the lattice wave vector. 
In Fig. 2.11.4b the tem perature dependence o f  the twist wave vector as deter
mined by magnetic neutron and magnetic X -ray scattering is shown. Here it 
is seen tha t although the twist wave vector varies quasi-continuously with tem 
perature, the X -ray scattering can detect plateaus corresponding to  a lock-in 
o f the twist wave vector at various com m ensurate values. This results from 
magnetoelastic couplings -  the spins are no t completely independent o f the 
lattice.
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Scattering Angle (degrees)

Fig. 2.11.3. Neutron diffraction patterns for MnO below and above the spin 
ordering temperature of 120K (see Fig. 2.11.2d). The reflection indices are 
based on an 8.85Acell at 80K and a 4.43Acell at 293K. [C.G. Shull, W.S. 
Strauser, and E.O. Wollan, Phys. Rev. 83, 333 (1951). G.G. Low, Application 
of neutron scattering to magnetism, in Magnetism, "Selected Topics”, ed. S. 
Foner (Gordon and Breach, NY, 1976).]

2.12 Random isotropic fractals

One of the m ost useful illustrations o f correlations and  their effect on the pair 
correlation function and  the static structure factor comes from  dilation-symmetric 
o r self-similar objects. The self-similarity reflects the property tha t the structure 
“looks the sam e” on any length scale, i.e., there is no characteristic size.

A n example o f such an object is an “ideal” polym er chain, com posed of 
N  m onom ers o f length a. The polym er configuration can be described as a 
random  walk o f N  steps o f length a. We ignore the effects of m onom er volume 
and repulsion for this treatm ent. For a random  walk, the step directions are 
completely uncorrelated so th a t the average o f the vector R from  the position of 
the last m onom er to  the first is zero: (R) =  0. However, the average squared 
displacem ent for the random  walk is proportional to  the num ber o f steps:
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Fig. 2.11.4. X-ray and neutron magnetic scattering from the helical magnetic 
phase of Ho. (a) Magnetic Bragg peaks for several temperatures from the 
X-ray study, (b) Comparison of the temperature dependence of the twist 
wave vector from neutron and X-ray studies. Note the preference for 
commensurate values indicated by the plateaus. [D. Gibbs, D.E. Moncton, 
K.L. D’Amico, J. Bohr, and B.H. Grier, Phys. Rev. Lett. 55, 234 (1985).]

(R 2) =  N a 2. (2.12.1)

The average radius o f gyration, R g (Rq = f  p(r — R cm)2d3r /  f  p(r)d3r, where p(r) 
is the m onom er density at position r and Rcm is the position o f the center o f 
mass o f the polymer), determ ines the characteristic size of the polym er and is 
proportional to  root m ean square separation o f end points, i.e.,

Rg ~  (K2)1/2 =  a N i/2. (2.12.2)

For distances large com pared to a m onom er size, bu t small com pared to  Rg, the
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Fig. 2.12.1. Schematic sketch of g(r) for a random-walk polymer chain 
showing the self-similar behavior for r < Rq.

polym er is self-similar. We can group p m onom ers together, call them  a single 
unit, and the polym er again looks like a random  walk o f larger step size, with 
a' = p l' 2a, N ' = N /p  and Ra  ~  α '(Ν ')1/2 =  a N V 2.

Now we would like to  calculate the num ber o f m onom ers within a radius r  o f 
a position where we know th a t a m onom er exists. This is the same as calculating 
the num ber o f m onom ers in a sphere o f radius r  centered at the origin. Since any 
segment o f the random  walk is itself a random  walk, there are on the average 
n(r) ~  r2/a 2 m onom ers in a sphere o f radius r. The radial distribution function 
is proportional to the density o f m onom ers a t r  -  the num ber o f monom ers 
contained in the spherical shell of thickness dr a t r  divided by the volume Anr2dr 
o f the shell:!

g f ( r ) ^  J _  (212.3)
gM J Anr2 dr r* a2r ( ’

This result applies to a polym er in three dimensions. In  d dimensions, the volume 
o f a spherical shell is proportional to  rd~ l, for a random  walk n(r) ~  r2/a 2 
independent o f dimension and g(r) ~  r-(d-2). For distances larger than  Re, 
g(r) falls off exponentially. (One should worry about counting the possible 
contribution  o f parts o f the polym er th a t extend outside the region r  and then 
return. However, for a three-dim ensional random  walk, the return probability to 
the origin vanishes as the num ber o f steps increases.) g(r) is sketched in Fig. 2.12.1. 
We saw in Sec. 2.3 th a t the scattering intensity from  a distribution o f mass points 
is proportional to the Fourier transform  o f the pair distribution function, which

t  Note that for a fractal object, (n) is length scale dependent. We therefore want to introduce a 
distribution function gf(x) =  ^  δ(χ  — xa +  xo)> which has units o f  volume and which, unlike g(x)

[Eq. (2.3.12)], is not normalized by (n).
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Fig. 2.12.2. (a) and (c) random walks and (b) and (d) self-avoiding random 
walks of N  = 500 steps on a two-dimensional square lattice. Note that the 
random walk is much more compact than a self-avoiding random walk with 
the same number of steps.

for the isotropic case is the radial distribution function. The neutron scattering 
intensity from  a polym er in d dimensions is, therefore, approxim ately proportional 
to

S(q) oc J  gF(r)e %v'd dr. (2.12.4)

If  the pair distribution function has a general power-law singularity, g(r) ~  r a, 
then

S(q) ~  J e - i'''(d dr/r«) = (q«/qd) J e i*'[dd(qr)/(q rr]

~  qa~d J  e~ixx~addx. (2.12.5)

Thus, we then have

qzaz
qRc  1, (2.12.6)

for the ideal chain in three dimensions (a =  1 ,d  =  3).
As an aside, we note tha t polymers in a “good” solvent are no t a simple random  

walk but are “ swollen” as a result o f repulsive interactions am ong constituent
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(a) (b)

Fig. 2.12.3. S(q) for polymers in (a) a good solvent where excluded volume 
effects are important and (b) a Θ solvent where ideal chain statistics apply. 
[B. Farnoux, F. Bou’e, J. P. Cotton, M. Daoud, G. Jannink, M. Nierlich and 
P. G. de Gennes, J. de Physique 39, 77 (1978).]

monomers. This “excluded volum e” effect is often described in term s o f a “ self- 
avoiding random  walk” (SAW) shown in Fig. 2.12.2. The radius o f gyration o f a 
self-avoiding walk obeys a relation similar to  tha t o f a random  walk, [Eq. (2.12.2)] 
but with an exponent th a t differs from  1/2:

R G = a N v . (2.12.7)

The value o f the exponent v is rem arkably well approxim ated by the form ula

V =  d T 2 ’ (212 ·8»
predicted by a mean-field theory due to Flory. The average num ber o f monom ers 
in a sphere o f radius r  is now

n(r) ~  ( r /a )1/v ( r /a )5/3 (d =  3), (2.12.9)

and the pair distribution function and structure factor are

g(r) ~  r~dn(r) ~  r 1/v~d l / ( a 5/3r4/3) , (2.12.10)

S(q) ~  (q a )-1/v -  (qa)~5/3. (2.12.11)

S(q) in polymers can be m easured by low-angle neutron scattering. Both random  
walk and self-avoiding random  walk statistics can be seen by changing the
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Fig. 2.12.4. A fractal aggregate of gold particles. [Courtesy of D. A. Weitz.]
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Fig. 2.12.5. (a) g(r) for the fractal aggregate in Fig. 2.12.4 as measured by 
direct counting, (b) S(q) measured by light and neutron scattering. [P. 
Dimon, S. K. Sinha, D. A. Weitz, C. R. Safinya, G. S. Smith, W. A. Varady, 
and Η. M. Lindsay, Phys. Rev. Lett. 57, 595 (1986); D. A. Weitz and J. S. 
Huang, in Kinetics o f  Aggregation and Gelation, eds. P. Family and D. P. 
Landau, p. 19 (Elsevier, New York, 1987).]

“quality” o f the solvent. For a “0” solvent the repulsion o f the polym er from  
the solvent com pensates on average for the hard-core excluded volume repulsion 
o f the m onom ers with themselves (see Fig. 2.12.3). In this case, the effective 
interaction between m onom ers is zero, and the polym ers obey random  walk 
statistics with Rc N 1/2.
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In  the general case o f a random  isotropic fractal, the fractal o r H ausdorjf 
dim ension d f is defined via

n(r) ~  (r /a )d>. (2.12.12)

This is a generalization o f the relation n ~  rd valid for norm al com pact objects. 
The fractal dim ension o f a polym er is thus 1/v. The pair distribution function 
and static structure factor for a general fractal are given by 

g f(r) ~  n /rd ~  l / ( a drd~df) , or a =  d — df 

S(q) ~  (qa)-d>. (2.12.13)

It is very easy to get a physical feel for w hat the correlation and scattering 
functions m ean by looking at Figs. 2.12.4 and 2.12.5. Fig. 2.12.4 is an electron 
m icrograph o f an aggregate o f gold particles form ed under highly nonequilibrium  
conditions. The uniform-size 5θΑ particles were in stable suspension because of 
repulsion between the like surface charges. The charges were then chemically 
removed. The particles diffused until they collided and then stuck wherever 
they hit. The process is know n as diffusion limited aggregation (DLA). The mass 
correlation function was calculated from  the electron m icrograph by random ly 
picking a point in the cluster, drawing a circle o f radius r  and counting the 
num ber o f particles intersecting the circle. The process was repeated for m any 
origins and m any radii. Since the picture is a projection o f the structure in two 
dimensions, it is fractal with g(r) ~  l / r 2~d>, and the log-log plot indicates a slope 
o f 0.25 (df = 1.75 ± 0 .05) until r  approaches the size o f  the cluster a t which point 
it rapidly decreases.

The same system was studied by bo th  neutron scattering and light scattering. 
The resulting structure function is shown in Fig. 2.12.5. S(q) should have the 
form q~d< until q reaches a crossover value. The S(q) d a ta  on this sample give 
d f ~  1.80. For higher q the scattering probes distances smaller than  a particle size, 
and the objects no longer look fractal. Fig. 2.12.5 also serves as a good example 
o f the range covered by light (q > 2 π /λ  >  2π/1500Α ) and neutron scattering 
(q >  2π/ΐΑ).

Appendix 2A Fourier transforms

In this appendix, we will review Fourier transforms for functions of one- and d-dimensional 
continuous variables and for functions defined at lattice sites on one- and d-dimensional 
lattices.

1 One dim ension

We begin with a function f(x )  of a single variable x  in the interval [—L/2,L/2] (i.e. 
—L /2  <  x < L/2). If f(x )  satisfies reasonable continuity and boundedness conditions 
(e.g. it does not have an infinite number of zeros in some finite interval of x), it can be 
expanded in a uniformly convergent Fourier series:
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/ W  =  5 Z v « W /(4 ) . (2A.1)

where ipq(x) satisfies the same boundary conditions as f(x) .  Common boundary conditions 
on f ( x )  are f ( x  =  +L/2)  =  0 or f ' ( x  =  + L/2)  =  0. In condensed matter physics, one 
is often interested in bulk systems in the thermodynamic limit, L —» oo, for which most 
physical properties of interest do not depend on the boundary conditions. In this case, 
any physically reasonable boundary condition can be imposed. The periodic boundary 
condition requiring / (x) to be a periodic function of period L,

f ( x )  =  f ( x  + L ) ,  (2A.2)
is computationally the simplest and is almost universally used in situations where surface 
properties are not relevant. The condition (2A.2) is equivalent to wrapping the line of 
length L on a circle of circumference L and tying the two ends together. The functions 
ipq(x) must satisfy the periodic boundary condition and can be chosen to be

\pq(x) =  Ae‘qx , (2A.3)
where

2π
q = — n, n =  0 ,+ l,+ 2 ,... (2A.4)

and where A  is an arbitrary normalization constant. The functions ei!,x satisfy the 
orthogonality condition,

dxe‘{q~q)x =  =  LSq- q,p , (2A.5)
/_l/2 K4-4) /2]

where 5a,b is the Kronecker delta (dah — 1 if a =  b and da,b =  0 otherwise) and the 
completeness condition,

V  e - “>x =  lim V  e- 'ann/Ux =  lim sin[27t(N ~  1/2)x/L] =  L d ( x ) , (2A.6)
ν-,οο sin(πχ /L )

q N — 1

where δ(χ) is the Dirac delta that is zero except at x  =  0 but whose integral over x  is 
unity. Thus, for periodic boundary conditions,

f ( x )  = A r e » * m ,  \

/(<?) = IL f-L/2e~iqXf<X)dX· J
To treat systems in the limit L —» oo, one takes the continuum limit in which q =  (2n/L)n  

is treated as a continuous variable and
dq

ΪJ - L

2π , (2A.8)
q n q

where Δη =  1. Thus Eqs. (2A.7) can be rewritten as

f ( x )  =  A L  f  ^  [  ge*»*f (q), (2A.9)
J  — oo J  — oo

i /»oo /»oo

f (q) =  J l j  d x e - ^ f ( q )  L̂ ‘ J  dxe~‘qxf(q)  . (2A.10)

The normalization constant A  is often chosen to be equal to L~l so that the factors LA  
and (LA)~l become unity as shown in the final form on the right hand side of Eqs. (2A.9) 
and (2A.10). Other choices, such as A  =  L-1/2 so that L-1/2 appears as a factor in both 
Eqs. (2A.9) and (2A.10), are also used. In the continuum limit, the orthogonality and 
completeness relations (2A.5) and (2A.6) become



/ ao

dxel(q' q ,x =  lim Ldq_q<(} =  2nd(q — q') (2A.11)

00

and

ί  Ρ - β- ^ χ- χ,) =  δ(χ -  x'). (2A.12)
/ 2πJ  — oo

The identification of LSqA> with 2nd(q — q') can be seen from

Σ .* *  =  1 =  ^  /  dqdq 0 J  dqd^  · (2A.13)
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2 d dim ensions

The generalization of the above formulae to d dimensions is straightforward. Let /(x)
be a function of a d-component vector x =  (x l, x 2,...,Xd) and impose periodic boundary
conditions on each of the components of x :

=  /(xi,...,x,· +  Lj,... ,xd) , i =  l,2,...,d . (2A.14)

Then /(x ) can be expanded in a Fourier series similar to Eqs. (2A.7):

/(x ) =  (2A.15)

Ld and
( 2 π  2π 2π \

/ ( I )  =  Jf7  I ddxe-‘̂ f ( x ) , (2A.16)

where V  =  LiL2...L<i and

/(X) =  A ^ ^ m ^ A V  J
where the coefficients n, are integers. In the infinite volume limit, these relations become

ddq 
(2π)ά

= ~ J  ddxe-“" f ( x )  J  ddx e - ^ xf(x),  (2A.19)

where again the normalization factor A  is often chosen to be equal to V~l as indicated 
by the final form of these equations. It is understood that the x- and q-integrals in Eqs. 
(2A.18) and (2A.19) are over all space. Finally, in the infinite volume, continuum limit, the 
orthogonality and completeness conditions become

/ ( q)

/■
A e ‘,q- q' | x =  7  V  =  (2 n fd <d)(q -  q') (2A.20)

and

/ — ^ e -iq'(x-x/> =  0<d,(x -  x ' ) , (2A.21)
(2π>

where <5w,(x) is a d-dimensional Dirac delta function.
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3 T ransform s on a la ttice

Often one is interested in functions that are defined only at points on a regular periodic 
lattice rather than at all points in space. The Fourier transformation of these functions is 
the subject of this sub-section.

One-dimensional lattices Let /; be a function of the integer I indexing the lattice site 
located at position R] =  la of a one-dimensional lattice with lattice spacing a (see Sec. 
2.5). The function /;  can be expanded in a discrete Fourier series

=  (2A.22)

where ψq(l) satisfies the same boundary conditions as /;. Again, we choose the periodic 
boundary condition,

f i = f i +N, (2A.23)
where N  is an integer. In this case, we can choose

Wq(l) =  Afft*  =  xpq{l +  N ) , (2A.24)
where

q = ^ n ,  (2A.25)

where n is an integer. Because Ri is an integral multiple of the lattice spacing a, the
function \pq(x) in Eq. (2A.23) is periodic in q as well as in I:

V>«(0 =  <PqH2n)/a (0· (2A.26)
Thus all the functions ipq(l) and f(q )  are completely characterized by q in the interval 
[—π/α,π/α],  i.e., by q in the first Brillouin zone (BZ) of the one-dimensional lattice.

The number of points in the first BZ is equal to the number of sites N  in the direct 
lattice. This follows because the number of points in some region of space is equal 
to its “volume” divided by the “volume” per point. The volume of the first BZ of a 
one-dimensional lattice is 2π /α  and volume per point is simply Aq =  (2π)/Να, so that

number of points in first BZ =  —  =  jv. (2A.27)
a Aq (2π)/Na K ’

The functions e‘qRl satisfy an orthogonality condition similar to that of the functions
eiqx.

Σ  e>(q~q')R' =  Ndw  ^ < 5 (4 -  <?'), (2A.28)
1=0

where Eq. (2A.11) with L  = Na was used to relate the Kronecker delta to the Dirac delta. 
The completeness condition is

_  1 -  eiNI
Σ  eiqRt =  =  Νδ,’°- (2Α·29)

g e ls t  BZ

In the continuum limit, this equation becomes

/ π/ο i
=  <5/,ο· (2A.30)

•π/ι
nja

When the above results are combined, the lattice Fourier transforms can be written as
rn/o

f ,  =  Λ  Σ  N~*° A(Na) Γ
.λι.( n7 J —π/α
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(2A.31)

(2A.32)

Again, the choice of A is arbitrary. Often the choice A =  (1 /Na) is made as shown on the 
far right hand side of these equations. In this case, (NA)~l = a, and the sum over / in Eq. 
(2A.32) could be replaced by an integral over Ri in a spatial continuum limit.

^-dimensional lattices The generalization of lattice Fourier transforms to d-dimensional 
lattices is again straightforward. If f \  is a function of the lattice index 1 satisfying periodic 
boundary conditions, /i =  /i+n, where N =  (JVi, jV2, Nd), then

where G is a reciprocal lattice vector. Thus, as in the one-dimensional case, only wave 
vectors q in the first Brillouin zone need be considered. The number of points in the first 
Brillouin zone is again equal to the number of points, N  = N i N 2...Nd in the lattice. The 
orthogonality and completeness conditions are now

where Vo =  V / N  is the volume of a unit cell and the ^-integral is over the first BZ. The 
Fourier transform equations are

(2A.33)

where, since Ri+n =  Ri +  Rn,
φ,(1) =  Ae"*' (2A.34)

with

(2A.35)

The restriction of Ri to lattice points leads to

V V g (1) =  'Pq(l) , (2A.36)

(2A.37)

and

i_ y~V-q(Ri—R|>)

4
(2A.38)

/.

(2A.39)

and

(2A.40)
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P ro b lem s

2.1 (The Hendriks-Teller model) In  a one-dimensional model o f  an alloy, mass 
points are separated by a unit distance with probability p and by a longer 
distance 1 +  p  with probability 1 — p. Show th a t the structure factor for this 
model is

s , , = ___________________ P(1 — P)[l -c o s (p q )]___________________
1 -  p{l — p) — p c o s q  -  (1  - p ) c o s [ ( l  +  p)q] +  p( 1 - p ) c o s q p '

2.2 Calculate the coherent scattering intensity for the lattice shown in Fig. 2.6.7 
assuming tha t the triangles are com posed o f  three identical po in t particles. 
Let Fi be the form  factor for particles at the vertices o f  squares (solid circles) 
and F2 be the form factor for the particles in the triangles. Com pare your 
result to  th a t o f  a square lattice with lattice vectors a i / 2  and &i/2.

2.3 Calculate the structure factor in reciprocal space in three dimensions for

(a) a triangular lattice o f  points in the plane z =  0 ;
(b) a triangular lattice o f  uniform  density rods parallel to the z-axis as shown 

in Fig. 2P.1 (at left);
(c) a triangular lattice o f  uniform  rods m aking an angle Θ with respect to the 

z-axis as shown in Fig. 2P.1 (at right).

W hat happens to  the scattering intensities in part (b) if  the rods, rather than 
being uniform, consist o f  atom s with liquid-like correlations in a given rod 
bu t with no correlations in the positions o f  atom s in different rods? W hat 
happens if, in addition, correlations in the densities o f  adjacent rods develop?
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Fig. 2P.1. Regular two-dimensional lattices of rods. On the left, the rods are 
parallel to the z-axis, and on the right, they make an angle Θ with the z-axis. 
In both cases, the rods intersect points forming a triangular lattice in the 
xy-plane.

[For an experim ental application o f  these ideas to  intercalated graphite, see 
H uster et al. (1987).]

2.4 The positions o f  atom s in an ideal one-dimensional incom m ensurate crystal 
satisfy

x„ = na +  F(na),

where F(y)  is a periodic function o f  period b (i.e., F(y +  b) = F(y))  with a/b  
irrational. Show that

nk =  N  Σ  A q(k)Sk'Gpq
PA

where p and q are integers, Gpq =  (2π ρ/ α ) +  (I n q j b ),

A q(k) = \  t  dye2niqy/beikF{y) . 
b Jo

A pply this form ula to  the sequence

x„ = n +  ρ[ησ] =  n (l +  ρσ)  — ρ{ησ}  (2P.1)

where [x] is the greatest integer less than  or equal to  x and {x} =  x — [x] is 
the fractional part o f  x and show tha t

where
2 πρ (q_

1 + ρ σ  \ p

a =  (1 +  ρσ),  and b =  σ - 1  +  p. The sequence defined by Eq. (2P.1) consists 
o f  points separated by short intervals o f  length 1 or long intervals o f  length 
1 +  p  with relative frequency σ /(1  — σ). W hen p = a =  τ - 1  =  5 (^ /5  — 1), 
Eq. (2P.1) generates the so-called Fibonacci sequence.

X h  = t -t z i [ ' - p
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Fig. 2P.2. Array of lines described by Eq. (2P.2)

2.5 (For the curious.) Choose p =  1 — τ' 1 and p  =  τ - 1  in Problem 2.1 and plot 
S(q). (You m ay wish to use a com puter.) Com pare this function with nk in 
Problem 2.4. for the Fibonacci sequence [σ =  p =  τ-1].

2.6 Fig. 2P.2 shows a regular array  o f  wiggly lines in which the x position o f  the 
pth line as a function o f  y  is

Yp(x) =  pi +  ui c o s [^ x //)s in (2 7 r /5 )]  cos[27rpcos(27r/5)]

+U2 cos [(2πχ/Ζ) 8Ϊη(4π/5)] cos [2 πρ  ΰθβ(4π /  5)]. (2P.2)

D eterm ine the set o f  points in reciprocal space for which there is Bragg 
scattering from  this array.

2.7 Calculate the X -ray scattering intensity for the following close packed struc
tures form ed by stacks o f  hexagonal lattices.

(a) The sequence A B A B  ■ ■ ■ (the H C P structure).
(b) The sequence A B C  A B C  ■ ■ ·. Show th a t the scattering from  this sequence 

is tha t o f  an FC C  lattice.
(c) The random  sequence A B A C B A B C B  - in which there is an equal p rob

ability th a t B  or C  will follow A,  etc.

Answer to  (c):

i(q ) =  N 2 E ^ -
G'

I \ r  \ t 2 V "  s  S'n2 G - L. ■ c+N|,N_l y  <5q,Gx "j---- ~ ^ ;------ 27^------>
1 — 2 cosqzan co sG x  ■ c +  cos"1 G x ■ cGi?=G'i

where G x is a vector in the reciprocal lattice o f  a triangular lattice L with 
lattice spacing a, G ^ is a vector in the reciprocal lattice o f  the triangular lattice 
L' w ith lattice sites at the centers o f  the triangles in lattice L, ay =  ^ β α /2 ,  
G ' =  {2nk/at.)ez +  G ^, and c is the vector from  the vertex to the center o f 
a triangle in lattice L. The vectors G ' are the vectors com m on to bo th  the 
FC C  and H C P reciprocal lattices. N ote th a t when G x ^  G'±, / ( q) depends



106 2 Structure and scattering

continuously on qz with the ratio  o f  intensities at qza\\ an odd integral multiple 
o f  π to  those with qza^ an even integral m ultiple o f  π equal to  9. (For an 
experim ental system with this pattern, see Pusey et al. (1989).)
Solution hint: Vectors in B  and C  can, respectively, be obtained from  those 
in A  by the addition o f  the vectors + c  and —c. Thus vectors in the nth layer 
can be written as Ri +  Σ Ί =1 akc, where Ri is a vector in L and where ak takes 
on the values + 1  with probability o f  1 / 2 .

2.8 Consider a two-dim ensional fluid o f  circular particles with N -atic bond-angle 
order.

(a) Show th a t the pair correlation function can be written as

g(y) =  Y,gP{r)eiNpe 
p

where y =  (r, Θ) in polar coordinates, and

gp(y) =  go (rY¥Np(r),
where

i  \ 1 <5(r — R o yCl)  \

2" W \ S  | r - R °·* 1 /
and

ψ ν (r \ =  ____ 1____ /  v
p 2n(n)g0(r) \r -  Ro^\ J

=  (einpê ) r,

where Raj  = x a — x?, Rq̂  =  |R0>ot |, and θα_β is the angle χ α — Χβ makes 
with the x-axis. This shows th a t when r is equal to the average separation 
between nearest neighbors, then only particles tha t are nearest neighbors 
to the particle 0  contribute to Ψ νρ(γ).

(b) A pply reasoning similar to the above to a three-dim ensional liquid crystal 
to  derive an expression for Ψβρ in Eq. (2.7.4).

(c) Generalize the above results to  general bond-angle order in three dim en
sions, and show tha t

g(y) =  go
lm

where

'i 'lm ir )  =  {Ylm iQov, Φο,χ ))γ·

(d) Explain how you m ight determ ine whether a configuration o f  circles in 
two dimensions has bond-angle order o r not.

2.9 Consider a collection o f N p polym ers each with N  +  1 identical m onom er 
units connected by N  identical flexible links. Let Ra be the position o f  the 
initial (0th) m onom er, and let Xa>, =  Ra +  R a,j be the position o f the ith
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(1, =  Ι , . , . ,Ν)  m onom er in polym er a. The structure factor for polym er a is
ίv

/ a(q) =  l +  ^ e“ i,R‘’'· 
i

(a) Show th a t the scattering intensity for a dilute solution o f  the above 
polymers is

hp{  q) =  Np( |/(q ) |2}, 

where the average is over polym er configurations and ( |/(q ) |2) =  ( | / a(q)|2) 
independent o f  a.

(b) The unit cells o f  a simple cubic lattice are all decorated w ith identical 
polymers, each with identical configurations. Show th a t the scattering 
intensity is

J(q) = N2£<WI/(q)l2>.
G

where G  is a reciprocal lattice vector o f  the cubic lattice.
(c) The same cubic crystal is decorated with the same polymers as above, 

bu t polymers in each cell perform  independent random  walks with their 
initial m onom er at the centers o f  the cubic cells. Show tha t the scattering 
intensity in this case is

/(q) =  N j ^ \ G l(/(q))l2 +  N o [<l/(q)l2> -  l(/(q))l2] ·
G

(d) Assume tha t the polym er steps ιια,; =  Ra?,· — Ra?,_i are independent G aus
sian random  variables in d dimensions with zero m ean and variance 
(“«,ίupj) =  6aj5 i j { a2/ d). Show tha t

1 _  β - ( Ν + 1 ) η

</(q)> =
and

(l/(q)l2) =  (JV +  i )

1 - e ~ i

1 _  β~(Ν+1}η
2 ———------------- 1

1 - e - i

+ 2
(.N  +  l)e-<JV+1>'> β~η{1 -  e- t-N+1)r’)'

1 - e ~ i  (1 - e - i ) 1
where η = (qa)2/(2d).

(e) C om pare scattering intensities for parts (b) and (c) above for η <C 1 / ( N  +  
1), l / i N  +  l ) ^ / ? ^ ! ,  and η »  1. Be sure to  discuss peak intensities 
and  q-dependence in bo th  cases. Also discuss behavior as a function o f 
a/c,  where c is the lattice constant o f the cubic lattice.



3
Thermodynamics and 
statistical mechanics

Condensed m atter physics by its very nature deals w ith systems with a large 
num ber o f  degrees o f  freedom, i.e. systems for which a statistical description 
is essential. In this chapter, we will present a ra ther comprehensive review 
o f the fundam entals o f  therm odynam ics and statistical mechanics. M uch of 
this chapter, especially the parts dealing w ith hom ogeneous fluids (ideal and 
interacting gases and liquids), should be fam iliar to everyone. They are included 
here m ostly to establish a basis for discussing m ore com plicated ordered systems. 
As we saw in the preceding chapter, a great deal o f  useful and experimentally 
accessible inform ation is contained in correlation functions such as the density- 
density correlation function Cnn(x,x')· This chapter will define these functions 
in a statistical mechanical context and  develop a m ethod o f calculating them 
using functional differentiation with respect to spatially varying external fields. 
Functional differentiation will allow us to  calculate position-dependent correlation 
and response functions by a simple generalization o f  the familiar technique used 
to calculate the m agnetic susceptibility by differentiating the free energy with 
respect to the m agnetic field. This is a very powerful tool th a t will be used 
throughou t this book. It is presented here first in a fam iliar context th a t should 
m ake it easy to grasp.

A fter reviewing the properties o f  hom ogeneous fluids, we will introduce order 
param eters in Sec. 3.5 and  show how they modify bo th  therm odynam ics and 
statistical mechanics. The formalism presented here will be used th roughout this 
book, bu t especially in the next four chapters dealing w ith phase transitions and 
properties o f  broken-sym m etry phases.

3.1 Thermodynamics of homogeneous fluids

A n isotropic, hom ogeneous fluid is the simplest state o f  m atter. I t is com posed o f 
mobile atom s or molecules whose kinetic energy dom inates the structure. A  fluid 
at finite tem perature with a finite num ber o f  particles cannot exist in equilibrium 
unless it is confined in some way to  a finite volume V  (otherwise particles will 
“evaporate” to  less dense regions o f  space). We will, therefore, consider for the 
m om ent a single-phase fluid (either a liquid or a gas) in a volume V. I f  the fluid 
is therm ally isolated so th a t it cannot exchange energy w ith the outside world, its
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df—p d A

Fig. 3.1.1. A fluid contained in a volume element exerts an outward force 
normal to its surface. The force di  exerted on an element of area dA — dAn 
with unit normal n is parallel to n and proportional to dA : df = pdA. p is the 
pressure with units of force per unit area or energy per unit volume.

internal energy (kinetic plus potential energy) £  is a constant. I f  external forces 
do work Wext on the fluid, its internal energy changes by an am ount

Δ £  =  Wen. (3.1.1)

W ork is done on a fluid by changing its volume V. Since the fluid in equilibrium 
always fills the volume to  which it is confined, it m ust exert an outw ard force on 
the walls o f its container. Conversely, the walls o f  the container exert an inward 
force on the fluid. A  fluid contained in a volume surrounded by a surface A  can 
only exert a force norm al to A.  Furtherm ore, the total force on a flat surface 
is proportional to its area. The outw ard force per unit area exerted by a fluid 
through its containing surface is called the pressure p. The force exerted on a 
surface element o f  area dA by the fluid is pdAn, where n is the local outw ard unit
norm al to  the surface, as shown in Fig. 3.1.1. The force exerted by container walls
on a surface element is —pdAn. The work done by external forces in displacing a 
particular surface element a distance dx  along n is thus

&Wtyix = —pdAdx = —p d V . (3.1.2)

The total work done in changing the volume is the integral o f  Eq. (3.1.2) between 
the initial and final volumes. Since the force exerted by the walls on the fluid is 
just the negative o f  the force exerted by the fluid on the walls, WeM is m inus the 
work W  done by the fluid.

1 The first law o f  thermodynamics

I f  the fluid is therm ally isolated, its internal energy can also be increased by the 
addition o f h e a t In this case, the general equation for the change in £  becomes

Δ £  = Q — W  (3.1.3)

where Q is the added heat. M ore generally, Q is the am ount o f  energy received 
by the system in forms which cannot be identified as the negative o f  work done
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by the system. For example, E  can be changed by placing a heater in the fluid 
and applying a current. The electric w ork I 2R  (per unit time) done by the current 
source adds heat, but, since the volume o f the fluid rem ains fixed, W  is zero.

Processes tha t occur sufficiently slowly th a t therm al equilibrium  is m aintained 
are called quasi-static. In  quasi-static processes, the heat dQ added to  a system is 
equal to  its absolute tem perature T  times the change in entropy S :

S,  like internal energy, is completely determ ined by the volume and tem perature 
o f  the fluid if  the num ber o f  particles rem ains fixed. Thus, a fluid, initially in 
equilibrium  at tem perature T; and volume Vt with entropy S,·, subjected to  a 
sequence o f  changes th a t term inate a t final tem perature T f  and volume V f  will 
have an entropy S f  tha t depends only on T f  and V f.  I f  the changes run through 
a cycle, T f  =  T,· and  V f  = V;, then the final entropy will equal the initial entropy, 
i.e., S f  — Si =  j f  dS =  0. The total heat added, f f  dQ, need not, however, be zero 
in going around the cycle. dE and dS  are perfect differentials, bu t dQ is not.

The first  law o f  thermodynamics can be w ritten as

for quasi-static processes. This equation implies th a t tem perature and pressure 
are derivatives o f  the internal energy w ith respect to entropy and volume,

Thus the functions E(S, V)  or S(E, V)  completely determ ine the therm odynam ic 
state o f  a fluid with a fixed num ber o f  particles. x

Changing the num ber N  o f  particles in a fluid will lead to  a change in the 
internal energy even if  the entropy and volume are fixed. The chemical potential 
μ  is the change in internal energy produced by the addition o f one particle. The 
first law for quasi-static processes for a one-com ponent fluid in which the num ber 
o f  particles can change is thus

A  complete therm odynam ic description o f  the fluid is contained in the function 
E(S,  V ,N) .

Tem perature, pressure, and chemical potential are sometimes referred to  as 
generalized forces  (they are first derivatives o f  the energy). There is an im portant 
distinction between the generalized forces and the variables E,  S, V,  and N.  
Imagine dividing a fluid w ith energy E,  entropy S, volume V, and particle 
num ber N  into two equal parts. In each part Ε, V, S, and N  are divided by two, 
bu t the generalized forces are the same as before. Variables such as E, S, V,  and 
N  whose m agnitude increases upon increasing the size o f  the sample are called

dQ = TdS. (3.1.4)

dE = T d S  -  pdV (3.1.5)

(3.1.6)

Similarly,

(3.1.7)

dE =  T d S  — pdV  +  μάΝ. (3.1.8)
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extensive variables; variables such as T,p ,  and μ  whose values rem ain constant 
upon increasing the size o f  the sample are called intensive variables. Associated 
with each extensive variable, there is a generalized force such that the change in 
internal energy is the generalized force times the change in the extensive variable. 
The extensive variable and  its associated generalized force are called conjugate 
variables. Thus, T  and S, —p and V, and μ  and N  are conjugate variable pairs.

2 The second law o f  thermodynamics

The first law o f  therm odynam ics is merely a statem ent o f  the conservation o f 
energy. The second law describes the nature o f  changes that can occur in statistical 
systems. It can be stated in various ways, the m ost physically intuitive o f  which 
is tha t heat cannot spontaneously flow “uphill” from a cold to a hot body. An 
equivalent statem ent is tha t any changes in a closed system arising from removal 
o f  constraints will lead to  an increase in the entropy, i.e.,

AS > 0. (3.1.9)

A n immediate consequence o f  this law is th a t the entropy o f  a closed system will 
be a maxim um  with respect to any changes o f internal unconstrained variables. 
Consider, for example, a fluid isolated from the outside world in a container 
divided into two parts (labeled 1 and 2 ) by a movable partition  tha t permits 
exchange o f  energy and particles, as depicted in Fig. 3.1.2. The total entropy S 
m ust be a m axim um  with respect to changes in volume, energy, and num ber of 
particles in the fluid on the two sides o f the partition. The total energy, particle 
num ber, and volume cannot change since the system is isolated from  the outside 
world. Thus, changes in particle num ber, volume, and internal energy in the fluid 
on one side o f  the partition  m ust be accom panied by equal and opposite changes 
in the fluid on the other side: ΑΕι =  —Δ£ 2 =  Δ £ , AV\ = —A V 2 = AV,  and 
ΔΝ ι =  —A N 2 = AN.  Since the entropy is a maximum, it m ust be stationary with 
respect to  these changes, i.e.,

Δ5= ( έ - ^ ) ΔΕ+( Ι - | ) Δ,,- ( Ι ' ^ ) ΛΝ= 0·
(3.1.10)

implying T\ =  Tj, Pi = pi,  and μι =  μ2. The interface between two coexisting 
phases is essentially a movable partition th a t allows interchange o f  particles and 
energy. Thus, the above considerations imply tha t the tem peratures, pressures, 
and chemical potentials o f  coexisting phases m ust be equal.

3 The  third law o f  thermodynamics

The third law o f therm odynam ics (or N ernst theorem) relates to  the behavior o f 
systems as they approach the absolute zero o f  tem perature. N ernst suggested that 
the entropy o f  physical systems would tend to zero as T  —► 0. (W ithin quantum
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Fig. 3.1.2. A thermally insulated vessel of constant volume containing a fixed 
number of particles with a movable, permeable, heat conducting partition. 
The volumes, particles, and internal energies of the fluid on the two sides of 
the partition will adjust so as to maximize the entropy of the whole system.

statistical mechanics this is equivalent to  having a non-infinite ground state 
degeneracy hence a nonextensive or zero entropy.) The consequences o f  this law 
are th a t m ost tem perature derivatives o f  therm odynam ic quantities go to zero at 
least as fast as T,  and in particular the specific heat (see later in this section) should 
go to zero with T.  There are presently several interesting physical and model 
systems which appear at first glance to violate this theorem , especially glasses and 
systems with “frustrated” ground states, retaining considerable entropy to  quite 
low tem peratures.

4 Thermodynamic  potentials

As we saw above, all therm odynam ic quantities can be obtained from the internal 
energy provided the latter is expressed as a function o f  its associated natural 
variables, S, V, and N.  Functions th a t contain all therm odynam ic inform ation 
are called thermodynamic potentials. E  is an extensive variable th a t is a natural 
function o f  extensive variables only. I t is often desirable to consider other 
therm odynam ic potentials th a t are natural functions o f  one or more o f the 
extensive param eters th a t can be controlled by establishing contact with an 
appropriate reservoir as implied by Eq. (3.1.10). (Either side o f  Fig. 3.1.2 can be 
a reservoir if  it is m ade sufficiently large so th a t its T,  p, or μ  do no t change 
significantly when energy, volume or particles are removed.) These potentials are 
Legendre transform s o f E.  The H elm holtz free energy,

F = E — T S ,  (3.1.11)

is a natural function o f  Τ,  V,  and N,  as can be seen by the differential relation,

dF =  d E -  T d S  -  S d T

= —S d T  — pd V  +  μάΝ,  (3.1.12)

it satisfies. The G ibbs free energy is a natural function o f T,  p, and N:
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G = E - T S  +  p V  = F + p V ,

dG = —S d T  +  Vdp +  μάΝ.  (3.1.13)

The enthalpy H  = E +  pV  is a natural function o f  S, p, and N.  Finally, the grand 
potential,

jrf =  E — T S  — μ Ν  = F — μ Ν  (3.1.14)

is a natural function o f  T,  V, and μ  satisfying

dsrf =  —S d T  — pdV — Νάμ.  (3.1.15)

Like E,  all o f  the therm odynam ic potentials just introduced contain all therm o
dynamic inform ation, provided they are expressed as functions o f  their associated 
natural variables. For example, the entropy can be obtained by differentiation o f
F, G, o r s i  with respect to  T :

S = - ^ f )  = - ^ l  = - ^ l  · (3·1·16)
V,N p,N ν,μ

5 Stabili ty criteria

In equilibrium, the entropy is a m axim um  with respect to changes o f  uncon
strained param eters as dem onstrated below. In equilibrium, the free energies just 
introduced are minim a with respect to  similar changes. Consider a fluid in ther
m al and mechanical contact with a reservoir, whose variables will be indicated 
by a prime. The fluid and reservoir together form a closed system with constant 
total volume. The reservoir is at tem perature T0 and pressure po- The change, 
A S t  = A S + A S ' ,  in the total entropy occurring when any constraints are removed 
m ust be positive. The heat Q transferred from the reservoir to  the fluid is, by 
the first law, equal to the change AE  in the internal energy o f  the fluid plus the 
work done by the fluid. The work done by the fluid in changing its volume by 
A V  is poAV.  Thus, Q =  A E  +  poAV.  The tem perature o f the reservoir does not 
change in transferring heat to  the fluid. The change in entropy o f  the reservoir 
is, therefore, AS'  =  —Q / T 0, and

A ST = AS -  ~ E +J ^ V > 0, (3.1.17)
To

A(E — T0S +  p0V) < 0. (3.1.18)

Thus, in the absence o f external forces, changes in the quantity E — ToS + p o V  
resulting from the removal o f  constraints will be negative. I f  the volume and 
tem perature o f  the fluid are fixed, then Eq. (3.1.18) implies

AF < 0, (3.1.19)

and if the pressure and tem perature o f  the fluid are fixed, Eq. (3.1.18) implies

AG < 0 (3.1.20)
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when there are no external forces. Thus, removal o f  constraints at constant 
volume and tem perature lead to a decrease in the Helm holtz free energy, and 
removal o f  constraints at constant tem perature and pressure lead to  a decrease 
in the G ibbs free energy. In other words, to  attain  equilibrium  nature adjusts any 
free variable to maximize S  for fixed E  and V, to  minimize F  for fixed T  and V, 
and to  minimize G for fixed T  and p.

Since in equilibrium  E — TqS  + p o V  is a m inimum, its deviations from  therm o
dynam ic equilibrium  will be positive. Thus,

δΕ — TqSS + p o 5 V  > 0, (3.1.21)

where δΕ, <5S, and SV are, respectively, the deviations o f  the internal energy, 
entropy, and volume from their equilibrium  values in contact with the reservoir 
a t tem perature To and pressure po- Eq. (3.1.21) is valid for arb itrary  values o f 
δΕ, <5S, and δν. W hen applied to  infinitesimal values o f  these param eters, Eq.
(3.1.21) leads to  positivity constraints on equilibrium  derivatives. I f  <5£(<5S,<5F) is 
expanded in a power series, the first order term s in <5S and δ ν  on the left hand 
side o f  Eq. (3.1.21) will vanish because the equilibrium  tem perature and pressure 
o f  the fluid are equal to those o f the reservoir. Thus, to second order in <5S and 
δν, Eq. (3.1.21) becomes

+  ^ v sssy  *  °· ( 3122)
This equation is satisfied provided 

δ2Ε _  5 T  
US2 ~~dS V

d2E d 2E  /  d2E \ 2 Γ δΓ λ  dp \  d T \  dp
5 S 2 5 V 2 { d S d V ) dS J v d V  J s d V  J s dS 

( δ ρ / δ Υ ) τ
-  ( a s / a n , * 0· ( 3 U 5 )

Thus, in therm odynam ic equilibrium, the heat capacity a t constant volume Cy,
and the isotherm al and isentropic compressibilities, k s  and k t , must be non
negative :

C v = T ^ ) v -  O’ (3 L26)

'c s = “ ^ ) s - 0· (3127)

ΚΓ =  - 1 ^ Κ )  > 0 .  (3.1.28)
V dp ) p

A  straightforw ard exercise in partial derivatives yields the relation
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Cp = T f f O  =  Cv +  τ  '~(~Π 'v JT )p]2'' (3L29)
between Cy  and the heat capacity at constant pressure Cp, implying that, in 
equilibrium, Cp > Cy  > 0. H eat capacities are extensive. I t is often useful to 
consider an intensive measure o f  heat capacity obtained by dividing Cy  or Cp by 
an extensive measure o f  the quantity o f  m atter such as the volume V, the particle 
num ber N,  o r the mass M , and one introduces the specific heats

C y  =  C y / V ,  C y  =  C y / M  =  C y / p, (3.1.30)

where p = M / V  is the mass density. We will encounter the mass specific heat cy 
in our study o f  hydrodynam ic modes o f  a fluid in C hapter 8.

6 Homogeneous  func t ions

The fact tha t extensive param eters increase in proportion to  the size o f  the system 
leads to  simple bu t im portant constraints on the therm odynam ic potentials. The 
internal energy is a function Y  (S , V, N)  o f  the extensive variables S, V,  and N.  
I f  the size o f  the system increases by a factor b, all o f  the extensive param eters 
increase by a factor b, bu t the function Y  does no t change. Therefore,

E =  Y ( S , V , N )  and bE = Y (bS ,b V ,b N ) .  (3.1.31)

A  function / (x) is said to be homogeneous o f  degree k  if  it satisfies / (x) =  b^ f  (bx). 
£  is a hom ogeneous function o f  S, V,  and N  o f  degree —1. Eq. (3.1.31) is true 
for arbitrary b, and in particular for b =  V ~ \  leading to

E = Ve(s,n), (3.1.32)

where ε, s, and n are, respectively, the energy density, the entropy density, and 
the particle density:

E S N
e = v ’ s = v ’ n = v · (3L33)

Similar argum ents lead to

F ( T , V , N )  =  V f ( n , T ) ,  (3.1.34)

G ( T ,p ,N )  = Ng(p ,T) ,  (3.1.35)

J / ( T ,  ν,μ) = να{Τ,μ) ,  (3.1.36)

where f  = F / V  is the H elm holtz free energy density, a =  sr f /V  is the grand 
potential density, and g =  G / N  is the G ibbs free energy per particle.

Eqs. (3.1.31) to (3.1.36) show tha t the extensive therm odynam ic potentials 
have a trivial dependence on one o f  the extensive param eters that lead to  an 
identification o f  the free energy densities with intensive generalized forces, g is 
the chemical potential and a is minus pressure: 

dG
δ Ν ) τ = ξ { ρ , Τ ) = μ ,  (3.1.37)
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= α { Τ , μ )  = - ρ  = ί  - μ η .  (3.1.38)

N ote th a t the volume density o f  the extensive internal energy is a function only 
o f  the volume densities o f  the extensive quantities S  and N,  whereas the intensive 
pressure is a function only o f  the intensive param eters T  and μ. Q uasi-static 
changes in these quantities are related by the differential relations

de =  Tds +  μί2η, (3.1.39)

dp = ηάμ +  sdT,  (3.1.40)

as can be seen by using E =  Ve  in Eq. (3.1.8) and s i  = —Vp  in Eq. (3.1.15). 
Eq. (3.1.39) says tha t the energy density changes in response to  changes in the 
density and entropy density ra ther than  to particle num ber, volume, and entropy 
separately. This allows us to discuss the properties o f  a system by considering
some fixed sub-volume tha t is able to  exchange particles and energy with the rest
o f  the system through some im aginary wall. Eq. (3.1.40) says tha t changes in 
pressure at constant tem perature are equivalent to  the density times changes in the 
chemical potential. This implies, for example, tha t the isotherm al compressibility 
can be expressed as a derivative o f  particle density with respect to  chemical 
potential ra ther than  o f  volume with respect to  pressure:

1_δΚλ 1 δ ( Ν / η ) \
κ τ  =  —7 7 -5— =  —τ ; — 5—  =  η . (3.1.41)

ν  d p  J  τ ,ν  V  η δ μ  J t n  / τ

Thus, η2κ τ  is the derivative o f  the density n with respect to  its therm odynam ically 
conjugate potential μ. This form o f the compressibility is the one th a t makes the 
cleanest contact with m ore generalized susceptibilities to be discussed in Sec. 3.6.

7 Equations  o f  state

G eneralized forces and extensive param eters or their densities are related via 
equations o f  state obtained by the appropriate derivative o f  the therm odynam ic 
potentials. For example, the pressure as a function o f  Τ,  V,  and N  is obtained by 
differentiating F  with respect to  V

p ( T , V , N )  = ~ )  . (3.1.42)
d V  J t ,n

Since p is an intensive function o f  the extensive variables V  and N,  it m ust be a 
function o f  the density only since

p ( T , V , N )  = p ( T , b V , b N )  = p{T,n) ,  (3.1.43)

where the last expression was obtained by setting b =  V~x. A n alternative 
equation o f  state expresses the chemical potential as a function o f  n and T :

x 8 F \  d f \
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Fig. 3.1.3. Pressure as a function of density at different temperatures for a 
typical fluid.

N ote th a t Eq. (3.1.42) implies (3.1.44) and vice versa since —p =  f  — μη.
Fig. 3.1.3 shows a typical equation o f  state which follows the experimental 

observations for a typical fluid as a function o f  density. N ote tha t for each value 
o f  n, there is a unique value o f p a t fixed T.  A t low tem peratures, however, there 
are two possible values o f  the density for a given pressure. This corresponds to 
the coexistence o f  liquid and solid phases with the same pressure, tem perature 
and chemical potential. The phase diagram s for a “typical” system (say argon) 
as well as the quantum  systems He3 and H e4 are shown in Fig. 3.1.4. There is a 
line along which the liquid and gas phases coexist term inating in a critical point 
beyond which only a single value o f  the density is possible for a given pressure. 
A t high pressure, bo th  H e3 and He4 solidify. A t lower pressure, quantum  zero 
point m otion prevents solidification. In He4, there is a superfluid phase below 
about 4 K. There are also superfluid phases (in the millikelvin range) in H e3 not 
shown in the phase diagram.

The negative o f  the pressure as a function o f  μ  and T  can be expressed via 
Eqs. (3.1.38) and (3.1.44) as a m inimum over n o f  the function \ ν (μ,Τ,η)  =  
ί { Τ , ή ) - μ η · .

- ρ ( μ ,  T)  = [ f (T ,n)  -  μη]minn =  νν(μ, Τ , ή ) |minn. (3.1.45)

This form ula will be particularly useful in phenomenological treatm ents o f  the 
liquid-gas and liquid-solid transitions to  be discussed in the next chapter.

3.2 Statistical mechanics: phase space and ensembles

Therm odynam ics is an empirically based science tha t requires no knowledge of 
microscopic interactions. Statistical mechanics establishes a connection between 
the microscopic and macroscopic therm odynam ic descriptions o f  a system. This
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L i q u i d C r i t i c a l  
pt .

Fig. 3.1.4. Phase diagrams in the pressure-temperature plane for (a) a 
classical fluid such as argon, (b) He4, and (c) He3. Double lines represent 
discontinuous or first-order transitions and single lines represent continuous 
or second-order transitions

section will be devoted to the statistical mechanics o f  hom ogeneous fluids. In 
addition to  reviewing ensembles and partition  functions, it will establish notation, 
which will be used throughout this book in applications to m ore complex systems.

The state o f  a closed system consisting o f N  classical point particles in a 
d-dimensional space at time t is specified by the coordinates χ α(ί) and m om enta 
ρα(ί), a =  1,..., N,  o f  the N  particles, or equivalently by the vector R =  [χα(ί), ρα(ί)] 
in an Nd-dim ensional phase space. χ α(ί) and ρα(ί) evolve in time according to 
N ew ton’s laws along a trajectory in phase space. In  quantum  m echanical systems, 
R is an operator, and the state o f  the system is specified by an N-particle wave 
function. I f  the state o f  the system (classical or quantum  mechanical) is precisely 
known at some time ίο, its state at future times is, in principle, determ ined by its 
H am iltonian j f .  It is impossible, however, to  have complete knowledge o f  the 
state o f  a system consisting o f  1023 particles. In  practice, detailed knowledge o f 
only a few m acroscopic properties such as the volume or the energy is possible, 
and a statistical description is the only reasonable one.

In an isolated fluid, the internal energy E  is fixed. The H am iltonian 
depends on xa, pa, on the volume V,  and possibly on o ther externally controllable 
param eters, which will no t be considered at present. In  the absence o f  any 
o ther knowledge about the system, there is no reason to favor any state (i.e., 
point in phase space) with energy E  over any other. I t is, therefore, postulated 
th a t all points in phase space with a given energy are equally likely and that
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the m acroscopic properties o f  the fluid can be obtained by averaging over the 
ensemble o f  states with fixed energy. This is the microcanonical ensemble. In  this 
ensemble, the probability o f  occurrence o f  a given poin t in phase space is

Pmicro(R)---------- ^ ( X v )  ’ (111)
where ω(Ε, V ) is the density o f  states chosen so tha t the sum o f  Pmicro over all
states R is unity:

ω(Ε, V)  =  Tr<5 [E -  (R, V)]. (3.2.2)

In quantum  mechanical systems, δ(Ε — J f )  is an operator or m atrix called the 
microcanonical density matrix. The trace in Eq. (3.2.2) is over all states o f  the 
system. In  classical systems, it is an integral over phase space:

1 -n- f  ddp«ddx α
=  7TT Π  J  hm  ’ (3.2.3)

where h is Planck’s constant. The factor o f  (NlhdN)~l arises when the classical
limit o f  the quantum  mechanical trace operation is taken. It is, strictly speaking, 
no t necessary in classical statistical mechanics for a fixed num ber o f  particles, but 
is needed for a proper definition o f  the entropy and evaluation o f  the chemical 
potential. The absence o f  this term  leads to the G ibbs paradox in which the 
entropy o f a classical gas is no t extensive.

The entropy o f a system in equilibrium is simply the logarithm  o f the num ber 
o f  configurations available a t energy E,

S =  In[ω(Ε, V)AE],  (3.2.4)

where AE  is some energy interval representing, for example, the precision with 
which the energy o f  the system can actually be determined. Eqs. (3.2.4) and (3.2.1) 
provide a statistical mechanical interpretation o f  the second law. There are more 
configurations available to  a system whenever constraints are removed. Thus the 
entropy increases. The m ost likely state o f  the system is one which occurs with 
m axim um  probability. I f  constraints are removed, the new equilibrium will have 
a higher entropy and thus higher probability than that with the constraints in 
effect.

The m icrocanonical ensemble is no t the m ost useful ensemble for doing cal
culations because it involves difficult sums over states with constrained energies. 
Two other ensembles are far more useful. In the canonical ensemble, the density 
m atrix is e~P*,  where β =  T _l (we use units in which the Boltzmann constant 
/eg is equal to one) and the probability m atrix is

F‘ =  % k v f S* ·  < 3 ' 2 5 )

where

Z N(T,  V) = Ί τ έ ~ β*

=  J  d R e - W  (classical) (3.2.6)
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p gc =  ~  ( 3 ·2 ·7 )

is the partition  function. In the grand canonical ensemble, the num ber o f  particles 
is allowed to vary, and the probability o f  a given state is 

1

Ξ( τ7μ ,  v y
where

Ξ{Τ ,μ ,  V)  =  Τ π Γ ^ - ^  (3.2.8)

is the grand partition  function. The trace is over all states with all possible 
num bers o f  particles. For classical systems,

Ξ ( Τ , μ , ν )  =  γ ^ β ^ ΝΖ Ν, (3.2.9)
ίv

where it should be rem em bered th a t there is a factor o f  (N !) - 1  included in the 
definition o f Zjv. In  neither the canonical nor the grand canonical ensemble is 
the energy fixed.

The average energy is the average o f  the H am iltonian over the ensemble:

(E) =  ( j t )  =  T rP  J f ,  (3.2.10)

where P  is either Pc or Pgc. (E } can be obtained in either ensemble by differenti
ating the partition  function with respect to β,

<£} =  -
1 d Z N

Z N δβ
_  d In Zjv

n , v  β β N , V

_  όΠηΞ

βμ,ν

(3.2.11)

(3.2.12)
βμ,ν

Fluctuations in can similarly be calculated:

(E2) =  — T r e " ^  2 =  —  — f  (3.2.13)
Z n  Z n  op

and

<(<5£)2} =  (E2) -  (E)2 =  =  - ® .  (3.2.14)

Similar expressions apply for the grand canonical ensemble. In the grand canon
ical ensemble, the num ber o f  particles is no t fixed. The average num ber o f 
particles and the fluctuation in the num ber o f  particles are, respectively,

(N)  -  ^ Τ π Γ β(·* -μΝ)Ν,  (3.2.15)

and

((δN ) 2} =  ( N 2) -  ( N ) 2 =  ^ T r ε- β[* ~ μΝ\ Ν  -  (N))2. (3.2.16)

These quantities can be expressed as derivatives o f  the logarithm  o f the grand 
partition  function with respect to βμ.  Because the particle num ber is conserved, 
the operator N  com m utes with the H am iltonian J f :  [J^,N]  =  0. This implies

6-β(*Τ-μ1V) ε-β*?£βμΝ̂  (3.2.17)

< " > - w ·  (3' 218)
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and

(3.2.19)

The relation in Eq. (3.2.18) would be valid w hether or not N  com m uted with J f .  
Eq. (3.2.19) on the o ther hand would not be correct if  N  did no t com m ute with 
Jif. We will return to the generalizations o f Eq. (3.2.19) to  variables th a t do not 
com m ute with Jif in C hapter 7.

Both (£} and (N)  are extensive quantities th a t grow with the size o f the sample. 
It is clear from  Eqs. (3.2.14) and (3.2.16) that the fluctuations in E  and N  are 
also extensive quantities. Therefore, the relative fluctuations of the two quantities 
go to zero as the square root o f  the num ber o f particles: ((<5£)2}1/2/ (E) ~  N ~ 1/2 
and ( (5N)2) 1/2/{ N )  ~  {N)~l/2 so that, in large systems, the distinction between 
the fixed energy o f the m icrocanonical ensemble and the average energy o f the 
canonical ensemble is unim portant. The energy E  o f the m icrocanonical ensemble 
o r the average energy (E)  o f the canonical and grand canonical ensembles is the 
therm odynam ic internal energy. In the future, we will only distinguish between 
(E) and E  when necessary.

The partition  functions Z N and Ξ are related to the therm odynam ic potentials 
F  and s f  introduced in the preceding sections:

The first o f these results is m ost easily obtained by recognizing tha t co(E)e is 
a strongly peaked function in the vicinity o f £  =  (£}:

Similar expressions apply for Ξ.

The heat capacity and compressibility are related, respectively, to fluctuations 
in the energy and particle num ber,

Thus, we see tha t the positivity o f  Cy  and k j , which emerged as a condition for 
equilibrium in the therm odynam ic analysis o f the preceding section, emerges in 
a statistical mechanical analysis as a result o f the positivity o f the variances of 
random  variables.

F ( T , N ,  V) =  - T \ n Z N(T , V ) ,  

^ ( Τ , μ ,  ν) = - Τ \ η Ξ ( Τ , μ ,  V).

(3.2.20)

(3.2.21)

(3.2.22)

(3.2.23)

and

(3.2.24)
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3.3 The ideal gas

O ne o f the simplest statistical systems is the gas o f non-interacting particles o f 
mass m in a volume V. The H am iltonian for this system consists only o f the 
kinetic energy,

• ^  =  ^ η  =  Σ | ^  t 3·3·1)
a

plus the infinite potential barriers confining the particles to  volume V. The 
partition  function is easily evaluated as

* - £ (  Γ
where

λ  (2 nm T) V2 (3 1 3 )
is the therm al wavelength o f a particle. The Helm holtz free energy density follows 
from  Eq. (3.2.20)

/  =  Τη[\η{ηλ3) -  1], (3.3.4)

The internal energy, chemical potential, pressure, and entropy follow from  Eqs.
(3.2.11), (3.1.44), (3.1.42), and (3.1.16):

E  =  \ N T ,  (3.3.5)

μ = Τ \ η ( η λ 3), (3.3.6)

p = Tn,  (3.3.7)

S  =  N (3.3.8)

Eq. (3.3.7) is the fam iliar equation o f state for an ideal gas, often written as 
P V  = N k B T  (where we have taken the Boltzm ann constant kB as 1). Finally, the 
specific heat at constant volume and isotherm al compressibility are

C v = \ n , (3.3.9)

kt  =  \  =  - ·  (3.3.10)n T  p
There are a num ber o f  points to  note about Eqs. (3.3.5) to  (3.3.10), which 

are classical results th a t we expect to  break down as quantum  effects become 
im portant. The im portan t unitless variable is ηλ3, the num ber o f particles in 
a therm al volume I 3. The density can be considered small as long as this
num ber is small. W hen ηλ3 becomes o f order one o r more, quantum  effects
becom e im portant, and the classical approxim ation is no longer valid. The high 
density behavior o f a non-interacting gas o f  particles depends critically on the 
statistics o f the particles. The high density or low tem perature behavior o f a 
non-interacting Fermi gas is controlled by the localization kinetic energy imposed
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by the exclusion principle. A finite fraction of the particles in a non-interacting 
gas of Bose particles will condense into a single macroscopic quantum  state at 
low tem perature giving rise to  the phenom enon o f superfluidity. A superfluid 
phase exists in interacting systems as well as indicated in the phase diagram  of 
Fig. 3.1.4.

The internal energy o f a non-interacting gas is T /2  times the num ber o f degrees 
o f freedom (the “equipartition” theorem). It depends only on the tem perature 
and not on the density o f particles. Similarly, p / T  depends only on the density 
and no t on tem perature. These simple behaviors are modified in  the presence of 
interactions among the particles.

3.4 Spatial correlations in classical systems

In  the preceding chapter, we saw tha t a great deal o f inform ation about condensed 
systems is contained in  spatial correlation functions o f the density and other 
observable parameters. In addition, these correlation functions can be measured 
in  some detail by the appropriate experiment, often a scattering experiment. 
In this section, we discuss how spatial correlation functions in  a classical fluid 
can be calculated in  the context o f statistical mechanics. We will delay until 
C hapter 7 a discussion o f  similar correlations in quantum  systems where the 
noncom m utativity o f the local density operator with a H am iltonian and with 
itself is im portant.

In  the preceding section, we found tha t the average energy and average particle 
num ber in the grand canonical ensemble could be obtained by differentiating the 
partition  function with respect to β  or βμ.  I t is extremely useful to be able to 
generate the spatially dependent density and its correlation functions by a similar 
process. In order to do so, it is necessary to introduce external potentials that 
depend on position. Let u be an externally controlled one-body potential. The 
potential energy m ust be augm ented by a term

where -^kin is the kinetic energy and U is the potential energy associated with 
interactions am ong the constituent particles o f the fluid. If  w is changed by an 
am ount <5w(x), l /ext changes according to

(X

(3.4.1)

so tha t the total H am iltonian becomes

d f  — ^ k in  +  u  +  L/ext > (3.4.2)

(3.4.3)

The partition function can be expanded in powers o f Su:
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Z N [T, V,u(x)  +  <5w(x)] =  Tre ^H [l +  /  άάχβδιι(χ)η(χ)

(3.4.4)

or

(3.4.5)

where it is understood th a t is evaluated at 5u =  0. The partition  function 
Z N [T,V,u(x)]  is a function o f w(x) at every po in t in space, i.e., it is a func
tion o f the function w(x). A function o f  a function is called a functional, and 
Z N [T, V,  u(x)] is a functional o f u(x).

A functional R[t(x) +  f/(x)] o f a function i(x) can be expanded in a Taylor 
series in η(χ):

δ!1/δί(χ)  is the functional derivative o f R  with respect to the function i(x). N ote 
tha t each term  in the expansion depends on <5i(x) at all points x, indicating that 
functional derivatives are merely the continuum  generalization o f partial differ
entiation o f a function o f m any variables. For further details about functional 
differentiation, see the appendix to this chapter.

The coefficient o f Su(x)  in the integrand in the second term  in the expansion of 
Eq. (3.4.5) is the average density (n(x)}, and the coefficient o f <5w(x)<5w(x') in the 
th ird  term  is the density-density correlation function C„„(x, x') =  (n(x)n(x')). Using 
the Eq. (3.4.5), we can now identify the density and density-density correlation 
function as functional derivatives o f Z N [T, V,  u(x)] with respect to  u(x):

The fluctuation in n(x) is determ ined by the second derivative o f lnZjv[w(x)] with 
respect to βιι{χ):

(3.4.6)

and

(3.4.8)

T , V , N

(3.4.9)

where S„„(x, x') is the Ursell function defined in Eq. (2.3.5).
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To gain familiarity with the use o f functional derivatives (whose properties are 
reviewed in the appendix), it is useful to  derive the pair distribution function 
for the noninteracting classical gas from  Z N [T,  F,w(x)], which can easily be 
evaluated,

z n  =  (3.4.10)

where

q

Thus we have

=  J  “^ °  V. (3.4.11)

and
<" W > - N | ^ = N 9 ‘ V -,X ’ “= 0 7  <3A 12>

S„„(x, x ') =  N q - ' e ^ S i x  -  x ') -  N q - 1eMx]etSu{x']

=  («(x))^(x -  * ') ~  ^  («(*)) («(x '))

N̂ °  (n(x))<5(x — x'). (3.4.13)

If  m ( x )  is nonzero and nonuniform , the equilibrium density is nonuniform . Ex
ternal nonuniform  potentials provide a natural way to discuss inhomogeneous 
systems. It should be noted that Eq. (3.4.13) with the aid o f Eqs. (2.3.5) and
(2.3.11) yield the pair distribution function for a noninteracting gas:

g(x ,x ') =  ( l - N - 1 ) N̂ ° ° l .  (3.4.14)

Thus, the formal m anipulations presented here yield the result discussed in the 
preceding chapter that the pair distribution function is unity in the noninteracting 
limit.

The introduction o f  an external inhom ogeneous potential is in m any ways 
simpler and m ore instructive in the grand canonical ensemble. The external 
potential, like the chemical potential, couples linearly to the density, and one can 
interpret the external potential as a shift in the chemical po ten tia l:

μ -► μ(χ) =  μ +  w(x). (3.4.15)

The grand partition function is now a functional o f μ(χ),

Ξ[Τ,  Κ,μ(χ)] =  T rexp —β — J  άάχμ(χ)η(χ) (3.4.16)

Following the same steps as for the canonical ensemble, we obtain 

/H(x)) =  *1ρ ΞΜ »)] =  _δ̂[μ(χ)]K ( ’’ βδμ(χ) δμ(χ) ( }
and

= <3A18> όμ(χ)δμ(χ) ομ(χ')
The last expression can be used to derive an im portant relation between the Ursell 
function (and hence the structure factor) and the compressibility. In Eq. (3.4.17),
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(n(x)} is a functional o f μ(χ) and can be expanded in a Taylor series,

(n(x)} -  (n(x))0 =  j άάχ ' ^ ^ ^ - δ μ ( χ ' )  + ...

=  J  ddx ^ S nn{x, χ')<5μ(χ') + . . . , (3.4.19)

where (n(x))o is the density at <5μ(χ) =  0. The compressibility is related to the 
derivative o f n with respect to  a spatially constant chemical potential. I f  <5μ is 
spatially constant, then <5μ(χ) =  δμ  is independent o f  x. Then, using Eq. (3.1.41) 
and Eq. (3.4.19), we obtain

This is a very im portan t and general equation relating the derivative o f  the density 
o f an extensive param eter with respect to  its conjugate field to  the zero wave 
num ber fluctuations o f the density o f the same param eter.

We close this section with the observation th a t a Helm holtz free energy func
tional o f the density n(x) can be obtained via a generalized Legendre transform a
tion on the grand potential jrf[p(x)] with a spatially varying chemical potential. 
Let

This is the generalization o f  the equation o f state [Eq. (3.1.44)] to  spatially 
inhom ogeneous situations. If  μ(χ) is spatially uniform, F  can be expressed 
as the volume integral o f  a local free energy functional o f (n(x)} ξ  (n), F  =  
f  ddx f ( T , ( n ) ) ,  and Eq. (3.4.22) reduces to Eq. (3.1.44). M ore generally, as we 
shall see in subsequent chapters, F  can depend on (n(x)} at different points 
in space. The concept th a t free energies can be functions o f spatially varying 
densities o f extensive variables is a very im portan t one tha t has applications 
to m any problems in condensed m atter systems. Its generalizations to  m ore 
com plicated order will be used extensively in discussions th a t follow.

The expression [Eq. (3.1.45)] for the pressure as a m inim um  over n o f the 
function f ( T , n )  — μη  has a straightforw ard generalization to  situations in which 
(n(x)} is allowed to vary in space. Let

d(n)
(iη)2κ τ  = β  J  ̂ x S m(x, x ') =  j5S„„(q =  0 ). (3.4.20)

δμ

F[T,  V,  (n(x)}] =  s / [ T ,  ν ,μ(χ)]  +  J άάχ(η(χ))μ(χ),  (3.4.21)

then

(3.4.22)

W [ T ,  ν ,μ(χ ) ,  (n(x)}] =  F[T,  V, (n(x)}] -  J  Λ (η (χ ) )μ (χ ) . (3.4.23)

Then, when μ(χ) =  μ is independent o f x,

ρ(μ, T)  =  -  Hm ^  W  [T, V, μ, (n(x))]mi„ („(x)) 

=  - ^ ( Τ , Υ , μ ) . (3.4.24)
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This relation will be used in future chapters to  discuss the equations o f  state of 
fluids and solids.

3.5 Ordered systems

In  the preceding sections, we have discussed homogeneous, isotropic fluids. The 
only macroscopic variables needed to  characterize the therm odynam ic state of 
fluids are their volume, particle num ber, and internal energy. As we saw in 
C hapter 2, however, condensed systems exhibit a wide variety o f rotational and 
positional order no t described by the above variables. Clearly, a complete descrip
tion o f ordered phases requires the introduction o f new variables quantifying the 
degree o f  order and a modification o f therm odynam ics and statistical mechanics 
to  describe the effects o f these variables on energies and entropies.

The simplest order to  describe is magnetic order. Consider an ideal gas in 
which each particle a carries a spin sa and an associated m agnetic m om ent μ ^ .  
In the presence o f an external magnetic field h, the gas will develop a magnetic 
m om ent Μ  =  (]Γα proportional to the total num ber o f particles. It is an 
extensive variable whose density is the intensive magnetization,

(m(x)} =  ( Σ  μ*ε<χδ(χ ~  x«)>. (3.5.1)
a

This equation shows that the m agnetization m(x) is an operator analogous to the 
density operator [Eq. (2.3.1)]: particle a contributes to m(x) only at its position 
Xa. The integral o f  m(x) over all x is the total magnetic moment, ju s t as the 
integral o f  n(x) over all x is the total num ber o f  particles. If  the m agnetization is 
spatially uniform, then (m(x)} =  M /7 .  The internal energy and entropy clearly 
depend on the variable (m), and it m ust be included along with the density for a 
complete therm odynam ic description o f the classical gas o f  magnetic particles.

The interaction between spins in the ideal gas ju st discussed is essentially zero 
(ignoring dipolar forces), and the m agnetization is nonzero only in the presence 
o f an external aligning magnetic field. If  there are interactions am ong spins, it is 
possible to  have a nonzero (m) even when h is zero. To see how this can come 
about, it is useful to  consider a model in which spins confined to sites on a regular 
periodic lattice (i.e., the spin positions xa are confined to  sites Ri on a periodic 
lattice) interact via a nearest neighbor exchange interaction (see C hapter 2). This 
model is called the Heisenberg model (Heisenberg 1928) o f ferromagnetism, and 
its H am iltonian can be expressed as

H eis =  - 2 J  ^  S i · Si-, (3.5.2)
<u>

where the sum is over nearest neighbor sites on the lattice. W hen h is zero, the 
spins represent internal degrees o f freedom, which will seek configurations that, 
a t constant T, will minimize the Helm holtz free energy F = E — T S .  A t high T,  F
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Fig. 3.5.1. (a) The paramagnetic state of the Heisenberg model with zero 
magnetization, (b) The ferromagnetic state of the Heisenberg model with 
nonzero magnetization. The direction of the magnetization relative to the 
lattice is not fixed in the Heisenberg model, whereas in the Ising model it 
must point either up or down.

is clearly minimized by maximizing the entropy. The maximally disordered state 
has the highest entropy, implying th a t the equilibrium  state a t high tem perature is 
the paramagnetic state with no average alignm ent o f spins, i.e„ no m agnetization 
(see Fig. 3.5.1). A t low tem perature, the internal energy dom inates over TS,  
and the state tha t minimizes F  is one th a t minimizes E.  The ground states o f 
JifHeis are clearly states in which all o f  the spins are aligned along a com m on 
axis. Thus, states which minimize E  have a nonvanishing magnetization, and 
the low tem perature equilibrium  phase is the ferromagnetic phase with nonzero 
average spin (s) =  (si) independent o f site 1 or equivalently a m agnetization 
(m) =  vo_ Vs(s), where vo is the volume o f a unit cell. A t some tem perature Tc, 
there is a phase transition from  the entropy dom inated param agnetic state to  the 
energy dom inated ferrom agnetic state. The m agnetization (m) is called the order 
parameter o f the ferrom agnetic phase.

The Heisenberg H am iltonian is invariant with respect to  arbitrary  ro tations of 
every spin S], Thus there is no preferred direction for the m agnetization in the 
ferrom agnetic state. In  order to  obtain an unam biguous statistical mechanical 
characterization o f the ferrom agnetic state with (m) pointing along a given 
direction, it is necessary to add an external m agnetic field h. The H am iltonian 
describing the interaction o f spins with a spatially varying external field h(x) is

ext =  ''y  ̂fJ.sSα * h(Xg) =  ^  ] Ms® 1 * h (R i)
α 1

=  — J  ddx h(x) · m(x). (3.5.3)

The partition  function for a lattice o f  N  spins in the presence o f h becomes

Z N [T, h(x)] =  (3.5.4)
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(a) (b)

Fig. 3.5.2. (a) The magnetization as a function of temperature for the 
Heisenberg model. It grows continuously from zero below the ferromagnetic 
critical temperature Tc. (b) Phase diagram for the Heisenberg ferromagnet in 
the h — T  plane. The line h =  0, T  < T C is a coexistence line where all 
directions of (m) are energetically equivalent. An approach to the 
coexistence from nonzero values of h will pick a particular direction of (m).

where Jif is the to tal h-independent part of the H am iltonian (which for the
Heisenberg model would simply be J^Heis)· The equilibrium m agnetization in the 
therm odynam ic limit is

(m [T,h(x),x]} =  lim 1 T r [ e ~ ^ ~ /  *'*»>·■"<»» m(x)]
N—*oo Zjv L1 > *HX)J

=  lim (mjv[T,h(x),x]}. (3.5.5)
N - + c o

In  the limit N  —► oo, (m (T,h,x)} will align along the spatial uniform  field h 
even for infinitesimally small fields. A zero-field ferromagnetic state with a given 
direction of (m) can thus be obtained by taking the limit h —► 0 after the 
therm odynam ic limit:

(m(T)} =  lim lim (mjv(T,h)). (3.5.6)
h— >0 N -+oo

(The spatial index x has been suppressed because h and thus (m) are spatially 
uniform.)

The phase diagram  for a Heisenberg m agnet in the h — T  plane for a field 
h =  he along a particular direction specified by the unit vector e is shown in 
Fig. 3.5.2b. For T  less than the critical tem perature Tc, there will be a spontaneous 
m agnetization (m(T)} defined by Eq. (3.5.6) aligned parallel to e for h —► 0+ and 
antiparallel to  e for h —► 0- . A t h =  0, there is a coexistence line (analogous to  the 
liquid-gas coexistence curve) along which all directions o f (m) are energetically 
equivalent. The coexistence line term inates at the critical point, T  = Tc, h =  0. 
Along the coexistence line, there is no reason to  choose one direction o f (m) 
over another, and an average over all possible directions o f (m) will yield a zero 
m agnetization. The m agnitude o f (m), or equivalently (m)2 =  (m) · (m), however, 
has the same value whether a particular direction or an average over all possible
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directions o f (m) is taken. Thus, an alternative characterization o f  the existence of 
ferrom agnetic order is th a t (m)2 be nonzero. A nother property tha t we intuitively 
associate with an ordered state is spatial correlation or “long-range o rder”. For 
the ferrom agnet, we expect tha t if we know the direction o f the spin at one site 
we will find the spins a t distant sites aligned in the same direction. In contrast, 
for the disordered or param agnetic state, we suspect tha t the orientation o f a spin 
at one site tells us little about the orientation o f spins ju st a few sites away. The 
spatial correlations are quantified by the spin-spin (m agnetization-m agnetization) 
correlation function,

Cmm(x, x') =  (m(x) · m(x')). (3.5.7)

In  the param agnetic phase, Cmm(x,x') dies exponentially to zero in the large 
separation limit, |x — x'| — ► g o . In  the ferrom agnetic phase, it tends to (m)2 ju s t 
as Cnn for a fluid [Eq. (2.3.5)] tends to  (n)2. Thus,

Cmm(x,x') |X (m)2, (3.5.8)

and we see tha t the large-separation behavior o f  a correlation function determines 
the existence o f ferrom agnetic order. A nonvanishing o f the m agnetization and 
long-range order go hand  in hand.

The partition  function defined in Eq. (3.5.4) has explicit dependence on the 
num ber o f particles N  bu t no t on the volume o f the sample, which m ight 
change, for example, if the lattice param eter changed. M ore generally, one should 
consider a generalization Z N [T,  F , h(x)] o f the partition  function o f the canonical 
ensemble th a t is a function o f  T,  N,  V,  and h(x) or o f the partition  function 
Ξ [Τ , V,  μ(χ),Ιι(χ)] o f the grand canonical ensemble tha t is a function o f T,  V, 
μ(χ), and h(x).

In w hat follows, we will assume th a t the num ber o f particles and volume 
rem ain fixed and suppress any explicit reference to  them  in partition  functions 
and free energies. Z [ T ,  h(x)] in Eq. (3.5.4) has exactly the same form  as the grand 
canonical partition  function, Eq. (3.4.16), with h(x) replacing the spatially varying 
chemical potential. Therm odynam ic potentials as a function o f h(x) or (m(x)) 
and correlation functions o f m(x) follow by a straightforw ard generalization of 
the discussion o f Sec. 3.4. The m agnetic therm odynam ic potential associated with 
Z [T ,h(x)] is

j /[T ,h (x )]  = —Tl n Z[ T , h ( x ) ] .  (3.5.9)

The m agnetization [Eq. (3.5.5)] is obtained by differentiating In Z  with respect to 
h:

^  = =  (3-5' 10) 
where (m,·) and hi are respectively the ith Cartesian com ponents o f  the vectors 
(m) and  h. The potential s i  obeys the differential therm odynam ic relation,

d s /  =  - S d T  -  J  ddx (m(x)> · <5h(x). (3.5.11)
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The generalized susceptibility measuring the change in (m*) in response to  an 
external field at x ' is

* / > , * ') =  <3.5.n»

In  classical systems, the order param eter correlation function is the derivative of 
(mj(x)} with respect to fihj{x') and is, therefore, T  times χ,·;·(χ,χ '):

G,7(x, x ') =  ([m;(x) -  (nii(x))] [m; (x') -  (m;(x'))]), 

ξ  (Smi(x)SmJ(x1)),

-  <3 ·5 · 13 1

This equation is the analog o f Eq. (3.4.18) for the Ursell function o f a fluid. 
W hen we consider m any fields, and when there is a possibility o f  ambiguity in the 
interpretation of the subscripts i j , we will use the notation  rather than  G;; 
for the <5m,(x) —<5m; (x') correlation function. The uniform  m agnetic susceptibility 
is the derivative o f  the m agnetization with respect to  the external magnetic field. 
I t is the analog o f  the compressibility in fluid systems and is proportional to  the 
q =  0 limit o f the Fourier transform  of G,; (x. x '):

(3'5' 14)
This equation should be com pared with Eq. (3.4.20) relating •W q  =  0 ) to 
the compressibility. Because the m agnetization is a conserved quantity (i.e.,

/  mddx  =  0), Eq. (3.5.14) is valid for both  classical and quantum  mechanical
systems even though Eq. (3.5.13) is not valid for quantum  mechanical systems. 
This point will be discussed in m ore detail in C hapter 7.

In m any cases we will prefer to  express therm odynam ic quantities in terms 
o f the order param eter (m(x)) ra ther than in term s o f the field h(x). The 
therm odynam ic potential that is a natural function o f (m(x)) is obtained from 
.i/[T ,h(x)] by a Legendre transform ation:

F[T,  (m(x)}] =  j?/[T,h(x)] +  J  /x h (x ) '( m ( x ) ) .  (3.5.15)

We will usually refer to  F  as the free energy. I t satisfies the differential relation

dF = —S d T  +  J  ddxh(x) · <5(m(x)}. (3.5.16)

The m agnetic equation o f state is, therefore,

=  Λ,·(χ). (3.5.17)
<5(m,-(x)}

W hen (m(x)} =  (m) is spatially uniform, F, like the Helm holtz free energy as a 
function o f density, can be w ritten as a volume integral o f a free energy density 
tha t is a function o f  (m),

F = J  ddx f [ T ,  (m)]. (3.5.18)



132 3 Thermodynamics and statistical mechanics

In  this case, the equation o f state becomes

^  (3.5.19)
δ {mt)

This is the analog o f Eq. (3.1.44). I t is clear now how the appearance o f  order 
is described mathematically. W hen h is zero, the equilibrium  state is one which 
minimizes / .  I f  solutions to  Eq. (3.5.19) for h =  0 with nonzero (m) exist, there 
can be spontaneous order provided the free energy o f the state with nonzero (m) 
is lower than  th a t with (m) =  0 .

The m agnetization correlation function can be obtained by differentiating s i  
with respect to J?ftj(x ) as indicated in Eqs. (3.5.12) and (3.5.13). Its inverse can 
be obtained directly by differentiating F  with respect to  (m,(x)}. To see this, we 
differentiate (m;(x)} with respect to  (mk(x")) to obtain a delta function,

i S r t  =  W ( x - x >
r ^ s f a w )  shjjx')J X Shj(x>) S(mk(x")Y  

where the last expression follows from  the chain rule for functional differentia
tion and where we use the sum m ation convention on repeated indices (i.e., the 
appearance o f the index j  twice in this expression implies tha t we sum over its 
values, therefore including term s from  hx,hy and hz). The inverse /y '( x ,x ')  o f 
Xij(x, x ') is defined via

ddx'xij(x , χ ' ) χ ^ ( χ ' ,  x") =  SikS(x -  x"). (3.5.21)

C om paring Eqs. (3.5.20) and (3.5.21) and using Eqs. (3.5.12) and (3.5.17), we find
/■

^ '( x )  _  S2F
X̂,X  ̂ S(mj(x’)) <5(mf(x))<5(nty-(x')>' (3.5.22)

We will find in future chapters tha t Eq. (3.5.22) is the m ost efficient way o f 
determ ining χ ί;·(χ,χ'). Relations between ordered systems and the fluids are 
reviewed in Table 3.5.1.

3.6 Symmetry, order parameters, and models

In C hapter 2, we explored some o f the vast variety o f ordered and disordered 
structures th a t are found in nature. In  the preceding section, we discussed 
how therm odynam ics and statistical mechanics can be modified to  provide a 
description o f a particular ordered phase: the ferrom agnet. In this section, we 
will outline a general approach to  the statistical and therm odynam ic treatm ent of 
phases with arbitrary  types o f order. We will then introduce some simple model 
H am iltonians th a t will provide a basis for m uch o f our study o f  broken symmetry 
and order.

The dynam ical properties o f any system o f particles a n d /o r  spins are deter-



Table 3.5.1. Comparison o f  statistical quantities o f  fluids and magnetic 
systems.

Grand partition <— ► Magnetic partition

Ξ [Τ , ν , μ ( χ ) ] =  Ϊ
T Te- t < W - f  άάχμ(χ)η(χ)] f

μ

n

j/[T ,h(x)] = - Τ Ι η Ξ [ Τ , ν , μ ( χ ) ]

(n(x)) =  - δ^ [μ (χ ) ] /δ μ (χ )

S„„(x,x') =  (δη(χ)δη(χ'))

0S„„(x,x') =  δ(η(χ))/δμ(χ’)

δ(η)/δμ  =  (η)2κ τ \
=  j?S„„(q =  0) j

F[T,V,(n(x))] = ^ [ T , V ^ ( x ) ]  \
+ J  άάχμ(χ)(η(χ)) j

<5F/<5(n(x)) =  μ(χ)
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mined by a H am iltonian Jif, which is invariant under all transform ations in 
some group For example, the H am iltonian o f an ideal gas is invariant under 
time translations, time reversal, and the Euclidean group consisting o f arbitrary 
translations, rotations and reflection. The Heisenberg H am iltonian [Eq. (3.5.2)] is 
invariant under time translations, time reversal, and under the simultaneous ro ta
tions o f all spins through an arbitrary angle about an arbitrary axis. The group 
is the symmetry group o f the H am iltonian . In general, the high-tem perature, 
entropy-dom inated equilibrium  phase is invariant under the same group as its 
H am iltonian. This means that the only nonzero correlation functions and therm o
dynam ic averages o f operators are those that are unaffected by operations in 
Thus, (m) is zero, and Cm,mj(x ,x ') =  |^ y C mm(|x — x '|) in the param agnetic phase. 
O rdered phases are distinguished from  disordered phases by the appearance of 
therm odynam ic averages (φ α} o f operators φ α, which are no t invariant under 
These expectation values are called order parameters. (Sometimes the operators 
φ α rather than  their average values are called order parameters.) The order 
param eter for the Heisenberg m agnet is the m agnetization (m). It is invariant 
under rotations about an axis parallel to itself bu t changes under rotations about

J  Zw[T,h(x)] =

h

m

j/[T,h(x)] =  - T l n Z w[T,h(x)] 

(m,(x)> =  -δά?/δΙtf(x)

Gij(x,x’) =  (<5m,(x)(5m^(x')> 

pGjj(x,x') =  <5(mi(x))/<5fy(x')

(  Xu =  d(mj)/dhj 
\  =  lim,^o 0Gy(q)

J  F[T , (m(x))] =  j /[T , h(x)]
|  + f  ddxh(x) · (m(x)>

<5F/<5(mi(x)) =  hi(x)
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all axes perpendicular to  itself. Thus, the ordered phase, i.e., its operator averages 
and correlations functions, is invariant under only a subgroup o f IS even though 
the H am iltonian rem ains invariant under the full group The ordered phase, 
therefore, breaks the symmetry o f the H am iltonian; it is a broken symmetry phase.

A com plete description o f an ordered phase requires a specification o f how 
order param eters (φα) transform  under the group <&. In  the case o f  the ferro- 
m agnet, the group ^  is the group o f rotations. W ith each ro tation  g e  there 
is an associated 3 x 3  m atrix U,j(g) such tha t (m,) —► l / iJ(g)(mJ) under g, i.e., the 
order param eter (m) transform s under a three-dim ensional representation o f the 
ro tation  group. In  the general case, the order param eters (φ α}, a =  1,..., n. will 
transform  under an n-dimensional representation o f the group associated with 
each g g ^ ,  there is a m atrix  Tab( g) such th a t {φα} —► Tab{g)^b)-  The theory of 
representations o f groups in term s o f  m atrices is beyond the scope o f  this book. 
We note, however, th a t any set o f order param eters (φ α} th a t transform s under 
some representation o f  can be decom posed into disjoint subsets tha t do not 
mix under the operations o f  Each o f these sets consists o f  fc/ elements (φ'α) tha t 
transform  am ong themselves under a ki -dimensional irreducible representation of 

It is generally advantageous to describe ordered phases in term s o f order 
param eters th a t transform  under the irreducible representation with the lowest 
possible dimension.

The operations o f the group in the ordered phase can be viewed in a 
different way. If  the ordered phase breaks a symmetry, then there are two or 
m ore equivalent m inim a in the free energy representing phases tha t can coexist 
in equilibrium. Each phase is characterized by a particu lar value o f the order 
param eter. Thus, transform ations o f the order param eter induced by elements of 

represent transform ations between different equivalent equilibrium  phases. 
Once the order param eters φ α have been identified, the therm odynam ics and 

statistical mechanics o f  the ordered phase can be developed in a m anner exactly 
analogous to  tha t o f  the preceding section. First, introduce fields ha(x) conjugate 
to  φ α(χ) by introducing the external H am iltonian,

and defining the partition  function Z [ T , h a(x)] and associated therm odynam ic 
potential s i  =  — T \ n Z [ T , h a(x)]. Then, Legendre transform  to obtain  the free 
energy F[T,  (φ α( \) )1

Broken symmetry plays a very im portan t role in condensed m atter physics. As 
we discussed in C hapter 2, high-tem perature liquid and gas phases are invariant 
under the Euclidean group and under spin rotations if  particles carry spin. As 
tem perature is lowered, there are sequences o f phase transitions, each o f  which 
generally leads to a lowering o f symmetry. The symmetry group relevant to 
m ost phase transitions is tha t o f  some partially ordered state ra ther than  the 
full Euclidean group. The num ber o f possible symmetry changes is quite large.

(3.6.1)
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There are, for example, 230 nonm agnetic space groups, and symmetry breaking 
transitions between almost any pair o f these groups is possible. Though each 
o f  these phases and their associated transitions differ in detail, they share m any 
properties in common, and it is useful to study phases and phase transitions 
associated with a few very simple groups.

Before introducing the groups tha t will be o f  greatest interest to us, it is useful 
to  distinguish discrete groups from  continuous groups. Discrete groups, such as 
the symmetry group o f a cube, have a countable and, for our purposes, usually 
a finite num ber o f elements. Continuous groups, such as the ro tation group, 
have an uncountable continuum  o f elements. As we shall see again and again in 
the following chapters, static and dynamic properties and the nature o f defects 
o f ordered phases depend critically on whether they have a broken discrete or 
continuous symmetry. I t is also useful to  distinguish between global and local 
symmetries. A H am iltonian has a global symmetry if it is invariant with respect to 
spatially uniform  group operations, i.e., to  operations which treat all constituents 
equally. A H am iltonian has a local symmetry if  it is, in addition, invariant under 
operations applied independently to  different points in space. The Heisenberg 
H am iltonian has global bu t no t local symmetry. I t is invariant with respect to 
simultaneous rotations o f  all spins, bu t no t with respect to independent rotations 
o f  individual spins. Local symmetries are associated with gauge symmetries 
such as tha t o f electromagnetism. Virtually all o f the symmetries o f  interest in 
condensed m atter physics are global symmetries, the only notable exception being 
the local gauge symmetry of a superconductor.

1 Discrete symmetries

The simplest discrete group is the group Z 2 consisting only of two elem ents: the 
identity and an element whose square is the identity. Realizations o f this group 
include the group o f reflections about a plane, time reversal, and the integers 
under addition m odulo 2. In  condensed m atter physics, H am iltonians th a t are 
invariant under Z 2 are said to have Ising symmetry. Ising symmetry is broken 
in any phase transition in which there are two and only two equivalent ordered 
states characterized by order param eters tha t can be chosen to differ only in 
sign. The simplest physical system in which Ising symmetry can be broken is the 
uniaxial ferrom agnet in which the m agnetization is constrained by crystal fields 
to lie along the z-axis. The order param eter is (mz), the z-com ponent o f  the 
magnetization. (mz) can be either positive or negative, bu t its m agnitude is fixed 
by the conditions o f therm odynam ic equilibrium determ ined by the equation of 
state. The conjugate field is simply the z-com ponent o f the external magnetic 
field.

O rder-disorder and uniaxial antiferrom agnetic transitions on bipartite lattices
also break Ising symmetry. Bipartite lattices such as the BCC lattice can be
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Fig. 3.6.1. Phases for an Ising magnet with Z 2 symmetry. Spins are 
constrained by crystal fields to point either up or down, (a) Disordered 
paramagnet, (b) ordered ferromagnet with spins aligned along a common 
direction, and (c) ordered antiferromagnet on a bipartite square lattice.

decom posed into two equivalent sublattices A  and B.  jS-brass is a 50 — 50 m ixture 
o f C u and Zn on a BCC lattice tha t undergoes an order-disorder transition. 
A t high tem peratures, the Cu and Zn atom s occupy the two sublattices with 
equal probability. In the ordered phase, there is a segregation o f  C u atom s onto 
sublattice A  and Zn atom s onto sublattice B  o r  vice versa. The order param eter 
is thus (φ) =  («cm  — ”Cu,b ), where « cm  is the num ber operator for C u atom s 
on sublattice A.  The conjugate field is the difference in chemical potential for Cu 
atom s on the two sublattices: h =  μοαΑ ~  Mcu.b- 

In  the ordered phase o f  Ising antiferrom agnets (Fig. 3.6.1), spins point up on 
one sublattice and down on the o ther o r vice versa. The order param eter is thus 
the difference in m agnetization between the two sublattices, (φ) = (mZy4 — mzp) ,  
and the conjugate field is an external m agnetic field tha t points up on sublattice 
A  and down on sublattice B: h = hz^  — hzj .  N ote tha t the conjugate fields for 
bo th  the β -brass and the antiferrom agnetic transitions correspond to physical 
fields th a t oscillate in sign at the scale o f  a lattice spacing and cannot norm ally 
be produced in the laboratory. Nevertheless, these fields can be defined and 
used in theoretical treatm ents to  generate order param eter correlation functions. 
There is another way to  describe the developm ent o f order on b ipartite  lattices. 
Both the order-disorder transition and the antiferrom agnetic transition lead to  a 
doubling o f  the size o f a unit cell and thus to the appearance o f Bragg peaks 
at the Brillouin zone edge as depicted in Fig. 3.6.2. Thus, the respective order 
param eters for these transitions are equivalently mass- and spin-density wave 
amplitudes, (p c } and (mZyc),  where G  is a zone edge wave vector.

O ther transitions tha t can have Ising symmetry are ferroelectric transitions, 
in which the order param eter is the electric polarization confined to lie along a 
particu lar crystal axis, and displacive transitions, in which some atom  in a unit 
cell moves off o f a symmetry position at low tem perature as shown in Fig. 3.6.3.

There is no symmetry change in the transition from  the liquid phase to the gas 
phase. Nevertheless, one can associate an order param eter with Ising symmetry
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Fig. 3.6.2. (a) The disordered state of β -brass on a square lattice. Cu and Zn 
occupy lattice sites with equal probability. The unit cell is a square of side a. 
(b) The ordered state of β -brass. Cu atoms have a greater probability of 
occupying one sublattice while Zn has a greater probability of occupying the 
other. The unit cell is a square of side 21/2 a containing two atoms, (c) Bragg 
scattering intensities. The dark spots on a square lattice with lattice 
parameter 2π/α  are the Bragg scattering peaks from the disorder phases. The 
light spots are the superlattice peaks of the ordered phase.

with this transition because the density can take on one o f two values along 
the coexistence curve. A t the critical point, there is no difference between the 
liquid and gas phases. As one proceeds along any o f the liquid-gas coexistence 
curves o f Fig. 3.1.4, the density of the gas phase increases and th a t o f the liquid 
phase decreases. A n order param eter for the liquid-gas transition is, therefore, 
the difference in density between the liquid and gas phases: (φ) = (nL — tic,)· The 
conjugate field is ju st the chemical potential. The phase separation transition in 
two-com ponent mixtures has a similar order param eter.

Though Ising, or Z 2, symmetry is the m ost im portant and m ost common 
discrete symmetry encountered in condensed m atter physics, there are, o f course, 
m any others. A particularly useful hierarchy o f discrete groups for studying 
properties o f discrete symmetry is the set o f groups Z N o f integers under addition 
m odulo N.  An example o f a physical system with Z 3 symmetry is krypton 
adsorbed on graphite. As discussed in Sec. 2.9, there is a ^ 3  x ^ 3  com m ensurate 
ground state with one K r atom  for every three unit cells o f  the graphite lattice. 
There are, therefore, three equivalent ground states, and Z 3 symmetry is broken 
in the transition from  the fluid to the com m ensurate state.

2 Cont inuous symmetries

The simplest continuous group is the two-dimensional orthogonal group 0 2 
o f rotations in a two-dimensional plane. Since a two-dimensional vector is 
equivalent to  a complex num ber, the group O2 is isom orphic to  the group 1 / ( 1 ) 
o f  transform ations o f the phase o f a complex num ber. The symmetry associated 
with these groups is often called xy-symmetry because rotations are usually done
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Fig. 3.6.3. A model displacive transition. At high temperature, the atom 
represented by a small circle sits at the center of a square unit cell, as shown 
in (a). At low temperature, it can move up or down, as shown in (b) and (c). 
(Such displacive transitions, where the distortion occurs in each unit cell, are 
often referred to as ferroelectric.)

in the xy-plane. The group 0 2 is o f enorm ous pedagogical im portance and will 
be used extensively th roughout this book. The simplest realization o f a system 
with O2 symmetry is an easy-plane ferrom agnet in which spins are confined by 
crystal fields to  lie in the xy-plane. We will repeatedly use this system and its 
com panion, the easy-plane antiferrom agnet, to study the properties o f broken 
continuous symmetry, even though it has virtually no physical realizations. The 
m ost im portan t phase with broken 1/(1) symmetry is superfluid helium. The 
superfluid phase is characterized by a m acroscopic condensate wave function 
with an am plitude and a phase. Its order param eter can be defined along the 
lines o f the discussion o f the preceding section as the average (ψ(χ)} o f  the Bose 
annihilation operator ip{x). Its average (ψ) = \{ψ)\β,φ has an am plitude and 
a phase. The field conjugate to ip(x) is a field tha t creates a particle a t x. It 
cannot be produced in a laboratory. O ther examples o f phases with broken 1/(1) 
symmetry include the smectic-C and hexatic-B phases o f liquid crystals. The 
order param eter in the smectic-C phase is the c-director, c, the projection of 
the director n onto the plane o f the smectic layers. The order param eter o f the 
hexatic-B phase is {e6,e).

The group O3 o f rotations in three dimensions is another continuous group 
o f considerable importance. Physical realizations o f systems with this symmetry 
include Heisenberg ferrom agnets and antiferrom agnets on lattices where crystal 
fields aligning spins along crystal axes are unim portant. The nem atic phase in 
liquid crystals also breaks O3 symmetry. However, it is invariant, as we shall 
see, under a different subgroup o f O3 than  is the ferrom agnetic phase o f  the 
H eisenberg model.

We will often find it useful to study model systems invariant under the n- 
dim ensional orthogonal group 0 „ o f ro tations in an n-dimensional space, even 
though physical realizations with n > 3 are difficult to find.
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Table 3.6.1. Symmetries and order parameters.

Symmetry System Order
parameter

Conjugate
field

Physical
example

Z 2/Ising uniaxial FM (mz) hz
uniaxial AF (mzA -  mz,B> S* V 1 s- bg Rb2NiF4,

K2MnF4
order-disorder (nA -  nB) βλ - μ β /j-brass
displacive U BaTi03
liquid-gas (nL -  na) μ many

0 2/U(  1) easy-plane FM 
easy-plane AF

(m) h
h  a  — h s

superfluid
smectic-C
hexatic-β

<V>

(e6ie)

hv He4
Fig. 2.7.1 
Fig. 2.7.7

0 3 Heisenberg FM (m) h EuS, EuO, 
Fe, Ni

Oo Heisenberg AF 
SAW

(nu -  mB> h  a  — h s RbMnF3
polymer

3 Models

In  our discussion o f  the development o f order in the last section, we found it useful 
to  consider the Heisenberg model o f interacting spins on a lattice. Models such 
as this have had  an enorm ous im pact on our understanding o f phase transitions 
and the properties o f ordered phases. They are used throughout the literature 
to simplify the discussion o f particular properties o f real physical systems, and 
we will find it useful to refer to  them  in subsequent chapters. We will, therefore, 
introduce here some o f the m ost commonly used models.

The simplest o f all models is the Ising model (Ising 1925) with a global Z 2 
symmetry. A t each site Ri on a lattice, there is a spin variable σ\ tha t can take 
on only the values + 1  or —1. The spins interact via a nearest neighbor exchange 
interaction so tha t the Ising H am iltonian is

is in g  ~  J  'y \ σ\σν ( 3 . 6 . 2 )

<U'>

where the sum  is over nearest neighbor bonds <  1,1' >  on the lattice. As in the 
Heisenberg model, there is a high-tem perature param agnetic phase with (σ) =  0 
and a low-tem perature ferrom agnetic phase with (σ) φ  0. The low-temperature 
phase breaks Z 2 symmetry. The Ising model differs from  the Heisenberg model 
in that the spins are purely classical. They do no t obey quantum  com m utation 
relations as do the spins in the Heisenberg model. The Ising model in two 
dimensions was solved exactly by Lars Onsager in 1944.

A class o f models with Z N symmetry, called clock models, can be defined by 
associating with each site on a lattice a spin variable si o f  unit length th a t is
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constrained to  point in one o f N  equally spaced directions on the un it circle, i.e., 
S| =  (cos2nn\ /N ,s in2 nn \ /N) ,  where n\ =  0 . N  — 1. Similarly, models with On 
symmetry (often called n-vector models) can be defined by associating with each 
site on a lattice an n-dimensional unit length spin vector s i . The H am iltonian for 
bo th  the Z N and 0„ models has the same form  as tha t o f the Heisenberg model:

=  — J  ^ 2  si ' si· (3.6.3)
<1,1'>

This H am iltonian for clock models can also be reexpressed in term s o f the integers 
ni as

c lo ck  =  J  y :  cos[27r(wi — ny)/N],  (3.6.4)
<u>

Similarly, the O2 o r xy-model can be reexpressed in term s o f a local angle variable 
by setting S| =  (cos ,9|, sin ,9|). Then —

J f xy = - J  Σ  cos^ i  -  (3.6.5)
<1,1>

The Ising model is identical to  the Z 2 clock model. I t can also be viewed as the On 
model with n =  1 , even though, strictly speaking, rotations in a one-dimensional 
space are no t defined. The O3 model is the classical Heisenberg model. We shall
see in the following chapters th a t the n =  00 On model can be solved exactly. The
On model with n =  0 describes the statistics o f self-avoiding random  walks or 
polymers in solution.

A nother useful model th a t is invariant under Z N (as a subgroup o f the perm u
tation  group) is the N -state Potts model (Potts 1952, W u 1982) in which there is 
a variable σ(1) th a t can take on any o f  N  discrete values. The H am iltonian for 
the N -state Potts model associates one energy with nearest neighbor bonds in the 
same state and a second energy if they are in different states. The H am iltonian is

•^Potts = ~ J J 2  [NS^ '  ~  ^  (3·6·6)
<1,1 >

The two-state Potts m odel is the Ising model. The one-state Potts model describes 
percolation. The three-state Potts model can be used to describe the transition 
from  the fluid to the ^ 3  x ^ 3  structure o f  K r adsorbed on graphite discussed in 
Sec. 2.9.

Appendix 3A Functional derivatives

The functional derivative introduced in Sec. 3.5 can be defined in various ways. Probably 
the most intuitive is to proceed by analogy with partial derivatives. Consider a functional 
Φ of the function h(\). Φ can be obtained as a limit of a function Φ of a countable set 
of variables as follows: Divide space up into cells of volume A V  whose centers are at 
positions \ x, a =  1,..., and define Φ(Κ)  =  Φ[/ι(χα)], where h, =  h(x^). Φ is a function not a
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functional of ha. It has a Taylor series expansion 

Φ(Κ + δΚ)  =  Φ(Κ) + ^ 2 ^ - δ Κ
a

δ2Φ

where

1 d Φ
+ 2 Σ 5Μ ^ ,5Μ^ + "·’

«β

8Φ lim Φ(Αΐι.... Κ + δ Κ , . . . ) - Φ ( Ι ι ί ,...,Κ,...)
dha sh,-> o 6ha

To regain the functional Φ[Μχ)] from Φ(Κ),  we take the limit A V  —► 0 and replace
by Σ « Α ν  -> f dx:

Φ[Η(χ) +  5ha] =  lim Φ(Κ + δΚ)  
Δν~*0

<m m + ' £ i r ± g . l k .
a

α.β

δΦ
Φ[Αι(χ)] +  /  d χ

/ · δΗχ)
δ2Φ

so that

δΦ _  lim lim Φ (Λ ι,...Λ + Μ « ...)-Φ (* ι.... *».··)
<5it(x) ΔΚ—*0 Sha—>0 Α ν δ Ι ί χ

where it is understood that x remains in cell a at all steps in the limiting procedure. 
Note that the functional derivative has a factor of one over volume relative to a partial 
derivative.

An alternative, more formal, definition of a functional derivative is

<5Φ ®[fc(x) +  e«5(x-y)]-<I>[Ji(x)]=  lim
<5Jt(y) « ο  e

i.e., <5®/<57t(y) is the change induced in Φ in response to a change in h(x) at the point x =  y 
only.

It is clear from the above definitions that functional derivatives obey all of the usual 
rules of differentiation. For example,

δ h(x)
y)

If /  is a function of h(x), then

<5(x — y) =  δχβ discrete analog^ .

0f(h(x)) = f , 5 h ( x ) = r H x _ y l
0h(y) 0h(y)

and

Sf(8(h(*))) = f  ’M W  = f  ’S(x _  y)
<5%) ;  8 δΗ(γ) 3 8 ( y)’



where f ' ( z ) =  d f  /dz.  Finally, if F[0(x)] can be expressed as an integral of a function of 
φ( \)  and νφ ( \ ) :

F[0(x)] =  J  i*x/(0(x),V 0(x)),

then

J L ·  =  f ^ J L  
δφ(γ) J  δφ(γ)

f  3d:: \ Sf  δφ{χ) Sf δνφ{Χ)
J  [30(χ) δφ(γ) δνφ(χ )  <50(y)

Integrating the last term by parts and performing the integral over x, we obtain
SF d f  1 d f

δφ(γ) δφ(y) 8νφ(γ)  '
This equation is frequently used in Lagrangian mechanics.

Bibliography
E. Brezin, J.C. le Guillou, and J. Zinn-Justin, in Phase Transitions and Critical Phenomena, eds. by C.

Domb and M.S. Green (Academic Press, New York, 1976).
L.D. Landau and E.M. Lifshitz, Statistical Physics (Addison-Wesley, Reading, Mass., 1969).

142 3 Thermodynamics and statistical mechanics

References
W. Heisenberg, Z. Physik 49, 619 (1928).
E. Ising, Z. Physik 31, 253 (1925).
L. Onsager, Phys. Rev. 65, 117 (1944).
R. B. Potts, Proc. Camb. Phil. Soc. 48, 106 (1952).
F.Y. Wu Rev. Mod. Phys. 54, 235 (1982).

Problems

3.1 Calculate Α[Τ,μ(χ)]  and F[T,  n(x)] for a non-interacting classical gas.
3.2 Calculate A[T ,  μ(χ), h(x)] for a non-interacting classical gas o f spin 1/2 parti

cles. Then calculate the density n(x), m agnetization m,(x), density correlation 
function G„„(x,x'), and m agnetization correlation function Gmjmj.

3.3 A  nearly flat fluctuating two-dim ensional m em brane can be characterized by 
two extensive quantities: its total area A  and its area A s  projected onto the 
plane defined by its average norm al. There is, therefore, a therm odynam ic p o 
tential o f  the form  W ( A , A b , T )  =  A b w ( A / A b , T )  which obeys the differential 
therm odynam ic relation

d W  =  adA — hdAg — S d T ,

where σ is the surface tension and  h is a field conjugate to  the projected area.
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Define the therm odynam ic potentials F(a ,As ,  T)  and G(A,h, T)  in terms of 
W, A, A B, σ, and h, and show th a t they can, respectively, be expressed as 
Α β ί( σ ,  T)  and Ag(h,T) .  Determ ine /  and g in terms o f σ, h, and T,  and 
determine the differential therm odynam ic relations satisfied by /  and g.



4
Mean-field theory

In the preceding two chapters, we have discussed various types o f  order tha t 
can occur in nature and how the ordering process can be quantified by the 
introduction  o f order param eters. We also developed a form alism  for dealing 
with the therm odynam ics o f ordered states. In this chapter, we will use mean- 
field theory to  study phase transitions and the properties o f  various ordered 
phases. M ean-field theory is an approxim ation for the therm odynam ic properties 
o f a system based on treating the order param eter as spatially constant. I t is a 
useful description if  spatial fluctuations are no t im portant. I t becomes an exact 
theory only when the range o f interactions becomes infinite. It, nevertheless, 
m akes quantitatively correct predictions about some aspects o f phase transitions 
(e.g. critical exponents) in high spatial dimensions where each particle or spin 
has m any nearest neighbors, and it m akes qualitatively correct predictions in 
physical dimensions. M ean-field theory has the enorm ous advantage o f being 
m athem atically simple, and it is alm ost invariably the first approach taken to 
predict phase diagram s and  properties o f  new experim ental systems.

Before proceeding, let us review some simple facts abou t phase transitions. 
A t high tem peratures, there is no order, and the order param eter (φ ) is zero. 
A t a critical tem perature, T c, order sets in so that, for tem peratures below Tc, 
(φ ) is nonzero. I f  (φ) rises continuously from  zero, as shown in Fig. 4.0.1a, the 
transition  is second order. I f  (φ ) jum ps discontinuously to a nonzero value just 
below Tc, as shown in Fig. 4.0.1b, the transition  is f irst  order. The entropy is 
also continuous a t a second-order and discontinuous at a first-order transition. 
In  a first-order transition, heat is adsorbed by the system in going from  the 
low -tem perature to  the high-tem perature phase. This heat is the latent heat 
Ql =  T CA S  o f the transition, where AS  is the entropy change and Tc is the 
transition  tem perature.

There are m any form ulations o f mean-field theory, beginning with the van der 
W aals equation o f state (van der W aals 1873) for the liquid-gas transition  and 
the Weiss (1906) m olecular field theory for ferromagnetism. In  this chapter, we 
will introduce mean-field theory with the Bragg-W illiams theory (W.L. Bragg and 
E J . W illiams 1934) for an Ising ferrom agnet. This theory is equivalent to the 
Weiss m olecular field theory and provides a qualitatively correct description o f 
the properties o f the Ising model at all tem peratures, including the vicinity of 
zero tem perature. This theory will set the stage for the L andau  phenom enological

14 4
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Fig. 4.0.1. Order parameter as a function of temperature for (a) a 
second-order and (b) for a first-order transition.

mean-field theory (see Landau 1937), to which m ost o f this chapter will be 
devoted.

L andau theory is based on a power series expansion o f the free energy in terms 
o f the order param eter (or order param eters) for the transition o f  interest. It 
assumes that the order param eter is “ small” so tha t only the lowest order terms 
required by symmetry (and to  keep the energy from  diverging) are kept. The 
form  o f a Landau phenomenological free energy is determ ined entirely by the 
nature o f the broken symmetry o f the ordered phase, i.e., by com binations of 
the order param eters that are left invariant under symmetry operations o f the 
interaction H am iltonian. The undisputed usefulness o f  Landau theory rests in its 
simplicity -  m ost o f its predictions can be determ ined by solving simple algebraic 
equations. I t is, o f course, m ost useful in  the vicinity o f second-order phase 
transitions, where the order param eter is guaranteed to be small. It, however, can 
be used with care to treat first-order transitions, where there are discontinuous 
changes in order param eters, or to determ ine properties o f ordered phases rather 
than  of phase transitions themselves. W hen m ore quantitative inform ation about 
situations in which order param eters are not small (i.e., when the low-order 
power series o f simple Landau theory is inapplicable) is desired, m ore complete 
mean-field theories, such as Bragg-Williams theory, are available. The m ost 
versatile technique for developing mean-field theories is based upon a variational 
principle and a single-site approxim ation for the m any-particle density matrix. 
This technique will be reviewed and applied to  the Potts model [Eq. (3.6.6)] and 
charged systems in Sec. 4.8.

None o f the m ethods o f deriving mean-field theory presented in this chapter is 
easily generalized to  arrive at an understanding o f how mean-field theory breaks 
down and how to correct it. In  the next chapter, we will develop field theories for 
which fluctuations involving spatially nonuniform  local order param eters can be
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incorporated  in a systematic way and for which mean-field theory is the first in 
a  well-controlled series o f approxim ate solutions. We will use these field theories 
to  study the breakdow n o f mean-field theory and critical fluctuations.

4.1 Bragg-Williams theory

The free energy F  is the difference between the internal energy, E =  ), and
TS ,  the tem perature times the entropy. Thus, F  can be obtained if  E  and T S  can 
be calculated separately as a function o f  the order param eter. In the Ising model 
[Eq. (3.6.2)], the order param eter m =  (σ) is the average o f the spin. The entropy 
for a given spatially uniform  m can be calculated exactly. The to tal m agnetic 
m om ent is simply the num ber N j o f up spins m inus the num ber N± o f down 
spins, and

m =  ( N i ~ N l ) / N , (4.1.1)

where N  =  +  N± is the total num ber o f sites in the lattice. The entropy for
a given m is the logarithm  o f the num ber o f configurations with a given Nj and

S =  In (  ** )  = l n  (  **
\ N j  \ N ( l  +  m) /2

ln ( (N (l  +  m)/2)!(iV(l — m)/2)i) (4'L2)
S  1 1
— =  s(m) =  ln 2  — - ( 1  +  m )ln(l +  m) — - ( 1  — m )ln(l — m).

This entropy is often called the entropy o f  mixing.
To evaluate E,  one should calculate ( j f )  =  Z “ 1Trme"^j r where Trm is a 

trace over all configurations with fixed m and Z m =  Trme ~ ^ .  A n exact evaluation 
o f  this average would constitute an exact solution o f the Ising model and is quite 
complicated. In  Bragg-W illiams theory, ) is approxim ated by replacing σ\ in

by its position independent average m :

E  =  — J  ^  m2 =  J N z m 2 , (4.1.3)
<1,1 >

where z is the num ber o f nearest neighbor sites in the lattice (z =  2d for a 
d-dimensional hypercubic lattice). (Recall th a t <  11' >  signifies the bond between 
nearest neighbors 1 and 1'.)

The com plete Bragg-W illiams free energy is thus 

f ( T , m )  =  (E — T S ) / N  
1  ̂ 1=  —- J z m  +  - T [ ( l  +m ) l n ( l  + m )  +  (1 — m )ln(l — m)]

- T i n  2. (4.1.4)
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Fig. 4.1.1. (a) The Bragg-Williams free energy as a function of order 
parameter for various values of T /  Tc. For T  > Tc, there is a single 
minimum at m =  0. At T  =  Tc, the single minimum at m =  0 is very broad. 
For T  < Tc, there are two minima with the same free energy at +m. At 
T  = 0, the minimum of the free energy occurs at m =  +1. (b) The 
Bragg-Williams free energy /  — hm in an external magnetic field of 
h =  0.2 Tc >  0. Note that the minimum at T  > Tc occurs at positive m. The 
minimum at positive m for T  > Tc has a lower free energy than that at 
negative m. The order parameter m is restricted to lie between 0 and 1. At 
T  =  0, the absolute minimum of the free energy occurs at m =  +1 when 
h =  0. The derivative S f / dm  is, however, not zero at these minima. For 
T  > 0, d f  /dm  is zero at the absolute minimum of / ,  which occurs at |m| <  1.

This function is plotted for various values of T  in Fig. 4.1.1. N ote tha t it is even 
under the operation m —* —m; it could, therefore, be expressed as a function of 
m2 ra ther than  m. For large T,  f  has a single m inim um  at m =  0. Below a 
critical tem perature Tc (to be calculated below), it has two m inim a at ±m.  As 
T  —* 0, the two m inim a occur a t values of \m\ closer and closer to unity. In 
the absence o f an external aligning magnetic field h, the equilibrium value o f m 
is tha t which minimizes / .  Thus, the disappearance of the m inim um  at m =  0 
and the emergence of lower free energy m inim a at nonzero m corresponds to a 
phase transition. As we shall see shortly, the value o f m a t the new m inim a grows 
continuously from zero, so the transition is second order.

In the vicinity o f Tc where m is small, we can expand s(m) and f ( m ) in powers 
o f m:
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f  =  1 ( 7  _  Tc)m2 +  ^ T m 4 - T In 2 +  ... , (4.1.6)

where

Tc =  z J  (4.1.7)

is the mean-field transition tem perature. For T  > Tc, f  has a positive curvature 
a t the m inim um  at the origin, and, for T  < Tc, it has negative curvature at the 
m axim um  at the origin and positive curvature at the m inim a at nonzero m. In 
the presence o f a positive external field h, the function f  — hm is asymmetric with 
a single m inim um  for T  > Tc with m >  0, as shown in Fig. 4.1.1b. W hen T  < Tc, 
there are two m inim a in /  — hm. The m inim um  with m > 0 is the absolute 
m inim um  and corresponds to  the equilibrium  state. Thus, the equilibrium  state 
with m >  0, h =  0, and T  < Tc can be reached by first preparing the system 
in the absolute equilibrium  state with h > 0 and then allowing h —* 0. This is 
precisely the process discussed in Sec. 3.6.

The equation o f state in an external field is

=  — z J m  +  I t  ln[(l +  m )/(l — m)] =  h 
dm 2

=  —z J m  +  T  tanh - 1  m =  h. (4.1.8)

Thus,

m =  tanh [(ft +  Tcm )/T]  . (4.1.9)

The quantity

hm =  h + T crn (4.1.10)

is the average local or m olecular field at a given site. I t arises both from  the 
external field and from  the exchange field produced by the neighboring spins with 
average spin m. The actual local field a t a given site depends on the configurations 
o f spins on neighboring sites as shown in Fig. 4.1.2. The quantity z J m  is the 
average or m ean field arising from  neighboring sites. Weiss m olecular field theory 
arrives at Eq. (4.1.9) by a slightly different route. The average m agnetization for 
an Ising spin in a field h is: m = ({N^) — { N \} ) /N  = (eĥ T —e~ĥ T)/{eh/T+e ~h/ T) =  
tanh h / T .  I f  we take h to  be the sum o f the external field plus an internal field 
(due to interactions with neighboring spins) proportional to the m agnetization 
(h —> h +  am), then we have the self-consistency condition m =  tanh (h +  a.m)/T 
relating m to  itself. Associating a with z J  or Tc we have Eq. (4.1.9).

The solutions to Eq. (4.1.9) are best visualized graphically, as shown in Fig. 4.1.3.
W hen h =  0, the slope Tc/ T  o f tanh(T cm /'T) at m =  0 is less than  one for T  > Tc
and greater than  one for T  < Tc. Thus for T  > Tc, the only solution to Eq. (4.1.9) 
with h =  0 is m =  0. For T  < Tc, there are three solutions, + m(T )  and zero. The 
tanh function lies between —1 and +1 so tha t \m\ <  1. As T  —* 0, tanh(T cm /T ) 
saturates at its m axim um  values o f  one at smaller and smaller m, and |m(T)| —* 1 
as T  —* 0 indicating full ferrom agnetic order as expected in the fully aligned 
ground state o f  the Ising model. N ear T  =  0,
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Fig. 4.1.2. Different configurations of neighboring spins giving rise to 
different local fields. In mean-field theory, the local field that depends on 
local spin configurations is approximated by the mean or average local field 
obtained by replacing the values of the local spins σ\ by their mean value m. 
In figures (a) - (c), |σ,| =  1. In figure (d), each spin has been replaced by its 
average value, |(σϊ)| =  1/2.

m =  tan h (Tcm / T )  m 1 -  2e~2zJ/T (4.1.11)

(com pared with the exact result 1 — m =  e~zJ/T) so th a t m tends to unity
exponentially with tem perature.

As T  —* T~,  the solution to  Eq. (4.1.9) can be obtained by expanding ta n h x  
in powers of x:

m «  (Tc/ T ) m  -  | ( T C/T ) 3m3 *  (Tc/ T ) m  -  ̂ m 3 (4.1.12)

or

m =  + [3 (Tc -  T ) / T ] 1/2 . (4.1.13)

Thus m tends continuously to  zero as (Tc — T ) l/1. This behavior is a general 
feature o f second order mean-field phase transitions.

The solutions to  Eq. (4.1.9) for finite (positive) h are also o f some interest. 
They can be obtained graphically, as shown in Fig. 4.1.3b, by shifting the origin 
o f the tanh  function by —h / T c. For T  > Tc, there is a single solution with m > 0 
corresponding to the single m inim um  o f the free energy f  — hm in Fig. 4.1.1b.



150 4 Mean-field theory

(b)

Fig. 4.1.3. (a) Graphical solution of the Ising mean-field equation of state 
[Eq. (4.1.9)] for h =  0. For T  > Tc, the linear function m intersects the tanh 
function only at the origin. For T  < Tc, the slope of tanh(Tcm /T )  at the 
origin is greater than one, and there are three solutions to the equation of 
state corresponding to the two minima and one maximum (at the origin) of 
the free energy, (b) Graphical solution of the equation of state for h >  0.

For T  < Tc, there are three solutions corresponding to  the two m inim a and one 
m axim um  in Fig. 4.1.1b. The solution with m > 0 is the one with the lowest value 
(absolute minim um ) o f /  — hm.

The Bragg-Williams free energy can be used to calculate therm odynam ic quan
tities such as the internal energy and entropy and their derivatives. We will 
calculate m ost o f  these quantities using the m ore phenom enological Landau 
mean-field theory to  be presented in the next section.

The Bragg-Williams approxim ation presented here assumes tha t the order 
param eter is spatially uniform. It can be generalized to  spatially non-uniform  
order param eters m\ =  (σι) by using m\ ra ther than  m in the internal energy and 
by assuming tha t the entropy is a sum o f “local” entropies depending on m\ only:
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(4.1.14)

where s(m) is defined in Eq. (4.1.3) and where, for nearest neighbor interactions, 
J\y is equal to J  if  sites 1 and 1' are nearest neighbors and is equal to zero 
otherwise. This generalized Bragg-Williams free energy is identical to the mean- 
field free energy arising from  the local density m atrix approxim ation discussed in 
Sec. 4.8. It is the basis for the Landau theory to  be discussed in the next section.

Landau theory is rem arkable in that, under the simple assumptions th a t the 
order param eter is small and uniform  near Tc, it yields a wealth o f inform ation 
about phase transitions. Equilibrium therm odynam ics is completely determ ined 
by the function F [ 7 \ ( $ f(x))], where {φί(χ}) is the local order param eter. F  is a 
function tha t m ust be invariant under the symmetry group (S  o f the disordered 
phase. This means tha t it can only be a function o f those com binations o f the 
order param eter (0 ,(x)) tha t do no t change (i.e. are scalars) under all o f  the 
operations in <$. For example, the Ising H am iltonian [Eq. (3.6.2)] is invariant 
under spin inversion, σ —* —σ,  and F(T ,m )  is a function o f m2 =  σ 2 as it is in 
the Bragg-Williams theory ju st discussed. F  is, in general, a very complicated 
functional o f (<f>(x)). However, since {<f>(x)) is zero for T  > Tc, it is reasonable, 
following the example o f Bragg-Williams theory, to expand F  in a power series in 
{φ(χ}), at least in the vicinity o f the critical point. Furtherm ore, it is possible in 
essentially all cases to define the order param eter so tha t it is spatially uniform  in 
equilibrium in the ordered phase. This suggests tha t F  be expressed in terms of a 
local free energy density / ( Τ , ( φ ( χ ) ) )  tha t is a function o f the field {φ(χ)) a t the 
point x only and a p art tha t produces an energy cost for deviations from  spatial 
uniformity. The simplest form tha t F  can take is

where c is a phenomenological coefficient with units o f energy x(length)2~d if  φ(χ) 
is unitless. /  is then expanded in a power series in {φ(χ)). Above Tc, {φ) m ust be 
zero when its conjugate field h is zero. Since {φ) and h are related by an equation 
o f state, Eq. (3.5.19), this requires that the linear term  in the expansion o f /  be 
absent, so that

Each o f the terms in the above expansion m ust be invariant under the operations 
o f <$. Thus, as we shall see shortly, odd order terms m ay often be absent, and 
on occasion there will be several terms o f different symmetry o f the same order 
in φ. All o f the coefficients r, w, and u can, in principle, depend on tem perature.

4.2 Landau theory

(4.2.1)

f ( T ,  φ) =  i τφ 2 -  w 03 +  uφ4 + .... (4.2.2)
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I f  /  is truncated at a given power o f (φ ) (say at order four as above), then the 
highest order term  should be even with a positive coefficient to  ensure tha t the 
equilibrium  state will have a bounded value o f  {φ(χ}).

I f  the odd order term s in Eq. (4.2.2) are removed, /  has exactly the same form 
as the free energy per site [Eq. (4.1.6)] o f Bragg-Williams theory with r  ~  ( T  — Tc). 
This is one o f the m otivations for expanding / ( Τ , φ ) in an analytic power series 
in φ. The spatially-varying Bragg-W illiams free energy [Eq. (4.1.14)] is a function 
o f spatial derivatives o f  the order param eter via the spatial dependence o f J\y . 
In the continuum  limit, when spatial variations o f the order param eter are slow 
on a scale o f  the lattice spacing, the dom inant contribution to  F  arising from 
the nonuniform ity o f  the order param eter is proportional to  the square o f  the 
gradient o f  the order param eter, as in Eq. (4.2.1). It should be em phasized tha t 
the neglect o f higher gradients o f φ(χ)  is only valid when spatial variations are 
slow on a m icroscopic length scale a determ ined by the range o f  interactions 
(the lattice spacing in the Ising model), i.e., when the wave num ber q o f spatial 
variations in φ(χ)  is less than  a cutoff

a
Thus, it is understood th a t any phenom enological model such as Eq. (4.2.1) carries 
with it an upper wave num ber cutoff A. The predictions o f mean-field theory 
generally do no t depend on A. Corrections to  mean-field theory do, however.

Eqs. (4.2.1) and (4.2.2) are the essence o f Landau mean-field theory. These 
forms for mean-field theory can easily be derived for models such as the n-vector 
models discussed in the preceding chapter. In  the next few sections, we will 
determ ine w hat form  /  m ust take for a num ber o f simple transitions and examine 
the predictions m ade by Landau mean-field theory.

4.3 The Ising and «-vector models

The order param eter for the Ising ferrom agnet is the scalar m agnetization {φ) =  
mz. The free energy m ust be invariant under time reversal. Since (φ) changes 
sign under time reversal, /  m ust be invariant under {φ) —* —{φ), i.e., only even 
powers o f  {φ) are perm itted in the expansion o f / ,  Eq. (4.2.2). Thus we have

ί ( Τ , { φ ) ) = ^ { φ ) 2 + η { φ ) 4, (4.3.1)

in agreem ent with Eq. (4.1.6). In  order for the partition  function to  be well defined, 
/  m ust be positive definite at large values o f  {φ), implying th a t u m ust be positive. 
(φ)  is determ ined by the equation o f state, Eq. (3.5.19). A t high tem peratures, 
(φ) m ust be zero when the external m agnetic field h is zero. This means tha t /  
m ust have a m inim um  at (φ)  =  0 at high T.  A t low tem peratures, we expect a 
ferrom agnetic state and /  to have at least one m inim um  with nonzero {φ). This
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Fig. 4.3.1. /  =  \r(4>)2 + u (0 )4 as a function of (φ) for different temperatures.

is m ost easily accomplished by allowing r to change sign at some tem perature 
Tc:

r =  a ( T  — Tc). (4.3.2)

We will assume th a t w is independent o f tem perature. In Fig. 4.3.1, we sketch the 
function /  for various values of T.  For T  > Tc, there is a single m inim um  at 
(φ) =  0. For T  =  Tc, there are two m inim a symmetrically placed about (φ) =  0. 
The equation o f state for uniform h is, thus,

τ ( φ ) + 4 ι ι ( φ γ  =  h. (4.3.3)

W hen h =  0, the solutions are
Γ0 if  T  > Tc;

^  “  { ± ( - r / 4 u ) V 2 if  T  < Tc. ( *
Thus, mean-field theory predicts a second-order phase transition with

( φ ) ~ ( Τ α - Τ γ ,  0 = 1 / 2 .  (4.3.5)

β  is called a critical exponent, and it controls the tem perature dependence o f the 
order param eter in the vicinity o f  Tc. In mean-field theory, it has a value o f 1/2. 
W hen critical fluctuations are im portant, β  is generally less than  its mean-field 
value, typically o f order 1/3 in three-dimensional systems. Eq. (4.3.4) says that 
there are two possible values for (φ)  for T  < Tc and h =  0 corresponding to 
the two possible directions for the bulk magnetization. The sign can be fixed by 
allowing h to go to  zero from positive or negative values. Both solutions for {φ)
have the same free energy so tha t the up and down phases coexist along the line
h =  0 and T  < Tc, as shown in the phase diagram  o f Fig. 3.5.2.

The susceptibility can be obtained by differentiating Eq. (4.3.3) with respect to
h:
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or
y = M = f l / r  if  τ  >  Tc;
1 Sh \  l / (2 |r |)  if  T  < Tc. y ’

This implies [by Eq. (4.3.2)]

χ ~ |  T - T c\ - y ,  y =  1. (4.3.8)

y is called the susceptibility exponent and  is generally o f order 4 /3  in three- 
dim ensional systems where critical fluctuations are im portant. Finally, the depen
dence o f (φ ) on h a t T  =  Tc follows from  Eq. (4.3.3):

(φ) =  (h/4u)l / i  ~  hl/s , T  =  Tc, (4.3.9)

where δ =  3 is yet another critical exponent. I t is clear from  Fig. 4.3.1 th a t the
free energy density is zero for T  > Tc and negative for T  < Tc:

if  T  > Tc ; 
r2/(16w) if  T  < Tc.

Thus the mean-field specific heat is zero for T  > Tc and positive for T  < Tc :

[γ + 1 2 μ<4>)2] ^  =  1, (4.3.6)

d2f  _  r 0 if  T  > Tc
d T 2 ~  \  T a 2/(8u) T  < Tc.cv =  —Τ  —φ τ  =  < 2 //ο.λ (4.3.11)

This equation gives the specific heat associated with the establishm ent o f  order. 
The to tal specific heat includes a p art analytic in tem perature arising from  degrees 
o f freedom  no t associated with ordering. Thus a sm oothly varying background 
m ust be added to Eq. (4.3.11) to  obtain the total specific heat. This total specific 
heat will have a jum p discontinuity a t the transition, as shown in Fig. 4.3.2b.

1 Th e  nonlocal  susceptibili ty and the  correlation length

We now turn  to  the calculation o f the correlation function χ(χ,χ ')· This is m ost 
easily done using Eq. (3.5.22) and the mean-field form  for F  [Eq. (4.3.1)], including 
the gradient term  [Eq. (4.2.1)]:

y - W )  =  _____________
* 1 j δ{φ( \ ) ) δ{φ(χ ’))

=  ( r + 1 2 w<0)2 -  cV2)<5(x -  x'), (4 .3 .1 2 )

or

*(<1) =  r +  12η(φ)2 +  cq2' (43-13)
Eq. (4.3.13) can be rew ritten as

*( q ) =  [ l + L · ) 2] Ξ  c l + ( ^ ) 2 ’ ( 4 3 ' 1 4 )

where

ξ =  c1/2[r +  1 2 m((^)2]_ 1/2
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Fig. 4.3.2. (a) Mean-field susceptibility, (b) specific heat, (c) correlation 
length, and (d) order parameter as a function of temperature.

Γ (c /r )1/ 2 if  T  > Tc-
U c /( -2 r ) ]V 2 if  T  < Tc 

~  \ T - T C\~V (4.3.15)
is the correlation length and v is the correlation length exponent tha t is 1 / 2  in 
mean-field theory and o f order 2 /3  in m ost three-dimensional critical systems. 
The order-param eter correlation function, as discussed in the preceding chapter, 
is just T  times the above nonlocal susceptibility.

The existence o f the correlation length ξ follows from  a simple dimensional 
analysis of the model free energy Eq. (4.2.1) with /  given by Eq. (4.3.1). If 
(φ(τί)) is unitless, then r has units o f (energy)x(length)-d [EL~d], and c has 
units o f (energy)x(length )d-2  [ELd~2]. Therefore, (c /r )1/2 ~  ξ m ust have units of 
length. These argum ents allow us to  introduce a tem perature-independent bare 
correlation length
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> U - , Γ
tha t defines a microscopic length scale. The correlation length ξ ~  
ίο |(Τ  — Tc) / T c\~v can be arbitrarily larger than  ξο near Tc. D im ensional analysis 
such as this is usually the simplest way to determ ine w hat im portan t lengths there 
are in a given problem  and how they scale with controllable param eters.

Eq. (4.3.14) was first proposed for correlations o f an order param eter in the 
vicinity o f  a critical po in t by O rnstein and Zernicke in their discussion o f  light 
scattering from  a fluid in the vicinity o f the liquid-gas transition. The Fourier 
transform  o f *(q) yields the spatial correlation function

V ( X 0 )  =  χ  f  __ — _
’ ’ X J  (2n)2 l +  (q i )2

=  c - V r ^ y d x i / a  (4.3.17)

where
r  d - i j  [  d£ld e!ZCOS0 

y , , )  "  / .  2 d z l w i ? T 7 i

=  (d =  3). (4.3.18)
4 n

Thus at T  =  Tc, χ(χ,Ο) is proportional to  |x |-(d-2*. For T  φ  Tc, χ ( |χ |,0 ) 
decays exponentially to  zero at a rate determ ined by the correlation length ξ. 
Recall [Eq. (3.5.13)] th a t G(x,0) =  T χ(χ,  0) measures to w hat extent δφ(χ)  =  
φ(χ) — {φ(χ)) is correlated with δφ( 0 ). ξ is the length beyond which δφ(χ)  ceases 
to be significantly correlated with <5(0(0)).

2 O n symmetry

The time reversal symmetry o f the param agnetic state o f the Ising model does not 
allow any odd order term s in {φ) in the expansion o f / .  Similarly the ro tational 
invariance o f  the param agnetic state o f  the n-vector model requires tha t /  be a 
function only o f  the scalar,

n
(φ)2 =  (4.3.19)

;=l
The Landau free energy density for the n-vector model is identical to tha t o f the 
Ising model with the above interpretation  o f {φ}2. In the presence o f  an external 
field with com ponents hi, the equation o f state for 0 , is

| l  =  (r +  4 ιι{φ)2){φί) =  hi. (4.3.20)
ΰφι

W hen hi =  0, the solutions to this equation are (<£,·) =  0 for T  > Tc and 
(φί) =  (—r/Au)l/1ei for T  < Tc, where e is any unit vector in the n-dimensional 
order param eter space. Thus, again there is a second-order transition with the
same critical exponents β, γ, δ and v as in the Ising model.
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Correlation functions for T  < Tc require some further comment. Since a 
direction has been explicitly picked out (i.e., the symmetry o f the high tem perature 
phase has been broken), the correlation function,

G0-(x,x') =  (0i(x)<Mx')> ~  <0;(x)X0/(x')>> (4.3.21)

can be broken up into two distinct parts describing correlations parallel and 
perpendicular to the direction of order:

Gy(x, x') =  G|| (x, x > ,e ,  +  Gx (x, χ')(<^· -  e,e,·). (4.3.22)

W ith e parallel to  the 1-axis, this means

G ||(x,x') =  (φ ι (χ )φ ί (χ ' ) )  -  (φ ί (χ ) ) (φ ί ( \ ' ) ) ,

Gx (x ,x ') =  ( φ Μ φ ά χ ' ) )  -  ( φ ί( χ ) ) {φ ί(χ')) , ( ΐ φ  1). (4.3.23)

Differentiating the free energy with respect to  φί(χ) and φ^ χ ' ) ,  we obtain

XTjH q) =  TG~/(  q) =  (r +  Μ φ ) 2 +  cq2)Su +  8w (0,)(0;), (4.3.24)

or

=  r +  12m {Φ)2 +  cq2 (4.3.25)

and

χ Ι 1(<ύ =  ΐ + 4 ι ι { φ ) 2 + c q 2 =  (4.3.26)

The T  < Tc form of follows from  the tem perature dependence o f  the order 
param eter [Eq. (4.3.4)]. Thus G |(q) =  T ^ (q )  has the same form  as G(q) for the 
Ising model. Gx (q) =  T £j_(q), on the other hand, has pure power law form  for 
T  < Tc :

Gx (q) =  (4.3.27)
cqλ

This implies a power-law rather than exponential decay in real space with 
Gx (x,0) ~  |x |-(d-2). This behavior, as we shall see in C hapter 6, is a direct 
consequence o f the breaking o f a continuous symmetry (rotational in this case). 
Physically, the difference between the parallel and perpendicular susceptibilities is 
that the form er relates to changes in the m agnitude o f the order param eter while 
the latter relates to changes in its direction. The softness o f the perpendicular 
response results from the lack of any restoring force for a tilt o f the entire spin 
system.

3 Som e mean-field transitions

There are a num ber o f systems whose phase transitions are quantitatively de
scribed by the mean-field theory presented in this section. Here we will consider 
a few o f these. In  the next chapter, we will see why fluctuations tha t in general 
modify mean-field results are not im portant in these systems.

The transition from a norm al metal to  a superconductor is indisputably one of 
the transitions that is best described by mean-field theory. In Fig. 4.3.3, we show
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Fig. 4.3.3. (a) Superconducting order parameter as a function of temperature 
from electron tunneling measurements, (b) Specific heat of a superconductor 
[N.E. Phillips, Phys. Rev. 114, 676 (1959)]. The transition to the 
superconducting phase is accompanied by a jump discontinuity in the 
specific heat, denoted cs in the figure. When a small magnetic field is applied, 
there is no superconducting transition, and the specific heat c„ is linearly 
proportional to temperature.

the m easured specific heat and order param eter as functions o f tem perature for 
some representative superconductors. N ote tha t the specific heat has a mean-field 
jum p at Tc identical to tha t predicted by Eq. (4.3.11). A t low-tem perature, the 
specific heat goes exponentially to zero indicating the existence o f a gap in the 
low -tem perature excitation spectrum  (although this feature is no t explained by 
our simple mean-field theory). The order param eter goes to zero as ( T  — Tc)1/2 

as predicted by mean-field theory and saturates a t low tem perature. The usual 
scattering probes do no t couple to the superconducting order param eter so 
there are no direct spatial m easurem ents o f the order param eter susceptibility 
or correlation length. However, single-particle and Josephson tunneling directly 
m easure the local energy gap and  order param eter, and critical fields m easure the 
correlation length indirectly.

A nother mean-field transition is the smectic-/! to  smectic-C transition in liquid 
crystals. Here, the order param eter is the tilt angle o f the director relative to  the 
norm al to  the smectic planes. Fig. 4.3.4 shows the experim ental m easurem ents 
o f the tilt angle, inverse order param eter susceptibility, specific heat, and inverse 
light scattering intensity for a single value o f the scattering wave vector for butyl- 
oxybenzylidene heptylaniline. The inverse susceptibility (m easured by m agnetic 
birefringence) in the disordered phase goes linearly to  zero (rather than  with 
some power law) as T  —> Tc, in agreem ent with mean-field theory. Similarly,
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the scattering intensity as a function o f q follows Eq. (4.3.13). The wave num ber 
dependent susceptibility has correlation lengths parallel and perpendicular to 
layers tha t diverge as | T  — Tc|~ 1/2 but with different prefactors. The order 
param eter and specific heat, however, do  not follow Eqs. (4.3.4) and (4.3.11) 
except very near Tc. R ather, they follow the predictions of a slightly generalized 
Landau free energy with a {φ)β term  added to  the simple free energy of Eq. (4.3.1):

f  =  γ ( Φ ) 2 +  U4 {Φ)4 + U6 {φ)β. (4.3.28)

It is straightforward to show th a t the susceptibility and correlation length in the 
disordered phase for this free energy are identical to those o f the simple (φ)4 free 
energy. The order param eter obtained by minimizing /  with respect to  {φ) is

(φ) =  (m4/3m6)1/2[(1 -  3 r /r 0)1/2 -  1] 1/2 (4.3.29)

and the specific heat is
0 if  T  > Tc
(Ta2/8u4)(l -  3r / r 0) - 1/2 if T  < Tc, 

where r0 =  2ul /ub. The solid curves in Figs. 4.3.4a and 4.3.4b follow, respectively, 
from  Eqs. (4.3.29) and (4.3.30).

cv = { % , 2 /0. . . v,  1 - / - -v-i/2 (4 .3 .30)

4.4 The liquid-gas transition

As we discussed in Chapter 2, there is no symmetry difference between the liquid 
and gas phases. The two phases can only be distinguished when they coexist in 
the same container and are separated by a meniscus. In a closed container with a 
fixed num ber o f particles and a fixed volume, the meniscus is like a partition, on 
one side o f  which is the denser liquid phase and on the other side o f which is the 
less dense gas phase. Particles and energy pass freely through the partition. In 
addition, the position o f the meniscus is free to move to  minimize the free energy. 
This implies tha t the tem perature, chemical potential, and pressure are the same 
in the coexisting liquid and gas phases even though their respective densities, n; 
and ng, are different. Phase diagram s for classical and quantum  fluids in the 
pressure-tem perature plane are shown in Fig. 3.1.4. The liquid and gas (or vapor) 
phases coexist along the liquid-gas coexistence curve (or vapor pressure curve), 
term inating at a critical point with pressure p =  pc and tem perature T  =  Tc. 
The critical density nc is determ ined from pc and Tc by the equation o f state. 
The phase diagram  can also be represented in the chemical potential-tem perature 
plane, as shown in the vicinity of the critical point (μ0  Tc) in  Fig. 4.4.1. The 
critical point can be approached along the coexistence curve, where there are two 
stable phases, or along various paths, along which there is only a single stable 
phase. A  path o f particular interest is the critical isochore, along which the density 
is equal to the critical density. Approach to  the critical point along the critical 
isochore is easily implemented experimentally by preparing the fluid in  a closed



160 4 Mean-field theory

T - T c (K)

Fig. 4.3.4. (a) Tilt angle (solid circles) and cos~l (dc/dA) in the compound 
40.7 (see reference below for molecular structure) where dc is the layer 
spacing in the smectic-C phase and dA that in the smectic-4 phase. The solid 
curve is a fit to Eq. (4.3.29) with the unitless parameter 
to =  ro / (2aTc) =  1.3 x 10-3. The triangles are the reciprocal susceptibility 
measured by magnetic birefringence for two different samples, (b) Heat 
capacity near the smectic-4 to smectic-C transition in 40.7. The dashed curve 
is the background scaled from another compound (40.8) and the solid line is 
a fit to Eq. (4.3.30). (c) Inverse light scattering intensity from tilt fluctuations 
in 40.7. For this sample, q =  qz =  7.0 x 104 cm-1. [RJ. Birgeneau, G.W. 
Garland, A.R. Kortan, J.D. Litster, M. Meichle, B.M. Ocko, C. Rosenblatt, 
L.J. Yu, and J. Goodby, Phys. Rev. A  27, 1251 (1983).]

volume at the critical density. The average density is then fixed. O ther paths to 
the critical point include the critical isobar, along which p =  pc, and the critical 
isotherm,  along which T  =  T c.

The liquid-gas transition  has much in com m on with the m agnetic transition 
in an Ising model. In  Fig. 4.4.1, we com pare the phase diagram  in the h — T  
plane for the Ising model to  the phase diagram s in  the p — T  and μ — Τ  planes 
for a fluid near its critical point. In both the Ising model and the fluid, there is 
a coexistence curve, term inating at a critical point, along which two distinct but
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(a) (b) (c)

Fig. 4.4.1. (a) Liquid-gas phase diagram in the μ — T  plane. The critical 
isochore is shown as a dashed line, the coexistence curve as a double line. 
Note that the two lines have a common slope but different curvatures at the 
critical point, (b) The critical isochore and coexistence curve in the p — T  
plane, (c) Phase diagram from an Ising ferromagnet in the h — T  plane. The 
coexistence curve is shown as a solid line and the line h =  0, T  > Tc as a 
dashed line.

equal free energy phases coexist, and in both  it is possible to  go continuously 
around the critical point from  one coexisting phase to the o ther by appropriately 
varying h and T  or μ  and T.  In the magnet, the two coexisting phases are those 
with respective m agnetization m+ =  m and m_ =  — m. The value of m a t the 
critical point is mc =  0, and one could express the magnetic order param eter as 
m — mc rather than as m. By analogy, one can introduce an order param eter 
φ =  n — nc for the liquid-gas transition. (We will use n rather than (n) throughout 
this section.) The m agnetic and fluid phase diagrams shown in Fig. 4.4.1 differ in 
one obvious way: the coexistence curve for the m agnet is a straight line h =  0, 
T  < Tc, whereas th a t for the fluid is in general curved. The inversion (m —> — m) 
symmetry o f a m agnet forces the coexistence line to  be the line h = 0 and the 
critical point value o f  h and m both to be zero. There is no such symmetry in a 
fluid and no special values of the critical point param eters pc, Tc, or nc.

In  spite o f the similarities between the m agnetic and liquid-gas transitions, our 
intuition would suggest tha t they are quite different. M agnetic transitions are 
usually observed to  be second order, in agreement with our analysis in Sec. 4.3. 
O ur everyday experience with the change from the liquid to  the gas state is with 
the boiling o f water, which is clearly a first-order transition with an absorption 
o f latent heat o f vaporization. This difference o f behavior reflects different paths 
through the transition in the two cases. In a ferromagnet, the natural experimental 
path  (b —> c —> d in Fig. 4.4.2a) is one with the external magnetic field h equal 
to zero. Because o f reflection symmetry, the order param eter along this path  is 
zero and equal to its critical point value for all T  > Tc. For T  < Tc, the order 
param eter grows continuously from zero. In a fluid, the natural experimental 
path  is one in which tem perature is varied a t constant pressure (b' —» c' —» d' in 
Fig. 4.4.2b). Along this path, there is a discontinuous change in the density. This
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is the first-order boiling transition (or condensation transition if  the direction of 
the path  is reversed). A path  in the ferrom agnetic h — T  plane analogous to 
the constant pressure path  in a fluid is shown in Fig. 4.4.2c. Along this path, 
m is negative from  b' to c', jum ps discontinuously from  a negative to  a positive 
value as the coexistence line is crossed, and then remains positive from d  to d’. 
It is clear from  these considerations th a t the path  in a fluid tha t m ost closely 
resembles the h =  0 path  in a magnet, which shows a second-order transition, 
is the one with the density fixed at its critical value nc, i.e., the critical isochore 
(b —> c —y d in Fig. 4.4.2d).

A Landau theory for the liquid-gas transition can be developed m ost directly 
from  the mixed therm odynam ic function νν(Τ,μ, n) = f  — μη  [Eq. (3.1.45)] whose 
m inim um  over n gives —ρ(μ, T). Using this function, we will first identify the 
conditions determ ining the critical param eters μ0  Tc, and nc. We will then proceed 
to  determine the equations for the critical isochore and the coexistence curve and 
then to calculate the liquid and gas densities along the coexistence curve.

1 The critical point and the critical isochore

Three conditions are needed to specify the three param eters μ£·, Tc, and nc. The 
first is the equation o f state for n:

dw df  n (4.4.1)

This equation is always satisfied in equilibrium for all μ  and T.  It provides 
the relation between μ  and T  along the critical isochore when n is set to  its 
critical value nc. The second condition determ ining the critical po in t is tha t the 
compressibility m ust be infinite or the inverse compressibility zero, as is clear 
from  the pressure-density phase diagram  shown in Fig. 3.1.3. Therefore,

d2w (Tc^ c,n)
dn2

d2f ( T c,n)
dn2

=  0. (4.4.2)

The th ird  condition is m ore subtle. The critical point term inates a line o f 
coexistence. It must, therefore, be a point a t which two solutions to Eq. (4.4.1) 
corresponding to the liquid and gas densities nj and ng merge into a single solution 
with density n =  nc. In a theory in which w is treated as an analytic function of 
n, this condition is reached by requiring the th ird  derivative o f w to  be zero at 
the critical point:

33νν(Τ0 μ 0  n)
dn3

33/ ( T c>n)
dn3

=  0. (4.4.3)

The critical pressure is thenEqs. (4.4.1) to  (4.4.3) determ ine Tc, μ 0, and nc.
pc =  - κ ( Τ , μ ΰ,ηΰ).

To study properties in the vicinity o f the critical point, we expand νν(7\μ, n) in 
powers o f  the order param eter φ =  η — η0\
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(c) (d)

Fig. 4.4.2. (a) Path in the Ising h — T  plane obtained by reducing 
temperature at h =  0. The magnetization along this path is zero for T  > Tc. 
(b) Two paths in the liquid-gas p — T  plane obtained by increasing 
temperature at constant pressure. The first (£>' —» c' —» d') crosses the 
coexistence line where there is a first-order change from the liquid to the gas 
state. The second (b" —> c" —» d") is the critical isobar passing through the 
critical point, (c) A path in the Ising h — T  plane analogous to the constant 
pressure path in the liquid-gas system, (d) A path along the critical isochore 
in the p — T  plane of the liquid-gas phase diagram analogous to the h =  0, 
m = 0 path in the Ising model. The constant pressure paths will be curves 
rather than straight lines in the μ — T  plane.

w =  νν(7\μ, nc) + -  τφ 2 — νφ 3 +  u</)4 — hφ, (4.4.4)

h =  μ  — 

v (T )  =  —

d f ( T ,n )  
δη

1 δ ^ Ι Τ , η )  
3! δη3

r(T ) =

u(T ) =

δ2Η Τ ,η )  
δη2 

1 d * f(T ,n )  
4! 3η4

(4.4.5)
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A t the critical point, /ι(μ0  Tc), r(Tc), and v(Tc) are all zero because o f Eqs. (4.4.1) 
to (4.4.3). They can be expanded in power series in

Α μ =  μ  — μ 0 (4.4.6)

and

A T  =  T  — Tc. (4.4.7)

The linear coefficient h depends on both  μ  and T ,  whereas r, v and u depend 
only on T. We therefore have

h =  Α μ - b A T  + 0 {{A T )2)

r =  a A T  +  0 ( (A T )2) (4.4.8)

=  g A T  + 0 ( (A T )2),

b =  (d2f ( T , n c) /d n d T ) \T=Tc,„=„c, a =  (33/ ( r , n ) / 3 n 23T)„=„c,r= rc, and g =  (1/3!) 
(d4f ( T , n ) / d n 3d T ) n=„c,T=Tc· To the order o f our analysis, we can ignore the 
tem perature dependence o f u and set it equal to

(1 /4  '.)(d4f ( T c,n ) /dn4)n=nc.

Eq. (4.4.4) is a Landau free energy similar to  those studied in the previous two 
sections. It has both even and odd order terms, but since all three potentials h, 
r and v are zero at the critical point, its form at the critical point is identical to 
tha t o f the Ising model.

We can now determine the equation for the critical isochore in the vicinity of 
the critical point in the μ — T  and p — T  planes. Along the critical isochore, 
n =  nc, φ  =  0, and, from  Eqs. (4.4.1) and (4.4.5), /ι(μ, T )  =  0, or

Δμ =  b A T  +  0 ( (A T )2). (4.4.9)

To determine the critical isochore in the p —T  plane, we recall tha t νν(Τ,μ, n) =  —p 
and w(Tc^ c,nc) =  pc- Expanding \ ν (Τ ,μ ,η €) in A T  and Δμ we obtain

νν(Τ,μ, nc) =  —pc — Αμη0 +  eA T  +  0 ( (A T )2), (4.4.10)

where e =  [d f (T ,n c) /d T ] T=Tc· Then using Eq. (4.4.9) we obtain

p -  pc =  (bnc -  e )A T  +  0 ( (A T )2). (4.4.11)

Eqs. (4.4.9) and (4.4.11) show th a t the critical isochore in general has bo th  finite 
slope and curvature at the critical point.

The equation o f state,

= τ φ  — 3 \νφ2 +  4 ΐ4φ3 — h =  0, (4.4.12)
οφ

determines φ(μ, T )  away from the critical isochore. The inverse compressibility 
K j1 goes to zero as the critical point is approached along the critical isochore:

S±  =  i ? L , „ 7 W , r .  (4.4.13)
on on1

Thus, like the susceptibility in the Ising model in zero external field, k t  diverges 
along the critical isochore as (A T )~ y with y =  1. Spatial correlations can 
be calculated by adding a gradient term  to the free energy as was done in
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the treatm ent o f the Ising model o f the preceding section. This leads to  the 
expression

S" (q) “  TT T q 1 = "2KTT + J q if  ,4414)
for the density correlation function, implying tha t there is a correlation length 
ξ =  (c /r )- 1 / 2  tha t diverges with a critical exponent v =  1 /2  as in the Ising 
model. Eq. (4.4.14) is the form for the density correlation function first proposed 
by O rnstein and Zernicke. As we saw in C hapter 2, the intensity o f  light 
scattered at wave vector q is proportional to  Snn. Eq. (4.4.14) then says tha t 
the intensity o f scattered light increases dram atically as the critical point is 
approached along the critical isochore. This is the phenom enon o f critical 
opalescence.

2 The coexistence curve

The coexistence curve is determ ined by the condition th a t the pressure, chemical 
potential, and tem perature o f the liquid and gas phases be equal. The densities nj 
and ng o f  the liquid and gas phases will differ from  the critical density according 
to «; =  «£· +  φι and ng =  nc +  φ ί . The pressures o f the two phases are then 
pi =  —\ν(Τ ,μ ,η ι)  and pg =  —\ν{Τ .μ ,ng). For a general function νν(Τ,μ,η), the 
determ ination o f the coexistence curve could be quite tedious. For the simple 
phenomenological form we are using, however, there is a fairly straightforw ard 
strategy for its determ ination. The idea is to  break φ  up into two parts,

φ =  φο +  Αφ, (4.4.15)

and to choose φο and μ  as a function o f T  so tha t there are no odd order 
terms in an expansion o f νν(Τ,μ, n) in powers o f Αφ. In  this case, there will be 
two values o f Α φ  which minimize the free energy, and ng =  nc +  φο — Α φ  and 
m =  nc +  φο + Αφ. The expansion o f w in powers of Α φ  is

w =  - P c-  Η φ 0)Αφ +  \ γ(Φο)(ΑΦ)2 -  ν(φ0) (Α φ γ  +  η (Α φ ) \  (4.4.16)

where

/ # ο )  =  h — τφο +  3γ/φ ΐ -  4υφ\,

γ(Φο) =  r — β\νφο +  12u</>o,
ν(φο) =  ν — 4u</>0. (4.4.17)

The third-order term  in the expansion of w is eliminated by choosing

* - 5 - S5 T ·  (4 4 1 8 )
The first-order term  is eliminated by choosing Αμ  as a function o f A T  so that
ΗΦο) =  0· This yields

h =  ^ ( Δ Τ ) 2 +  0 ( (Α Τ γ ) .  (4.4.19)
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This says tha t the critical isochore and the coexistence curve have the same slopes 
in the μ — T  plane at the critical point bu t th a t their curvatures are different, 
as a calculation o f the (A T )2 term  in Eq. (4.4.9) will show. Thus, along the line 
determ ined by Eqs. (4.4.17) and (4.4.19),

νν(Τ,μ,η) =  w ( T ^ , n c) +  ^Γ(φ0)(Αφ)2 +  u(A</>)4 (4.4.20)

with

Γ(φ0) =  a A T  +  0 ( (A T )2). (4.4.21)

Eq. (4.4.20) has exactly the same form  as the Ising free energy and is minimized 
by

Α φ  =  ± ( ~ τ ( φ 0)/4  u)1/2 =  ± ( - a A T / 4 u ) 1/2 +  0 ( ( A T ) i/2). (4.4.22)

Inserting Eq. (4.4.22) into Eq. (4.4.20), one finds that, as in the μ — Τ  plane, the 
critical isochore and coexistence curve in the p — T  plane have the same slope 
bu t different curvatures at the critical point. The above analysis says that the 
difference in density of the liquid and gas phases, 2 Αφ, tends to  zero as \AT\P, 
with β =  1 /2  in mean-field theory. The average density o f the liquid and gas
phases (m + n g)/2 =  nc +  φο tends to  the critical density linearly in A T .  This is the
law o f rectilinear diameters. Deviations from  this law o f the form (Δ Τ )1-α, where 
a is a critical exponent associated w ith the specific heat, which will be discussed 
in the next chapter, are expected in real systems where mean-field theory does 
no t apply.

For Ising m agnetic systems, it is conventional to plot the order param eter versus 
tem perature, whereas historically the phase separation and liquid-gas transitions 
are plotted with axes flipped, as shown schematically in Fig. 4.4.3. The actual 
liquid-gas phase boundary as m easured for a num ber o f different systems is shown 
in Fig. 4.4.4. This is one o f the best examples o f  universality in phase transitions, 
which will be discussed in more detail in the next chapter: all eight m aterials in 
the figure fall on essentially the same curve. Note, however, tha t the boundary 
is better described by an exponent β =  1/3 rather than  by the mean-field value 
β =  1 / 2 -

In  this section, we have seen that the liquid-gas transition is very similar to  the 
Ising transition even though there is no symmetry difference between the liquid 
and gas phases. The im portant point is tha t there are two choices for the density 
in the coexistence region just as there are two choices for the m agnetization 
along the coexistence line o f an Ising ferromagnet. The presence of odd-order 
term s in the expansion o f the free energy in powers o f φ  does no t lead to 
quantitative differences between the liquid-gas and the Ising transitions. A t the 
level o f mean-field theory, they only lead to  curvature in the coexistence curve 
and the average o f the liquid and gas densities differing from the critical density 
[n; +  ng — 2nc ~  ΔΤ].
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T

Fig. 4.4.3. Schematic phase boundary for the liquid-gas transition showing 
the asymmetry of the order parameter about the critical density.

Fig. 4.4.4. Phase boundary in units of reduced temperature and density for 
eight different molecular fluids near their liquid-gas transitions. Note the 
universal behavior and the fact that the solid line is Αφ  o c  (Tc — Τ ψ  with 
β =  1/3 rather than the mean-field result β =  1/2. [E.A. Guggenheim, J. 
Chem. Phys. 13, 253 (1945).]
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4.5 The first-order nematic-to-isotropic transition

As discussed in C hapter 2, liquid crystals are composed o f long, barlike molecules. 
In the isotropic fluid phase, the orientations and positions o f the molecules are 
random . In  the nematic phase, the positions o f the molecules are still random , but 
their long axes are oriented on the average along a particular direction specified 
by a unit vector n called the director, as shown in Fig. 4.5.1. Thus, the nematic 
phase is characterized by broken rotational but no t translational symmetry. I t is, 
therefore, tem pting to  associate the order param eter with the unit vector va which 
points along the long axis o f  molecule a located at position x*. However, since 
the nem atic molecules either have a center o f inversion or, if they do not, they 
have equal probability of pointing parallel or anti-parallel to any given direction, 
both va and —va contribute to the order. Thus any order param eter m ust be 
even in va. Since a vector order param eter is insufficient, we can try a second 
rank tensor. We require the order param eter to be zero in the high-tem perature 
isotropic phase. A symmetric traceless tensor will yield zero when averaged over 
directions, so we construct the order param eter from the symmetric traceless 
tensor form ed from  va. Let

= J f  D v.av/ -  !  w *  -  χα)’ (4·5 1 )
a

where v“ is the ith com ponent o f va. The factor o f V / N  is introduced in the 
definition o f Qij to m ake it unitless as is conventionally done. Let Q be the tensor 
with com ponents Q,j. N ote that T rQ =  0 since va is a unit vector. In the ordered 
state (Q) is no t zero. In a coordinate system with one axis along the direction of 
molecular alignment, the m atrix (Q) is diagonal:

/  f s  0 “ 0 X
< 0 =  0 - j S  +  i/ o . (4.5.2)

V O  0 - I s - η /
If η is nonzero, Q is biaxial, ana there are two, rather than  one, preferred 
directions. Except in exceptional cases, nem atic liquid crystals are uniaxial so 
tha t η =  0. In this case,

(Qij) =  Simnj  -  1<5,7) , (4.5.3)

where the unit vector n, called the F rank  director, specifies the direction of the 
principal axis o f {Qij)· From  Eq. (4.5.1)

S =  1(3(να · n)2 -  1) =  l( (3 c o s 2 0a -  1)), (4.5.4)

where θα is the angle between the molecular axis and the director n.
We are now in a position to  construct a Landau free energy for a nematic

liquid crystal. The free energy density f  m ust be invariant under all rotations. Q
transform s like a tensor under the ro tation group, f  must, therefore, only be a 
function o f the scalar com binations Tr(Q)p, p =  2, 3,... that are invariant under 
rotations. The term  with p =  1 is just the trace o f  (Q) and is by definition zero.
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(a) (b)

Fig. 4.5.1. (a) Schematic representation of barlike molecules in the nematic 
phase. They are oriented on the average along the director n. The direction 
of each molecule is effectively confined to lie within a cone, as shown in (b), 
rather than being free to choose any solid angle.

Thus, there is no term  linear in (Q) in the free energy. To fourth order in Q, we 
therefore have

f = ^ ( ^ T r ( 2 ) 2) - w ( ^ T r ( £ ) 3) +  U( ^ T r ( 0 2)2,

=  ^ r S 2 - w S 3 + u S 4. (4.5.5)

In general, there should be two fourth-order term s proportional, respectively, to 
(Tr(Q )2)2 and Tr(Q )4. However, for 3 x 3 symmetric traceless tensors, they are 
strictly proportional, and we need only include the (Tr(Q )2)2 term. As before, r 
is positive at high T  and negative at low T.  We choose

r =  a(T  -  Τ’*). (4.5.6)

u and w are independent o f tem perature.
The free energy o f Eq. (4.5.5) differs from tha t o f the Ising model by the presence 

o f the third-order term  —wS3. I f  the order param eter for the nem atic phase were 
a vector (as m ight be imagined if the constituent molecules lacked inversion 
symmetry) rather than a tensor, then odd order term s would be prohibited in 
the free energy by rotational symmetry. However, the rodlike molecules have 
a quadrupolar rather than  a dipolar symmetry, and the order param eter is a 
tensor for which ro tational invariance does not rule out the odd terms. N ote that 
the quadrupole symmetry is also reflected in the form of the order param eter in 
Eqs. (4.5.3) and (4.5.4). /  is sketched as a function o f S  for various values o f T  
in Fig. 4.5.2. N ote tha t the cubic term  leads to  an asymmetry in f  as a function 
o f S  and the emergence o f a secondary minimum at finite S. The value o f /  
a t this m inim um  is greater than  zero at high tem perature but becomes equal to 
zero at a critical tem perature Tc tha t is greater than the tem perature T* at which 
the extremum at the origin develops negative curvature. Since f  is less than zero 
at the secondary m inimum for all T  < Tc, there is a phase transition with a
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(a) (b)
Fig. 4.5.2. Free energy density /  as a function of order parameter S for 
different T  for the isotropic-nematic transition. The transition is first order. 
Note the limits of metastability for supercooling (Τ ') and superheating (T**).

discontinuous change in S  a t Tc, i.e. there is a first-order transition at Tc. Τ '  is 
the limit o f  metastability o f the isotropic phase since, for Τ ’ < T  < Tc, the origin 
is still a local m inimum even though it is no t a global minimum. The limit of 
m etastability o f  the nem atic phase occurs at the tem perature T** at which the 
secondary m inimum disappears on heating.

The first-order transition tem perature Tc and the value Sc o f S  a t Tc are 
calculated by requiring tha t f  be an extremum with respect to  S  in equilibrium 
and tha t the free energies o f  the disordered and ordered phases be equal at the 
transition. The latter condition implies tha t the isotropic and nem atic phases 
can coexist at the transition tem perature. If  other variables, such as pressure or 
density, were included in our treatm ent, the two phases would coexist along a line 
rather than  at a single point. The equations determining Tc and Sc are, therefore,

Since the transition is first order, there is an associated latent heat. The entropy 
per unit volume of the disordered phase is zero in mean-field theory, whereas 
tha t o f the nem atic phase is negative. This result can be obtained from the free 
energy o f the nem atic phase, which to  lowest order in r — rc is

=  (r — 3wS +  4 uS2)S = 0
ί/ύ

/  =  ( ^ r - w S + u S 2)S2 =  0.

(4.5.7)

(4.5.8)

Thus,

(4.5.9)
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q =  —Tcs =  ^ a T c(w/2u)2. (4.5.12)

/  =  ~(r ~  rc)S2 =  i ( r  -  rc)(w/2u)2. (4.5.10)

The entropy density in the nematic phase (relative to th a t o f the isotropic phase) 
is then

df 1 , 1  , 
s = ~ S f =  ~ 2  =  ~ j a ( W/2u)2. (4.5.11)

There are, o f course, o ther contributions to the entropy no t included in the 
present model tha t ensure tha t the total entropy is always positive. The latent 
heat absorbed in going from  the nem atic to the isotropic phase is thus 

1 

2°
The molecules comprising nem atic liquid crystals (called nematogens)  are 

anisotropic diamagnets. Typically they have lower energy when they are aligned 
with their long axis parallel to the m agnetic field. The interaction H am iltonian is

tfext =  ~  J  d i X X a Q i j H iH j ,

=  - 1 J  ddx XaH 2S, (4.5.13)

where χ α is the difference in the magnetic susceptibility o f a nem atic molecule 
for directions parallel and perpendicular to its long axis and H  is the external 
m agnetic field along n. Thus h =  (3 /2 )χαΗ 2 is the field conjugate to  S. The 
susceptibility associated with S  can be calculated as before. I t satisfies

λ C
χ =  —  = ( r - 6 w S  +  12uS2) - 1. (4.5.14)

on
χ  appears to diverge at T  =  T* as tem perature is lowered in the isotropic phase. 
The first-order phase transition at Tc > T"  cuts off this divergence as shown in 
Fig. 4.5.3. T* is thus the limit o f  m etastability o f the isotropic phase. To find the 
limit o f m etastability (Γ**) o f the nem atic phase, we calculate the tem perature at 
which χ ~ λ =  0 in the free energy m inimum with S  >  0. S  satisfies the equation of 
state [Eqs. (4.5.7)] as before, and

9 w2
r * * = α ( Γ * * - η = —  (4.5.15)

N ote tha t T** — Tc = w2/( l6 a u ) >  0 as necessary.
A general phenom enon associated with first-order transitions is the presence of 

hysteresis in cycling through the transition and the related effects o f superheating 
and supercooling. Therm odynam ically the transition should occur at Tc. However, 
the high tem perature phase with S =  0 is stable against small fluctuations until 
the tem perature Γ* is reached on cooling. Between Tc and T*, the ordered phase 
will only occur if  there is a sufficiently large fluctuation. Below T* the system 
is unstable against infinitesimal fluctuations into the ordered state. Thus, on 
cooling, the actual transition to the low-tem perature ordered phase will occur 
at some tem perature between Tc and T* depending on the particular sample 
and the experimental conditions. Similar argum ents show that, on heating, the
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Fig. 4.5.3. χ 1 for a first-order transition. In mean-field theory, this function 
extrapolates to zero at the limit of metastability 7” .

transition from  the ordered to  the high tem perature phase will occur between Tc 
and T ” .

The example o f the isotropic-to-nem atic transition is representative o f phase 
transitions in which the order param eter possesses a third-order invariant. One 
expects in general tha t such transitions will be first order. Though the above 
Landau theory correctly predicts qualitative properties o f first-order transitions, 
it certainly cannot make detailed quantitative predictions. This is because the 
order param eter is not zero at the transition. One is no t justified, therefore, in 
truncating the power series expansion o f f  a t fourth order. Even in mean-field 
theory, higher order terms in this expansion will lead to corrections both to Tc 
and Sc. If, however, the transition is nearly second order, as would be the case 
if the predicted value o f Tc — T * is small, the truncated model is a reasonable 
approxim ation.

4.6 Multicritical points

The phase transitions discussed in Secs. 4.4 and 4.5 occurred in response to 
changes in a single variable, the tem perature T ,  when the external ordering field 
(i.e., field conjugate to the order param eter) is zero. Thus, the phase diagram  
for these systems can be draw n on the tem perature axis alone with a critical 
point separating the high-tem perature disordered phase from the low-temperature 
ordered phase. In systems where there is more than one non-ordering field (such 
as pressure and tem perature), phase diagram s become multidimensional, and 
there can occur critical points that can be reached only by fixing two or more 
non-ordering fields. In this section, we will consider a few of these multicritical 
points.
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/
T = T **

(φ)

Fig. 4.6.1. /  for a φ6 potential [Eq. (4.6.1)] with u4 negative. There is a 
first-order transition at T  = Tc. T "  and Τ ' are, respectively, the limits of 
metastability on heating and cooling.

1 Tricritical points

In  the preceding section, we found th a t third-order invariants lead to first-order 
transitions. First-order transitions can also occur if symmetry prohibits odd-order 
terms. Consider the following Landau free energy:

where r =  a (T  — Τ ') .  I f  u4 is positive, the sixth-order term can be neglected in 
the vicinity o f the predicted second-order transition. If, on the other hand, u4 

is negative, the sixth-order term  is required to  m aintain stability. In this case, 
secondary m inima symmetrically placed about φ =  0 develop as T  is lowered, as 
shown in Fig. 4.6.1. W hen the free energies o f the secondary m inima with φ φ  0 
pass through zero, there is a first-order transition as in the isotropic-to-nematic 
example.

W hen u4 >  0, the mean-field transition tem perature is the same as for the 
φ Λ-model o f  Sec. 4.4, i.e., rc =  0 and Tc = Τ ' .  W hen u4 <  0, however, the 
first-order transition tem perature is determ ined by the conditions / (rc, φ) = 0 and 
d f(rc, φ ) /5 φ  =  0 just as for the nematic liquid crystal. This leads to

The phase diagram  described by this equation in the r — u4 plane is shown in 
Fig. 4.6.2. The line of second-order transitions for u4 >  0 is called a lambda 
line. (It was first observed at the norm al-to-superfluid transition in liquid helium 
mixtures; see Fig. 4.6.7. The superfluid transition is often referred to  as a λ

f  =  ~Γφ2 +  u ^ 4 +  η6φ 6, (4.6.1)

(4.6.2)
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Fig. 4.6.2. Phase diagram for the free energy of Eq. (4.6.1). The line r = 0, 
u4 > 0 is a second-order lambda line, shown as a single line in the figure. The 
line r =  ±|u4|2/t<6 is a line of first-order transition, shown as a double line in 
the figure. The point TP, r =  0, u4 =  0, is a tricritical point.

transition since the specific heat curve resembles the G reek letter λ  .) I t meets the 
line o f first-order transitions for u4 <  0 a t a tricritical point, (r,u4) =  (0, 0 ).

The value o f the order param eter, the latent heat along the first-order line, and 
the limit o f metastability on heating can be calculated as in the previous section:

Φο =  ±[|w4|/(2w6)]1/2, (4.6.3)

q =  - T cs =  ^ \u 4\/u6, (4.6.4)

r** =  α(Τ** -  T*) =  2|U4|2/(3 u6)·
Notice tha t both  φ 0 and q go to  zero at the tricritical point where there is no 
longer a first-order transition. N ote also tha t along the first-order line there is 
coexistence o f three phases: the disordered phase with φ  =  0 and two ordered 
phases with φ  =  ± \φ €\· W hen u4 =  0, there is a second-order transition but with 
an order param eter critical exponent β  o f 1 /4  rather than  1/2:

</> =  + [—r / 6u6]1/4. (4.6.5)

Similarly, when an external ordering field h is applied at the tricritical point,

φ  =  (h/6u6)i/s, (4.6.6)

implying tha t the exponent δ is 5 rather than  3. The other critical exponents, y 
and v, for the tricritical point are the same in mean-field theory for u4 =  0 and 
for u4 >  0 .

Fig. 4.6.2 depicts the phase diagram  in the vicinity o f a tricritical point in the 
m ost natural variables for the model free energy o f  Eq. (4.6.1). In real systems, all 
o f the potentials are functions o f the experimentally controllable param eters such 
as tem perature, pressure, chemical potential, concentration o f species, or external
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Fig. 4.6.3. Crystal structure of FeC^. Note the alternation in spin direction 
from layer to layer. [R.J. Birgeneau, W.B. Yelon, E. Cohen, and J.
Markovski, Phys. Rev. B 5, 2607 (1972).]

magnetic field. Physical phase diagram s with tricritical points will thus be rotated 
and stretched versions o f Fig. 4.6.2. We will now consider some physical systems 
exhibiting tricritical points, the microscopic models used to describe them, and 
how their mean-field free energy can be cast into a form similar to Eq. (4.6.1).

2 M etam agnets  and F eC h

M agnets which undergo first-order phase transitions in an increasing magnetic 
field are called metamagnets. There is a wide variety o f metam agnets that exhibit 
tricritical points. One that has been studied in detail is FeCl2 . In  this material, 
magnetic Fe2+ ions occupy sites on stacks o f parallel triangular lattices separated 
by chlorine ions, as shown in Fig. 4.6.3. Each Fe2+ ion is surrounded by a 
cage o f six chlorine ions and carries an effective spin of one. Lattice anisotropy 
favors alignment o f spins perpendicular to the layers. There is positive intralayer 
and negative interlayer exchange. The ordered state is one in which spins in a 
given plane are parallel but alternate in direction from layer to layer, creating a 
two-sublattice antiferrom agnetic structure. If  an external magnetic field is applied 
perpendicular to the layers, the average spin in one sublattice will increase and 
that in the o ther will decrease such that there will be both staggered and uniform
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O

T  (K)

Fig. 4.6.4. Phase diagrams for the metamagnet FeCk in (a) the internal 
field-temperature plane and (b) the magnetization-temperature plane. The 
lines in these curves are guides to the eye. [R.J. Birgeneau, G. Shirane, M. 
Blume, and W.C. Koehler, Phys. Rev. Lett. 33, 1100 (1974).]

com ponents to the magnetization. A sufficiently large field will lead to alignment 
o f all spins and the destruction o f long-range antiferrom agnetic order.

The experimental phase diagram  for FeCl2 in the tem perature-internal magnetic 
field plane is shown in Fig. 4.6.4a. (The internal m agnetic field is the applied 
external magnetic intensity minus the demagnetizing field.) N ote that the phase 
boundary separating the param agnetic (P) and antiferrom agnetic (AF) phases 
is perfectly sm ooth with no evidence o f any multicritical point. The situation 
in the m agnetization (m)-temperature plane is quite different, as can be seen in 
Fig. 4.6.4b. A t high tem peratures and small values o f m, there is a single second- 
order phase boundary. Below a critical tem perature, two phases with different 
values o f m coexist, indicating the existence of a line o f  first-order transitions.

It is instructive to consider a microscopic model for a m etam agnet and to see
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how it predicts a tricritical point and two-phase coexistence in qualitative agree
m ent with the experiments discussed above. The H am iltonian for a m etam agnet 
is a generalization o f  the simple Heisenberg model that includes the possibility 
o f anisotropic and further neighbor exchange and o f lattice anisotropy favoring 
spin alignment along particular lattice directions. The following H am iltonian is 
sufficient for our present discussion:

■Si<- D Σ ^ μ ι ) 2 - E w . i i  +  ■S'.^ ·  (4·6·7) 
1,1' 1 1

Here D is an anisotropy field resulting from  spin-orbit interactions, Si n an<̂  #||
are, respectively, the spin and external magnetic field parallel to the preferred
crystalline axis, and Η χ  is the com ponent o f the m agnetic field perpendicular
to that axis. The particular form for the exchange function will vary from
system to system. In FeCl2, D > 0 and

!Ji if 1,1' are n.n. in same plane;
J[ if 1,1' are n.n.n. in same p lane; (4.6.8)

—J2 if 1,1' are n.n. in adjacent planes,
where n.n. and n.n.n. mean, respectively, nearest neighbor and next nearest 
neighbor. The antiferrom agnetic coupling J2 between planes favors an alternation 
in spin direction from one plane to the next.

If  the anisotropy energy is sufficiently large, we may assume that the spins are 
effectively Ising spins that can point only up or down and, therefore, we can treat 
Si as an Ising spin variable. In this case, the mean-field free energy associated with 
the m etamagnetic H am iltonian can be calculated using Bragg-Williams theory. 
Let mA =  (Sy) be the average spin (magnetization) in sublattice-A and mB the 
average spin in sublattice-B. The entropy calculated according to the methods 
discussed in Sec. 4.2 reduces to the sum o f the entropies o f the two sublattices. If 
we ignore J[, our mean-field free energy becomes

1 1 , , 1 
f  =  2 Z2J2mAmB -  -^z lJ l(mA +  me) -  +  s(mfl)]> (4.6.9)

where s(m) is the entropy o f mixing [Eq. (4.1.3)] and where z2 =  2 and z\ =  6, the 
num ber o f nearest neighbors in a triangular lattice. Now define the magnetization 
m and staggered m agnetization ms via

™ =  \ ( mA +  mB)

ms =  ^ (m A — mB), (4.6.10)

and expand f  to sixth order in ms with coefficients depending on m:

/  =  fo(m) +  ^ r s(m)m2s +  u4(m)m^ +  u6(m)m6s. (4.6.11)

Here, fo(m) =  \ T mm2 — Ts(m) with Tm =  z2J 2 — z\J\  is identical to the Bragg- 
Williams free energy o f Eq. (4.1.4) with Tm replacing Tc. In  addition

rs(m) =  7(1 -  m2) - 1 -  T “ , (4.6.12)
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where TN =  z\J\  +  Z2J 2 is the mean-field transition tem perature to the antiferro
magnetic state when m =  0 (i.e., H =  H\ =  0) and 

T  14- 3m2

“<<"* =  Τ 2 ϊ ώ ? Γ  (4'613)
We will not need an explicit form for ue(m) in what follows.

A n effective free energy for the staggered m agnetization can be obtained by 
using the equation of state d f  /dm  =  H  to determine m as a function o f T,
H, and ms. W hen ms is small, this can be done in two steps. First solve for 
m =  m ^(T ,H )  =  mo when ms is zero. The result is Eq. (4.1.9) with Tc replaced by
— Tm. Then set m =  m$ +  dm  and expand f  for small dm: 

g(ms,Sm) =  f (m  +  dm,ms) — Hdm — /(mo,0)

=  ^Z- 1 ("io)(<5m)2 +  l r s(mo)m2 (4.6.14)

+u4(mo)mj +  u6(m0)mf +  A(mo)m2<5m,

where x~1(mo) =  Tm +  T(  1 — mfy~2 and A(mo) =  — ml)-1 . N ote that there
is a linear coupling between m2 and dm. Thus if ms is nonzero,

dm =  —χλη^  (4.6.15)

is necessarily nonzero in equilibrium. Using Eq. (4.6.15) in Eq. (4.6.14), we 
obtain

1 1 
g(mo) =  2 r(m*)ms +  M ^ o )  -  2 *(m«)/l2(mo)]ms +  (4-6.16)

In  this equation, we have explicitly displayed only the corrections to u4 arising 
from couplings o f dm to ms. In  general, there will be corrections to sixth and 
higher order potentials. For this reason, we have used u'6 to distinguish it from 
the unrenorm alized potential ue- Eq. (4.6.16) now has precisely the same form 
as the model free energy introduced at the beginning o f this section. If  u'6 is 
positive, then there is a tricritical point determ ined by the equations r(m0) =  0, 
W4(mo) — jX(moM2(mo) =  0> and the equation o f state relating mo to H. We will 
leave the calculation of H  and T  at the tricritical point to a homework problem 
(Problem 4.4).

On the first-order side o f the tricritical point, a phase with ms =  0 coexists with 
two antiferrom agnetic phases with positive and negative staggered magnetization. 
Eq. (4.6.15) then implies the coexistence o f  two different values o f  the uniform 
m agnetization: m = m0 and m =  m0 — χ/.m2, in agreement with the results of 
experiments (Fig. 4.6.4).

Detailed calculations o f  the phase diagram  associated with Eq. (4.6.16) show 
that there is only a lam bda line with no tricritical point for — 1 <  ( z \ J \ / z 2J2)  <  0. 
W hen (Z1 J 1 /Z 2 J 2 ) > 3/5, the sixth-order term in the expansion o f g(ms) is 
positive and there is a tricritical point. However, when 0 <  (Z1 J 1 /Z 2 J 2 ) < 3/5, this 
coefficient is negative, and, rather than a tricritical point, there is a critical endpoint 
in which the second-order P-A F line term inates on a first-order line, which 
terminates at a liquid-gas like critical point within the region o f antiferrom agnet
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Fig. 4.6.5. Schematic representation of a critical endpoint (CE) in which a 
second-order line terminates at a first-order line that continues into an 
ordered region and itself terminates at a liquid-gas like critical point (CP).

order, as shown schematically in Fig. 4.6.5. Calculated phase diagrams for various 
values o f the ratio Z1 J 1 /Z2 J 2 are shown in Fig. 4.6.6.

3 H e 3 — H e 4 m ixtures and the Blume-Emery-Griffiths model

A nother system exhibiting an experimental tricritical point is that o f mixtures of 
H e3 and He4. In  pure He4, there is a transition from a norm al fluid to a superfluid 
phase characterized by a complex order param eter. W hen He4 is diluted with He3, 
the superfluid transition tem perature is depressed. A t the same time, the tendency 
toward phase separation increases, and the second-order lam bda line terminates 
at exactly the point where phase separation into H e3-rich and H e3-poor phases 
first takes place. A n experimental phase diagram  is shown in Fig. 4.6.7. Note 
the close resemblance o f this phase diagram  to the metamagnetic m agnetization- 
tem perature diagram  (once the axes are flipped). The relative concentration of 
H e3 is the analog o f the magnetization, and the superfluid order param eter is the 
analog o f the staggered magnetization.

The Blume-Emery-Griffith (BEG) model is a spin-lattice model that successfully 
describes the essential features of the He3-He4 phase diagram. A t each site 1 on 
a lattice, there is a spin variable Si that can take on values —1,0, +1. The order 
param eter for this model is the uniform  average spin (Si). This is an Ising-like 
order param eter that fails to describe in detail the complex superfluid order 
param eter. A t the level o f mean-field theory, however, the distinction between the 
two types o f order is unim portant. In  the simple Ising model with the constraint 
Si =  +1, S,2 =  1 at every site. In the present case, S,2 can be either zero or 
unity, and  one can interpret (S,2) as the density o f He4 atoms and 1 — (S,2) as the 
density o f H e3 atoms. The BEG H am iltonian contains an exchange term  favoring 
the development o f nonzero (Si) and other terms describing the attraction or 
repulsion between atoms on different sites. The latter terms will be o f the form
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Fig. 4.6.6. Mean-field phase diagrams for the metamagnet. Here, J  =  z\ J\ 
and J' =  Z2J2· (a) shows only a second-order P-AF transition, (b) shows a 
critical endpoint at tcE where the second-order P-AF line meets the 
first-order coexistence line and a critical point at tCp where two-phase 
coexistence ends, (c) and (d) show second-order P-AF lines terminating at a 
tricritical point. [J.M. Kincaid and E.G.D. Cohen, Phys. Rep. C 22, 57 
(1975).]

S,2S,?, (1 — Sf)Sy +  (1 — S,?)S|2 and (1 — S,2)(l — S,?). In com pact form the BEG 
H am iltonian is

J 'f  = ~ J  Σ  S|S|' ~ K  Σ  S ^  +  A ^T S ,2. (4.6.17)
<1,1'> <u'> 1

The mean-field phase diagram  for this model is shown in Fig. 4.6.8.
As we briefly m entioned above, the first-order line near a tricritical point 

actually corresponds to coexistence o f three phases: the param agnetic and two 
antiferrom agnetic phases. The degeneracy between the two A F phases can be 
lifted by the application o f a field h (not physically realizable) conjugate to the 
order param eter (ms for the metam agnets and Si for the BEG model). The phase 
diagram  for the BEG model in the T  — Δ — h plane is shown in Fig. 4.6.9. Note
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X (mole % He3)

Fig. 4.6.7. T em p era tu re-co m p o s itio n  ph ase  d iag ram  fo r the  system  H e3 +  
H e4. [E .H . G ra f, D .M . Lee, a n d  Jo h n  D . R eppy, Phys. Rev. L e tt.  19, 417 
(1967).]

that in this three-dimensional space, three second-order lines meet a t the tricritical 
point. This is in fact why it is called a tricritical point.

4 Bicritical and tetracritical points

Anisotropies favoring spin alignment along particular lattice directions can break 
the On symmetry o f ideal Heisenberg models and give rise to a class o f multicritical 
points that we will now discuss. Consider a system with two Ising order param eters 
φι  and <p2 with the following Landau free energy :

/  =  \r(<p2i + Φ2 ) ~  \g(<P2i ~  Φι) + “ ι Φί + “ιΦι + 2κι20ι4>2· (4.6.18)

If  g =  0 and ui =  112 =  « 12, this model reduces to the xy-model with a two- 
com ponent vector order param eter φ = (φ ι ,φ ι )  and isotropic interactions. W hen 
g >  0, however, the field φι  will order before Φ2 , and we expect an ordered 
phase with φι φ  0 and Φ2 =  0. W hen g <  0, the converse will occur. The 
details o f the phase diagram  for Eq. (4.6.18) depend on the relative magnitudes 
o f the fourth-order potentials. W hen 111U2 there is a first-order line along
g =  0 , r <  0 separating the phase with φι Φ 0  and Φ2 =  0  from the phase 
with φι  =  0 and Φ2 φ  0, as shown in Fig. 4.6.10a. Two distinct second-order 
lines meet at the point r =  0 , g =  0 , and this point is called a bicritical point. 
W hen U1 U2 > uj2> there is an interm ediate phase, with both  φι and Φ2 nonzero, 
separated by a second-order line from  the phases with Φ2 =  0  and φι =  0 , as
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Fig. 4.6.8. Mean-field phase diagram in the temperature-concentration (x) 
plane for the Blume-Emery-Griffiths model [M. Blume, V.J. Emery, and 
Robert B. Griffiths, Phys. Rev. A  4, 1071 ( 1971)].

shown in Fig. 4.6.10b. In  this case, four second-order lines meet a t the point 
r =  0 , g =  0 , which is now a tetracritical point.

Bicritical and tetracritical points can be found in a num ber o f  antiferromag- 
nets in which the lattice anisotropy is no t strong enough to enforce complete spin 
alignment. The zero-field state is antiferrom agnetic with the staggered m agneti
zation m s aligned along the anisotropy axis. The application o f a field parallel 
to the anisotropy axis initially increases the m agnetization in one sublattice over 
the o ther but preserves the direction of m s. A t a critical value o f  the field, the 
direction o f m s spontaneously flips from parallel to perpendicular to the field, 
as depicted schematically in Fig. 4.6.11a. This is called a spin-flop transition. It 
is a first-order transition that terminates at a bicritical point. A t the bicritical 
point (Η, T )  =  ( / /Bp, 7bp)> both  the parallel and  perpendicular com ponents of 
m s are critical (as are the com ponents o f φ  in our toy model). For H  > H^p, 
only the perpendicular com ponents order, while for H  < H Bp> only the parallel 
com ponents order. Along the first-order line, two phases with different uniform 
m agnetization coexist, as shown in Fig. 4.6.11b. If  there is a tetracritical rather 
than a bicritical point, there will be an interm ediate phase between the antiferro
magnetic and  spin-flop phases, as shown in Fig. 4.6.11c. Phase diagram s such as 
the ones shown in Fig. 4.6.11 can be obtained from a mean-field analysis o f the 
H am iltonian o f  Eq. (4.6.7) with appropriate values o f anisotropy D and exchange 
energy J\y. The phase boundaries near either the bicritical or the tetracritical 
point predicted by mean-field theory will be straight lines. The effective free 
energy in the vicinity o f  the bicritical point will have the form o f Eq. (4.6.18). The
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Fig. 4.6.9. Phase diagram for the BEG model in the T  — A — h plane. The 
three solid lines are lambda lines terminating planes of two phase 
coexistence. They meet at a tricritical point (TP). The double line is a 
first-order line. Phases with positive and negative (S) coexist along the plane 
A, and phases with different values of (S2) coexist along the planes B and B'. 
Three phases coexist along the double line D. [R.B. Griffiths, Phys. Rev. Lett. 
24, 715 (1970).]

φ\ Φ 0
Φ 2 =  0

B P

Φι =  0
Φ2 Φ 0

(a) (b)

Fig. 4.6.10. Phase diagram from the model described by Eq. (4.6.18) showing 
(a) a bicritical point (BP) when utu2 < u\2 and (b) a tetracritical point (TP) 
when u\ui > u\2.

phase boundaries in the schematic phase diagrams o f Fig. 4.6.11 have nonzero 
curvature near the critical points. We will see in the next chapter tha t critical 
fluctuations no t included in mean-field theory predict such curvature. Fig. 4.6.12a 
shows a bicritical point in the experimental phase diagram  o f M nF 2- Fig. 4.6.12b 
shows a bicritical point in the experimental phase diagram  for GdAlC>3 in an 
external field parallel to the anisotropy axis, and Fig. 4.6.12c shows a tetracritical 
point in the same m aterial in an external field perpendicular to the anisotropy 
axis.
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(c )

Fig. 4.6.11. (a) Schematic representation of a phase diagram of an 
anisotropic antiferromagnet in a field with a spin-flop bicritical point (BP).
In the antiferromagnetic phase, the average spin in each of the two 
sublattices is either parallel or antiparallel to the anisotropy axis for 
H b p  > H  >  0. The magnitude of the spin is greater in one sublattice than in 
the other. In the spin-flop phase, the component of the spin parallel to the 
field is the same in both sublattices, and the component perpendicular to the 
field alternates in sign, (b) Same as (a) but in the m-T  plane, (c) Schematic 
representation of a phase diagram for an anisotropic antiferromagnet with a 
tetracritical point (TP). [Michael E. Fisher and David R. Nelson, Phys. Rev. 
Lett. 32, 1350 (1974).]

5 L ifsh i tz  points

There are systems in which the low-tem perature ordered phase changes from one 
o f  spatially uniform order to one o f spatially m odulated order as a function of 
some potential or external field. As shown in Fig. 4.6.13, there are typically three 
phase boundaries in these systems separating, respectively, the high-tem perature 
disordered phase from the spatially uniform ordered phase, the disordered phase 
from  the spatially m odulated phase, and the spatially uniform ordered phase from
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Fig. 4.6.12. (a) Phase diagram for MnF2 in a field parallel to the anisotropy 
axis showing a bicritical point [Y. Shapira and S. Foner, Phys. Rev. 1, 3083 
(1970)]. (b) Phase diagram for GdAlC>3 in a field, ify, parallel to the 
anisotropy axis showing a bicritical point, (c) The same as (b) in a field, HL, 
perpendicular to the anisotropy axis showing a tetracritical point [H. Rohrer 
and Ch. Gerber, Phys. Rev. Lett. 38, 909 (1977)].

the spatially m odulated ordered phase. These three phase boundaries meet at a 
Lifshitz point (Lifshitz 1941). A Landau free energy for a generic (d, m)-Lifshitz 
point is

F =  1 f ddx[r4>2 + C|,(V| φ)2 + cx(Vx^ ) 2 +  D(V2^ )2] +  u f ddx<j>\

(4.6.19)

where x =  ( χ μ , χ χ )  is divided into m perpendicular com ponents χ χ  and d — m 
parallel com ponents X|. The field φ  can be a scalar or an n-component vector. 
W hen both c\\ and c± are positive, the ordered phase will be spatially uniform. 
If, however, cx <  0 , then the system can lower its energy by creating spatially 
m odulated structures with wave vectors o f m agnitude \c±\/2D, as can be seen 
by seeking the m inimum o f the quadratic part o f F  over the spatially varying 
field φ(χ). The point r =  0, c± =  0 is a Lifshitz point. Because there is no term 
in the free energy proportional to Vj_, the mean-field correlation perpendicular
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(a) (b)

Fig. 4.6.13. Schematic phase diagrams for the Lifshitz Landau free energy of 
Eq. (4.6.19) (a) for a scalar order parameter and (b) for a vector order 
parameter. The high-temperature paramagnetic phase (P), the 
low-temperature ferromagnetic phase (F), and the low-temperature, negative 
cl, modulated phase (M) all meet at the Lifshitz point (LP). The P-F and 
P-M transitions are second order in mean-field theory. The F-M transition is 
first order for a scalar order parameter and second order for a vector order 
parameter.

length at the Lifshitz point is ξ± = (D /r ) ,/4 and is proportional to r - 1 / 4  rather 
than to r~ 1/2, i.e., the mean-field correlation length exponent v is 1 /4  rather 
than  1/2. Schematic phase diagram s for scalar and vector Lifshitz points are 
shown in Fig. 4.6.13. In  both, there is a disordered param agnetic phase (P), a 
spatially uniform ordered ferromagnetic phase (F), and a periodically m odulated 
phase (M) meeting at the Lifshitz point. In  mean-field theory, the P-F and 
P-M  transitions are second order. In the m odulated state with a vector order 
param eter, the vector φι rotates in helical fashion perpendicular to the axis of 
m odulation. The F-M  transition is first order for a scalar order param eter and 
second order for a vector order param eter (see Problem 4.7).

Lifshitz points can arise in m etam agnets with the appropriate choice o f ex
change. A m uch studied example is the anisotropic-next-nearest-neighbor Ising 
model (A N N N I model). In this model, there is ferromagnetic exchange between 
Ising spins within a given layer and ferromagnetic exchanges between spins in 
nearest neighbor layers. In  addition, however, there is an antiferrom agnetic ex
change between spins in next-to-nearest neighbor layers, as shown in Fig. 4.6.14. 
Let 1 =  (r, i) specify the position o f a site in the lattice where r  is a two-dimensional 
vector. The A N N N I model H am iltonian is

&  = — J  SijSiJ — J 1 S;,rSi+l,r +  J2 S;rS;+2,r. (4.6.20)
i,<r,r'> i,r i,r

The mean-field inverse nonlocal susceptibility for this model is easily calculated:



4.6 Multicritical points 187

J  i

J 2

(a) (b)

Fig. 4.6.14. (a) Nearest and next-nearest-neighbor interactions in the 
ANNNI model, (b) Ground state of the ANNNI model for J2 > J\/2 .

Xiy
d2F

w w  (4'6'21)
=  Τ δ y/ — J < 5 ,>r,r' — ^r,r' [·Λ (< 5i,i'+ l +  < 5 i,i '- l)  ~  ^2(^1/+ 2  +  ^w'-2)]> 

where yr>r' is one if r  and r ' are nearest neighbors in the plane and zero otherwise. 
The Fourier transform  o f this function is

X (4||,q± = 0 ) =  T - z J -  2Ji cos in a + 2J2 cos 2q\\ a, (4.6.22)

where a is the lattice spacing between layers and and q± are, respectively, 
the com ponents o f the wave vector q along the norm al to the layers and within 
the layers. This function can now be minimized with respect to q W hen
J 2 <  -Λ/4, the m inimum occurs a t q\\ =  0, and there is a transition to a uniform
ferromagnetic state when

T  =  TFM =  z J  + 2J\ -  2J2. (4.6.23)

W hen J2 >  J i /4 ,  the value o f q\. minimizing χ~ [ is

qoa =  cos_ 1( J i / 4J 2)· (4.6.24)

As the tem perature is lowered, the param agnetic phase first becomes unstable 
with respect to fluctuations in Si at this wave num ber. Thus, there will be a phase 
transition when χ~ι (q0, 0 ) passes through zero at

T  =  Tm = zJ - 1- ( J \ / J 2) - 2 J 2 (4.6.25)

to a spatially m odulated state with (Sj>r) =  Ŝ o cos^o^ + a), where a is an arbitrary 
phase factor. Note that the maxim um  value o f qoa is π /2 , corresponding to a unit 
cell size of 4a. The zero tem perature ground state o f this model for J2 > J \ /2  
can easily be shown to consist o f alternating pairs o f parallel layers, as shown in 
Fig. 4.6.14b.
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Though we have argued that there is a transition to a m odulated state when 
J2 > \  Ji, we have not analyzed in detail the nature o f the m odulated state. This 
is in fact a totally nontrivial task since q\\a locks in to rational multiples o f 2 π, 
as we will discuss in Chapter 10.

4.7 The liquid-solid transition

In  the liquid phase, the average density (n(x)) is spatially uniform, whereas in the 
solid phase it is periodic with a Fourier series expansion in terms o f reciprocal 
lattice vectors G:

(δη(χ)) =  (n(x)) -  «ο =  E  nGe'G x, (4.7.1)
G

where no is the average uniform density and the vectors G  are in some reciprocal 
lattice. Since (<5n(x)) is real, nG =  n_c· The order distinguishing the liquid 
from the solid is one o f spatial m odulations. Fluctuations in the liquid phase 
indicating an instability toward the solid phase have a maximum at nonzero wave 
num ber. Indeed, we found in Chapter 2 that the static structure function Snn(k) 
(see Fig. 2.4.4) for a liquid has a maximum on a sphere of radius k0 =  2π/Ζ, 
where Z is the average interatom ic separation. A lthough there are subsidiary 
peaks o f lesser intensity a t larger k, the dom inant feature is the peak of S„„ at 
ko. As tem perature is lowered and the solid phase is approached, the magnitude 
o f S„„(ko) increases. Therefore (Alexander and M cTague 1978), to describe the 
liquid-solid transition, it is reasonable to consider only the maximum peak and 
approxim ate S„„(k) in the vicinity o f k = ko by

Snnik) = [r + c(k2 - k 2)2y  (4 7 '2)
where r =  a (T  — Τ ' )  decreases, leading to an increase in Snn(k) as T  is lowered.
The tem perature Τ ' ,  which is in general a function o f no, will turn  out to be the
mean-field limit o f stability o f the liquid phase. Sm(k) is the Fourier transform  of 
the density-density correlation function,

S„„(x, x ') =  (<5n(x)<5n(x')>. (4.7.3)

Since χ (χ ,χ ')  =  T S nn(x, x ') is the derivative o f the free energy with respect to 
(<5n(x)) and (<5n(x')), a phenomenological free energy which predicts Eq. (4.7.2) 
for Snn(k) in mean-field theory is simply

Fsl =  J  / x / x '( f e ( x ) ) % 1(x .x ')(^ (x ')>

- w  J  Λ (< 5η(χ ))3 + uj ddx(Sn(x))4, (4.7.4)

where

Xo'ix, X') =  [r +  c(V2 +  k 20)2]S(x -  x'). (4.7.5)
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It is understood for the present purposes that (Sn(x)) in Eq. (4.7.4) has Fourier 
com ponents in the vicinity o f |k| =  ko, i.e., wave vectors near the origin are 
explicitly excluded. It should also be emphasized tha t ko appears as a param eter 
in the theory. It, and the o ther param eters, w, u, c, and T \  can, and in general 
will, depend on other param eters, such as density no or pressure, no t explicitly 
being considered at the moment. A t the end of this section, we will consider how 
variations in the uniform  density no can be treated.

Using the Fourier decom position of Eq. (4.7.1), we immediately obtain

f s L = ~ j r  =  ^ 2 r G l”G |2 _ W  Σ  n G i « G 2« G 3^ G 1+ G 2+ G 3,0

G  G i ,G 2 ,G 3

(4.7.6)

+ U  ^ 2  n G i n G 2n G 3n G 4d G l+G 1+ G 2+G 3+G4,0,
G i ,G 2 ,G 3 ,G 4

where

rG =  r +  c(G2 - k 2)2. (4.7.7)

N ote that there is a third-order term in this free energy. As in the case o f a nematic 
liquid crystal, it will lead to a first-order transition. The solid phase is far more 
com plicated than any o f the ordered phases we have considered so far. To specify 
it completely, the order param eters of all o f the infinite num ber o f vectors G  in 
the reciprocal lattice are needed. In  addition, there are m any different choices for 
the reciprocal lattice. A complete discussion o f the liquid-solid transition, even in 
the simple approxim ation we are considering, requires a m inimization of /  with 
respect to hg for all possible lattice candidates. The set o f hg’s that give rise to 
the lowest value o f /  determines the equilibrium configuration. This collection 
may change with tem perature, and transitions between different lattices (BCC to 
FCC for example) are expected. It therefore seems unlikely tha t anything very 
general about the liquid-solid transition can be said. However, the fact tha t only 
certain lattices have reciprocal lattice vectors that add to zero in triangles allows 
one to make some fairly general statem ents about this transition, at least when it 
is only weakly first order.

1 A re  all crystals B C C ?

Let us first simplify the problem by allowing c to go to infinity. This constrains 
all wave vectors G  to have m agnitude G = k0, i.e., we need only consider vectors 
that lie on a sphere in reciprocal space. It is clear tha t the third-order term 
favors lattices with triads o f vectors that add to zero. Since all G ’s have the 
same magnitude, three o f them can add to zero only if they form an equilateral 
triangle. There are only three distinct sets L c o f equal length vectors G  containing 
closed triangles and both  G  and —G  tha t form symmetric structures. These are 
( 1 ) the set o f six edge vectors o f an equilateral triangle and its inverted image 
(Fig. 4.7.1a), (2) the set o f 12 edge vectors o f an octahedron (Fig. 4.7.1b),
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and (3) the set o f 30 edge vectors o f an icosahedron (Fig. 4.7.1c). A solid 
with a reciprocal lattice generated by the edge vectors o f an icosahedron is an 
icosahedral quasicrystal. These vectors can be translated so tha t their tails are 
at the origin and their heads are on the surface of a sphere of radius k0. In  this 
form, it is clear that the three cases correspond, respectively, to p lanar hexagonal, 
FCC, and icosahedral reciprocal lattices. The FCC lattice with lattice vectors 
G =  2“ 1/2G (± 1 ,± 1 ,0 ), (± 1 ,0 ,± 1 ), (0 ,±1 , ± 1) corresponds to a BCC direct 
lattice. The 30 vectors in the icosahedral case point to the vertices o f w hat is 
called a triacontahedron. The astute reader will notice that the set o f 12 vectors 
forming the edges o f a tetrahedron and its inverted image (Fig. 4.7.Id) was not 
included in our list o f possible vector sets. This is because this set is identical to 
that o f the octahedral edges.

In  order to calculate / ,  we need to evaluate f 2, f i ,  and / 4, the terms in /  of 
second, third, and fourth order in hg- The second-order term  is proportional to 
the num ber o f vectors m in Lq- We therefore choose hg = m~1/2n(; for every 
G. This ensures that f 2 = \rrrG has the same form for every lattice, f i  depends 
on the num ber o f triangles, p, to which each vector belongs, p is one for the 
hexagonal and two for the FCC and icosahedral lattices. The evaluation of 
/ 3  proceeds as follows: In nc^C o^C r there are m choices for G i. Once Gi 
is chosen, there are 2p choices for G 2 since there are two free edges in each 
o f the p triangles to which G i belongs. Once Gi and G 2 are fixed, there is 
a single choice for G 3. Thus, including the factor o f m- 1 / 2  in the definition 
o f hg, we have f i  = —2\νριτΓΧ/ί2η?0 . The evaluation o f / 4 is m ore complicated. 
There are two ways four vectors can add to zero: in two sets o f equal and 
opposite vectors or in non-planar diam onds (Fig. 4.7.1b). Each vector belongs 
to q non-planar diamonds, where q is zero for the hexagonal and four for the 
FCC and icosahedral lattices. (Note that in the octahedron, there are sets o f four 
edges that form a p lanar square. Since a square contains two sets of equal and 
opposite vectors, it is included in the first contribution to / 4.) There are six ways 
o f choosing two sets of two n c ’s from a set o f four no’s. In each set, G  can 
run over all m  vectors in L c ■ Thus the contribution to / 4 from paired vectors 
is 6u(Y] | « g |2 )2 =  6uiiQ. The calculation o f the contribution from non-planar 
diam onds is similar to the calculation o f / 3. In  ncj «G2«G3nG4, there are n ways 
to choose G i, 3q ways to choose G 2, two ways to choose G 3, and one way to 
choose G 4, yielding a contribution o f 6qm(m~1/2nc,)4 =  (6q/m)nAG to / 4. O ur final 
result for /  is, therefore,

/  =  ^ rnG — 2wpm~1/2n3c +  6u(l +  ~ ) nc- (4.7.8)

It is clear tha t the favored phase will be the one with the largest value of 
/3  com pared to / 4. The largest values of / 3 are produced by the small
est m and the largest p. p2m~ 1 is, respectively, 1/6, 1/3 and 2/15 for the 
hexagonal, FCC, and icosahedral reciprocal lattices. Thus, even though the 
hexagonal lattice has the smallest m, it should lose to the FCC lattice be-
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Fig. 4.7.1. (a) Six shortest vectors in a hexagonal reciprocal lattice and the 
two independent triangles that can be formed from these vectors, (b)
Shortest vectors of the FCC reciprocal lattice: the figure on the left shows 
one octant of the FCC reciprocal lattice with three of the 12 shortest vectors, 
and the figure on the right shows the 12 shortest vectors arranged on the 
edges of an octahedron. The square acef in the octahedron is planar, and the 
diamond abed is non-planar. (c) An icosahedron, (d) A tetrahedron and its 
inverted image.

cause each o f its vectors is a m em ber o f only one triangle. The fourth-order 
term is im portant in determining the actual transition temperatures. It does 
not, however, change the preferred lattice. Using our analysis o f the first-order 
isotropic-to-nem atic transition to calculate the transition tem perature, we ob
tain

. 1 (2 wp)2
rc = a(Tc — T  ) = - -

2 6u(m +  q)
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3 u

' |  hex m = 6 , p = l , q = 0

\  BCC m =  12,p = 2,q = 4 (4.7.9)

2_
17 icos m =  30,p =  2, q = 4 

As expected, the transition tem perature T bcc: to the BCC phase is the highest. 
Further analysis shows that the BCC lattice is the stable one o f the set o f three 
considered for all T  < T b c c - To treat realistically the possibility o f other lattices 
(FC C  direct for example), it is necessary to include higher order terms in nc and 
no t to neglect the secondary peaks in Sm(k).

I t is a rem arkable fact tha t a large num ber of m aterials crystallize from the melt 
into BCC (some assume other structures a t lower temperatures). For example, all 
metallic elements on the left hand side of the periodic table, with the exception 
o f M g and almost all of the lanthanides and actinides, have BCC structures near 
the melting line. Altogether, there are 40 elements with high tem perature BCC 
structures. In addition, in rapidly cooled Fe-Ni m olten alloys, a m etastable BCC 
phase was always the first formed, although the stable phase was FC C  at all 
temperatures.

2 Criterion f o r  f ree z in g

Snn(k) evaluated at the maxim um  o f its first peak at |k| =  ko reaches a maximum 
value o f Tc/[a(Tc — T*)] at the liquid-solid transition. M olecular dynamics 
calculations on gases o f particles interacting via a Lennard-Jones potential or 
via a Coulom b interaction predict that Snn(ko) divided by S„„(k =  oo) =  no is of 
order 2.7 at Tc. This is called the Hansen-Verlet criterion. Phenomenologically, 
experiments on m any systems tend to confirm this result. Typically, as a liquid 
is cooled, the first peak grows, and, as S„„(k)/no surpasses ~  2.7, solidification 
occurs. Q uantitative predictions o f this ratio  from the crude mean-field theory 
presented here require a specification of the values o f the phenomenological 
param eters a, w and u. The param eter w has units o f energy times volume 
squared and u has units o f energy times volume cubed. Thus, w2/u  has units of 
energy times volume. The natural unit o f energy in this problem is the transition 
tem perature Tc, and the natural unit o f volume is the inverse density n^1. We 
can, therefore, write w2/u  = bT cHq1, where b is a numerical factor o f order unity. 
We then have Sm(ko)/no = Tc/(2w2no/21u) =  21 /2b. Thus, with b o f order four, 
the phenomenological Verlet criterion can be satisfied.

3 Improvements o f  the theory

How can we have structures o ther than BCC? The m ajor approxim ation o f the 
theory ju st presented, other than neglecting terms o f order n5G and higher, was
the restriction |G| =  k0 obtained by setting c =  oo and ignoring higher order
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peaks in the liquid structure factor. If  this restriction is lifted, then the third-order 
term will couple hg with |G| =  ko to nc2 with G 2 I φ  k(,. Schematically, one has 
contributions /  o f the form

where m2 is the num ber o f wave vectors G 2 equal to the sum o f two vectors G 
o f m agnitude ko, and g is a com binatorial factor. Minimizing f 2 with respect to 
hg2 » we find

leading to a negative correction to the coefficient u in the total free energy. If  
only the first ring is Snn(k) is kept, but the restriction c =  00 is relaxed, then 
rGl Φ 00. However, both nc2 and the corrections to f 2 are small if rc2 >■ 1- For 
hexagonal and FCC reciprocal lattices, G2 — k% is, respectively, 2k^ and k$, and 
rG2 >  1 even for c φ  oo. For BCC reciprocal (FC C  direct) lattices, G2 — kl  =  /cq/3 
or (G2 — ko)/ko =  0.15. The magnitudes of these two vectors differ only by 25%, 
and both  could be included under the first peak in the liquid structure factor. 
This undoubtedly plays a role in stabilizing FCC crystals, even though there 
are no closed triangles in its reciprocal lattice. The difference in length between 
vectors G 2 from the origin to the vertices of an icosahedron is o f order 5%, and 
G\ — G2 =  0.1G2. In this case, rc2 may be small even for fairly large values o f c. 
This effect tends to favor icosahedral order within the model. If

where the sum over G is over the 30 icosahedral edge vectors and the sum over 
G 2 is over the 1 2  icosahedral vertex vectors, then / 3  is larger for icosahedral 
symmetry than  it is for a BCC lattice, provided ck$ >  70r. Unfortunately, when 
the fourth-order term is properly treated, the BCC phase is still the favored 
phase. In  order to produce a stable icosahedral phase from  a Landau theory, it 
is necessary to allow a second peak in Snn(k) to become large as tem perature is 
lowered.

We have argued that the third-order term  in the Landau free energy for the 
liquid-solid transition favors BCC structures for small latent heat transitions. Can 
the third-order potential w be adjusted to zero? If  so, w hat is the nature o f the 
liquid-solid transition? Is it second or first order, and w hat is the favored solid 
phase? The answer to the first question is probably affirmative. By choosing the 
appropriate atom  or mixture o f atoms, it is likely that w can be adjusted to zero. 
The liquid-solid transition remains first order in this case, however, even though 
the simple Landau theory would predict a second-order transition. Fluctuations

(4.7.10)

(4.7.11)

and

(4.7.12)

(4.7.13)
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depress the lim it o f metastability o f the fluid to zero tem perature (see Problem 
5.2). Since the transition to the solid phase occurs necessarily before the limit of 
metastability is reached, it m ust be first order.

4 Changes in density

In our model treatm ent o f the liquid-solid transition, we assumed that the average 
density does no t change, i.e., we assumed that both the liquid and solid phases are 
incompressible. Though this is often a good approxim ation, it is not rigorously 
correct. We will now outline how density changes can be incorporated into a 
general theory o f the liquid-solid transition.

We begin, as we did with our simple model, with the assum ption that the 
properties of the liquid phase at tem perature T  and chemical potential μ/ are 
known (either from experiment or from some detailed microscopic theory). This 
will be used as a reference state to which the solid phase will be compared. 
We then consider the difference between the density-dependent grand potential 
[Eq. (3.4.23)] with arbitrary  spatially dependent average density (n(x)) and that 
of the equilibrium liquid phase with uniform density n /:

A W [ T , δμ, (n(x))] =  π [ Τ , μ ,  <n(x)>] -  W [ T , n ,  (n(x)> =  nil,

(4.7.14)

=  AF[T,  (n(x)), n,] -  J  ά3χ[μ{η(χ)) -  μ/η/],

where δ μ = μ — μι is the chemical potential relative to that o f the reference fluid 
and

AF[T,  (n(x)>, n,] =  F[T,  (n(x))] — F [ T , n,] (4.7.15)

is the difference in Helm holtz free energies. N ote that it is assumed that n/ is 
the density that minimizes W [T , μι, (n)] so that — V~l W [ T  ,μι,ηι] is the pressure 
ρι(μι, T)  o f the liquid phase, and (δΓ/δ(η(χ)))(„(χ))=ηι = μι. We now expand (n(x)) 
in a Fourier series about the average density ns o f the solid phase:

(n(x)) =  ns +  Σ  nGe‘G x- (4.7.16)
G

The free energy density difference of Eq. (4.7.15) then becomes a function o f ns, 
n/, and nc- For small δη/ηι  =  (ns — n/)/n/, A F / V  can be expressed as Fsl [Eq.
(4.7.7)] plus terms arising from the change in the density:

A F  1
- y  = f s L( T ,n G,ns) +  μ ,δ η +  -κ Τ Η δ η /η ,)2, (4.7.17)

where κι is the isotherm al compressibility o f the liquid. Finally, expanding fsL  in 
powers o f δη and retaining only the lowest order term, we obtain

A W / V  =  f s h (T ,  nG, m) -  b 0 n ^ 2  \nc \2 +  ^ κ/(δη/ηι)2 -  Αμ(ηι +  δη),
G

(4.7.18)
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where b =  adT '(n i)/dm .  Thus, there is a change in density,

δη = η]κι(Αμ — |«g |2), (4.7.19)
G

associated with the liquid-solid transition. Note that along the coexistence curve 
when Δμ =  0, δη, like δηα2, is proportional to n c |2 for small nc- W hen Eq.
(4.7.19) is substituted into Eq. (4.7.17), a new effective free energy with essentially 
the same form as Eq. (4.7.7) is generated. It can be minimized over hg to produce 
the pressure difference ρ5( Τ ,μ )  — ρ ι(Τ ,μ ι)  between the solid and liquid phases. 
The coexistence curve can be calculated by setting ps = pi and Α μ  =  0.

5 Density  fu nc tiona l  theory

As we have seen, the liquid-solid transition is first order. It is in fact normally 
strongly first order. Thus, to obtain a mean-field theory that has any hope of 
making quantitative predictions about real liquid-solid transitions, it is necessary 
to have a free energy tha t provides a valid description for large order param eter 
changes, such as, for example, the Bragg-Williams theory o f ferromagnetism, 
which gives reasonable results even near T  =  0 where m is o f order unity. The 
free energy should also incorporate as m uch inform ation as is possible about the 
nature o f the reference liquid state to which the solid phase is to be com pared. In 
this section, we will outline a successful phenomenological theory incorporating 
these two goals that was introduced by R am akrishnan and Yussouff (1979).

We begin with the free energy functional for a classical non-interacting gas 
with density (n(x)) com pared to the free energy of a similar system with uniform 
density n;. Using the generalization of the free gas free energy [Eq. (3.3.4)] for 
spatially varying (n(x)), we obtain

AFC\[T, (n(x)),n,] =  J d 3x  T[{n(x))\n({n(x))/m)  (4.7.20)

-  ((«(*)} -  «/)] -  μ/((«(χ)> -  ni), 

where we used μι = T  ln (n ;/3) [Eq. (3.3.6)]. The second derivative o f this free 
energy with respect to (n(x)) evaluated at (n(x)) =  n/ is the inverse density 
susceptibility χ “η'(χ , x') =  T S nn(x ,x ')  =  Τηιδ(χ — x')  of the classical gas. As 
expected, there are no correlations in the classical gas. To obtain a free energy 
that correctly describes the pair correlation function o f the reference liquid, a 
term  second order in <5n(x) =  (n(x)) — n/ should be added to AFC\ with coefficient

-C ((x ,x ')  =  S~J(x,x') -  n Y ^ ( x  -  x '), (4.7.21)

where S„„(x,x') is the Ursell function o f the liquid phase a t density n/. The 
function C /(x,x ') is called the direct pair correlation function o f the fluid. The 
Fourier transform  of C/ is usually defined with an explicit power o f the inverse 
density:

C ,(x,x ') = nT1 j  ̂ C'(q)e'q <X~X')· (4.7.22)
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s »<1 > =  (« -2 3 )

The exact free energy describing density deviations from a reference fluid has third 
and higher order derivatives with respect to (<5n(x)) reflecting liquid correlations. 
R am akrishnan and Yussouff ignore corrections to the classical gas results for 
these functions arising from interactions between particles in the liquid phase, 
and use the free energy o f the non-interacting gas to describe large deviations 
(δη(χ)).

Their expression for the grand potential relative to that o f the reference fluid 
is, therefore,

A W  = J  d3xT[{n(x))  ln((n(x))/n,) — ((n(x)) — n/)]

(4.7.24)

— J  d3xCi(x,x')0{n(x))S{n(x')) — J  ά3χΑμ(η(χ)).

The equation o f state for (n(x)) follows from m inimization o f this equation:

^δ{η(χ)) =  ln(("(x))/" /)  —^  d3x'Ci(x — x')6(n(x')) —βΑ μ  =  0, (4.7.25) 

where as usual β  = l / T .  Alternatively, this equation can be expressed as

=  ρβυ,(χ)
m

where

The Fourier transform  of the Ursell function has a simple relation to C/(x):

=  epu‘m , (4.7.26)

fiUe(x) =  βΑ μ  +  J d 3x 'Q ( x  -  χ')δ{η(χ')} (4.7.27)

is an effective or m ean potential (analogous to the mean field o f the Bragg- 
Williams theory), which is a functional o f the average density.

We now seek solutions to these equations in which (n(x)) has periodic order of 
some crystal lattice, i.e., we set

(n(x)> =  ns( l +  Σ  liGe'G*)· (4.7.28)
Ĝ O

The order param eters ηα = n c /n s are the normalized mass-density wave ampli
tudes. The vectors are in some periodic reciprocal lattice with primitive translation 
vectors bi, and b3. The volume of a unit cell in the associated direct lattice is

™ - Γ Τ Γ 7 Ί π ·  <4·7 2 9 »bi ■ (b2 χ  bO
The order param eters ηα  and the ratio ns/n / o f the solid to liquid density can be 
calculated from Eqs. (4.7.26) and (4.7.27):

^  =  e^A/i+C,(0)[(ns/n,)-l] 

m
and

— ί  ά3χεβυΛχ'ηαλ  , (4.7.30)
vo Jo J
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n c  =  ------------=----------- , (4.7.31)
f  d?xePu' ^ )

where the integrals are over a unit cell o f the direct lattice and

0 Ue(x, ηα ) =  Σ  C,(G)(ns/ n , ^ GeiG \  (4.7.32)
Ĝ O

R ather than expanding (n(x)) in a periodic Fourier series, it is often more 
convenient to expand the logarithm  o f (n(x)) in a similar series:

=  A  e x p [ ^  CG(ns/ ni)C,( G)eiGx]. (4.7.33)
Hl Ĝ O

In equilibrium, the coefficients £g satisfy exactly the same self-consistency equa
tions as the param eters ηg  :

f d7, ve-'G-x^Ue(x,?c)=  J a x e  _e----------

The am plitude A  satisfies

4̂ _  e M H -C i(q=0)[(ns/n i)-ll (4  7  3 5 )

In practice, convergence to realistic solid densities is obtained m ore rapidly using 
the expansion o f Eq. (4.7.34) rather than that o f Eq. (4.7.31).

The atoms in a solid are usually very well localized at lattice sites even near the 
melting tem perature. This means that m any Fourier com ponents of the density 
are needed to obtain a realistic picture of the density. This encourages one to look 
for a description o f the density with a limited num ber of variational param eters 
that localize atoms in the vicinity o f sites on some lattice. A form that agrees well 
with our intuition and with calculations using ηα evaluated at m any different G ’s 
is a superposition o f G aussian densities on the lattice:

3/2 ___

(n(x)> = n s^ E  e - ^ - ^ 2/“2 =  ns( l +  £  (4.7.36)

This density is normalized so that its integral over all space gives the total num ber 
o f particles. The vectors Ri are sites on a cubic (generalizations to non-cubic 
lattices are straightforward) direct lattice with primitive translation vectors of 
m agnitude a, and vo is the volume o f a direct lattice unit cell. Note that there 
is no constraint in this relation requiring the solid density ns to be equal to the 
num ber of unit cells per unit volume. The equilibrium state will in general have 
a finite density o f vacancies so that on average there will be less than one atom  
per unit cell. The order param eters ηα satisfy

ηα =  e- GV/4oe (4 .7 .3 7 )

I f  a is large, atom s are well localized around a given site, and overlaps between 
neighboring Gaussians can be neglected in the evaluation of A W .  In  this case, 
we have
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= (ns/ni)  |ΐη [ (η 5/η ,)(ν0/α 3)(α /π )3/2] -  |

-  l(ns/ni)  -  1] -  (η8/ηι)Δμ  (4.7.38)

-  xQ (q =  0)[1 -  (ns/n,)]2 -  1 ^ ( n s/n,)2C,(G)e-G2a2/2a.
Ĝ O

This expression is to be minimized for given liquid density n/, tem perature, T,  and 
chemical potential difference Αμ  with respect to the three variational param eters
a, a, and ns/n /. If  the system is incompressible, ns/n/ =  1, and there are only two
variational param eters: a specifying the size o f a unit cell and a specifying the 
degree o f localization o f the average density in a unit cell.

4.8 Variational mean-field theory

In  this chapter, we have presented two form ulations o f mean-field theory: the 
Bragg-Williams theory and the Landau phenomenological theory. The first, 
though it can be applied at all tem peratures including the vicinity of zero 
tem perature, is no t easily extended to models having other than the simple up- 
down Ising symmetry. The second, though easily constructed once the symmetry 
o f the order param eter is established, is not particularly useful far from the 
critical point. In this section, we outline a general approach to deriving a 
mean-field theory valid for all ranges o f tem peratures for systems with order 
param eters o f essentially arbitrary  complexity. This variational m ethod is based 
upon approxim ating the total equilibrium density m atrix by a product of local 
site or particle density m atrices and is often referred to as Ί τ ρ \ η ρ  mean-field 
theory.

1 Two inequalities

We begin with the derivation o f two inequalities that will establish the variational 
theorem for our mean-field approxim ation. Let φ  be a random  variable, which 
can be either continuous or discrete, and let Ρ(φ)  >  0 be its associated probability 
distribution. Then the expectation value o f any function / ( φ ) is

(/(<£)> =  Tr Ρ(φ)Π φ),  (4.8.1)

where Tr signifies a sum or integral over all possible values o f φ. The inequality

(ε~λφ) >  e~m , (4.8.2)

valid for any probability distribution, may be proved as follows. The inequality

εφ >  1 +  φ  (4.8.3)

applies for any real num ber φ  regardless o f its sign. Thus,

e~x* =  > e~m  [1 -  λ(φ -  (φ))], (4.8.4)
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which, when averaged over Ρ(φ), implies

(,ί~λφ) >  <[1 -  λ(φ -  {φ))]β-ΜΦ)) =  e~m , (4.8.5)

which establishes Eq. (4.8.2).
The inequality in Eq. (4.8.2) will be used to establish variational theorems 

for classical partition functions. In quantum  systems, we need an additional 
inequality. Let A  be any quantum  operator, and let | n) be any norm alized state 
in the H ilbert space in which A  operates, then

{n \ e - ^  \ n) > e~x{n̂ n). (4.8.6)

This inequality can be proven using Eq. (4.8.3) and a complete set o f states {| p)} 
in which A  is diagonal:

(n\e~x A \n) =  | p)e-K{M\p)-(n\A\n))^ \ n> (4  8 7)

V

>  5 >  \ p ) [ l -  λ({ρ I A  | p) -  (n \ A  \ n»](p  \ n).
v

Eq. (4.8.6) follows directly from this equation because {| p)} is a complete set of 
states.

Now consider a classical H am iltonian J 'f  tha t is a function o f a discrete or 
continuous classical field φ  (which in general depends on a spatial coordinate x 
or a lattice site 1). Let ρ(φ) be any classical probability distribution satisfying 
Trp =  1 and ρ(φ) >  0. ρ(φ)  is thus a probability distribution for φ. The canonical 
partition function can be written as

Z  =  ττβ~βΜ,[φ] = Trpe~liJt~lnp

= {β- βΜ,- ΐΏρ)ρ = έ~βρ, (4.8.8)

where ( )p signifies an average with respect to the density m atrix p and where
F  is the free energy (or more precisely the therm odynam ic potential) associated 
with &C. Thus, using Eq. (4.8.8) and the inequality in Eq. (4.8.3), we obtain

β~βρ >  exp(—/?{J^)p -  (ln p)p) (4.8.9)

or

F <,FP =  (^f)p  +  T (ln p)p

=  T rp ^ f +  T T r p ln p ,  (4.8.10)

where Fp is an approxim ate free energy associated with the density m atrix p.
This inequality is valid for any density matrix. Fp is a minimum with respect to 
variations in p subject to the constraint T rp =  1 when

P = ~ Z -  (4·8·11)

is the actual equilibrium density matrix. This can be seen from the equation 

SF
- Γ£  = 3 Τ + Τ ( \ η ρ  +  1) = ζ, (4.8.12)
dp
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where ζ is a Lagrange m ultiplier whose value is chosen to impose the constraint 
T rp =  1. Thus, Fp a t its m inimum with respect to p is the actual free energy F. 

In the quantum  case, the inequality of Eq. (4.8.9) can be derived from 

Z  =  Tre- ^  =  J 2 ( n  \ β~β*  \ n)
n

>  (4.8.13)
η  n

where p is a density matrix, the states | n) form a complete set with respect 
to which p is diagonal, and pn = (n \ p \ n) >  0. The last expression can be 
regarded as the expectation value with respect to the probability weight p„ of 
exp(—β(η  | | n) — In pn) regarded as a function of n. Thus, using the inequality
Eq. (4.8.2), we have

Z  >  exp[— Σ  Pn( β  ( n \ 3 f \ n )  +  \n p„)]
n

>  exp[-jS(^f>p - ( I n  p)p], (4.8.14)

where ( )p signifies an average with respect to p. This equation is identical to 
Eq. (4.8.9) for the classical systems.

2 The mean-field approximation

The inequality, Eq. (4.8.9), provides the basis for variational approxim ations to 
the free energy that can be implemented as follows: a functional form with free 
unspecified param eters is chosen for a trial density m atrix p to approxim ate the 
actual density matrix. The trial density m atrix with the chosen functional form 
tha t best approxim ates the actual density m atrix is obtained by minimizing the 
approxim ate free energy Fp with respect to the free param eters in p. Mean-field 
theory is obtained by a trial density m atrix that is a product o f independent single 
particle matrices. If  pa is the single particle density m atrix depending only on the 
degree o f freedom o f particle a, the mean-field density m atrix is

p =  l [ p « ,  (4.8.15)
a

and the variational mean-field free energy is

Fp = ( ^ ) p  + T J 2  ΎΐΡ« ln Pa- (4.8.16)
a

The precise form o f (J^ )p will, o f course, depend on J#’.
There are now two approaches one can use to determine variational minima 

to Eq. (4.8.16). (1) A param etrization o f pa in terms of the order param eter 
(φα) o f a phase transition can be chosen. This param etrization m ust satisfy 
the constraints Trpa =  1 and Trpa<̂ a =  (φχ). The variational param eter is 
simply the order param eter (φ*)· I f  there is no external field in J 'f  coupling 
linearly to φ, then Fp is simply the Helm holtz free energy F((<^)). I f  there 
is an external field h, then Fp =  F((<^)) — Vh (φ) is a function analogous to
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W (Τ ,μ ,  (n(\))) introduced in Eq. (3.4.23). We will apply this procedure below 
to the s-state Potts model. (2) Alternatively, the single particle density m atrix pa 
itself may be regarded as a variational function, and the best functional form 
in terms o f the dynamical variables o f  particle a is obtained by minimizing Fp 
with respect to pa. This procedure is more general than the preceding one, 
but the connection between Fp and F ((φ)) is no t entirely straightforward. We 
will apply this procedure below to the 0„ Heisenberg model and to a classical 
plasma.

3 The s-state P o tts  model

In the s-state Potts model, there is a variable σ\ a t each site on a lattice that 
can take on the values l,...,s. The Potts-model H am iltonian was introduced in 
Eq. (3.6.6). I f  we add an external field h\ favoring occupancy o f state 1 at site 1, 
yif can be w ritten as

U' 1

Ξ  ^fo +  ^ex t, (4.8.17)

where J\y is J  for nearest neighbor sites and zero otherwise. To identify an order
param eter distinguishing low- and high-tem perature phases, we note tha t a t high
tem perature, all states are occupied with equal probability and ( δ ^ )  =  1 / s  for 
every value o f σ =  l,...,s. A t low tem perature, the energy defined by J fo  is clearly
minimized if  σ\ has the same value for all sites. There are s equivalent ground
states characterized by the value o f  σ\. We can, therefore, choose

ΦΪ = — [ W w  -  1) (4.8.18)

as the order param eter field. A t high tem perature, (</>f) =  0, whereas a t zero 
tem perature, (</>f) =  1 in the ground state with σ\ =  σ. Since all ground states are 
equivalent, we choose the order param eter mi = (φ\ ), characterizing condensation 
into state 1. The single particle density m atrix pi is a function o f  σι and m ust 
satisfy

Trpi =  pi =  1 and Ττριφ\ = mi. (4.8.19)
σι

Since these are the only two constraints on the density matrix, it m ust have the 
form pi = a +  όδσι,ι. It is a straightforw ard exercise to calculate the param eters a 
and b and to obtain

Pi =  ^ [1  +  mi(s0au\ -  1)] . (4.8.20)

This density m atrix can now be used to calculate Fp. The result is
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U' i

· τ Σ { ^ τ '+ — >_,<{ -— -  [1 +  (s — l)mi] ln [l +  ( s — l)mi]
1

+ ( l - m , ) l n ( l - m i ) J .  (4.8.21)

N ote tha t this reduces to the Bragg-Williams free energy for the Ising model [Eqs.
(4.1.4) and (4.1.14)] when s =  2 and hi =  0. I f  the external field hi is uniform,
mi = m is independent o f  1 and satisfies the equation o f  state

1 d Fp T T  l +  ( s — l)m , _ .. D
— ■— 2 - =  - z J m  +  —  I n ---------- +------- ------h =  0, (4.8.22)
N  dm s — 1 s 1 — m

where z is the num ber o f  nearest neighbors. Thus.
oshe __ j

m =  ----- r i ’ (4-8.23)esn +  (s — 1 )
where

he =  zJm  +  h (4.8.24)

is the effective field. This equation reduces to the mean-field equation o f  state for 
the Ising model [Eq. (4.1.9)] when s =  2. W hen s >  2, it predicts a first-order 
transition as can be seen via a direct analysis. Alternatively, one can expand the 
free energy o f  Eq. (4.8.21) for small m and h =  0 to find that there is a third-order 
term  when s φ  2 and a mean-field first-order transition:

F = l ( T  -  Tc)m2 -  ~ ( s  -  2)m3 +
N(s — 1) 2 6

^ { s 2 - 3 s  +  3)m4 + ■■■. (4.8.25)

The Potts model in the limit that the num ber o f  states goes to one (s —> 1) 
describes percolation. In this case, there is a second-order transition even though 
there is a third-order term in F.

4 The On classical Heisenberg model

Though the simple param etrization o f  the trial density m atrix in terms o f the 
order param eter provides a good description o f  the phase transition and low- 
tem perature properties o f  the Potts model, we will now show how allowing 
the functional form o f the trial density m atrix to vary provides a much m ore 
complete and more correct description o f  the classical Heisenberg model. As 
we have discussed in Secs. 3.6 and 4.3, the dynamical variables o f  the classical 
Heisenberg model are unit length spins Si. Here we will param etrize these spins by 
the solid angle coordinate Ωι, depending on n — 1 angular coordinates, on a unit 
n-dimensional sphere: Si ξ  S(Q|). (For n =  3, Ω =  (5 ,φ) and dQ, =  sin ΜΆάφ.)
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The single particle density m atrix is p\ =  ρι(Ω|), and the free energy is

Fp = -  |  ^ A F iS .X S ,,)  -  ^ h ,  - <s,>
1,1'  1

+ Γ  > /  ίΖΩιρι(Ω|)1ηρι(Ω|), (4.8.26)

(S,) =  j  dCliS(Ch)pi(Cli). (4.8.27)

M inimization o f  Fp with respect to the function ρι(Ω|) subject to the constraint 
Trp(Qi) =  /  ίΖΩιρι(Ωι) =  1 leads to

is the effective field at site 1. The solution to Eq. (4.8.28) with ςι chosen to satisfy 
Ί τ ρ  =  1 is

The effective field a t site 1 depends on the average spins (Si-) at sites coupled 
to 1 via the exchange J\y. The average spin at site 1 m ust thus be determined 
self-consistently via the equation

W hen the external field hi — hez is independent o f 1, (Si) =  (Sz)ez will also be 
independent o f  1. I t is always possible to param eterize the solid angle Ωι so that 
Sz = cos 9. The equation o f  state for (Sz) is thus

where he = he ■ ez. This equation is very similar to the equation o f  state for 
the Ising model obtained from Bragg-Williams theory and can be solved using 
the graphical procedures discussed in Sec. 4.2. Expansion o f  its right hand side, 
which is an odd function o f f i l f ,  for small fihe a t h =  0  shows that it predicts a 
second-order phase transition with a transition tem perature Tc = z J cos2 $, where 
the bar signifies an average over the unit sphere.

i f S , +  T [lnp ,(n ,) +  l] =  C,, (4.8.28)

where ςι is a Lagrange multiplier and

(4.8.29)

(4.8.30)

where

(4.8.31)

(4.8.32)

/  dQ.elth‘cos θ cos >9
~  J  dQefih‘ cos a

=  coth when n =  3,
phe

(4.8.33)
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The trial density m atrix determines the order param eter (Si) as a function o f 
tem perature via the equation o f  state. In  addition, the density m atrix determines 
all m om ents o f  the order param eter. For example, it determines the average o f  the 
symmetric-traceless tensor (Si,,S|j — d,; /n ), which is zero in the high tem perature 
phase but nonzero in the ordered phase. T hat all m om ents are contained in p\ is 
particularly evident in the low-tem perature limit where it becomes a D irac delta 
function. I f  we choose S =  (π, σ), where σ  =  (1 — π2)1/2, we obtain

p =  (β Κ /2 π ){η- 1)Ι2β -β* π111 — <5<"_ 1^(π). (4.8.34)

This is a m athem atical statem ent o f the fact that, at zero tem perature, the 
com ponents o f  Si perpendicular to the direction o f  order are zero.

5 Debye-Hiickel theory

O ur final application o f variational mean-field theory will be to classical plasmas 
in equilibrium in which there are mobile charges o f  opposite signs. This theory is 
often applied to electrolytes in which there are various charged ions in solution 
and is usually referred to as Debye-Hiickel theory (Debye and Hiickel 1923). It 
is also used, as we shall see in Sec. 9.4, to describe the disorder phase o f  two- 
dimensional xy-models where topological point defects called vortices interact 
am ong themselves via a Coulom b potential. For simplicity, we will restrict our 
attention to plasmas with only two types o f  charge carriers, one with positive 
charge Q+ and one with negative charge Q =  —\Q+\. G eneralization to more 
types is straightforward. Overall charge neutrality requires that Q+N+ + Q - N -  —
0, where N + and JV_ are, respectively, the num ber o f  positive and negative charge 
carriers. Let x+ denote the positions o f  positive charges and x“ the positions 
o f  negative charges. The Ham iltonian in the presence o f  an external electric 
potential 4>eM is then

*  = \  Σ  w  -  + Σ  & ^ “ ‘(*s). (4·8·35)
α,β,σ,σ' α,σ

where t/(x ) =  |x |- 1  is the Coulom b potential (in three dimensions).
O ur goal is to determine charge densities and charge-density response functions 

in mean-field theory. We therefore choose a representation o f the total density 
m atrix p in terms o f  single particle density matrices p+(x+) and p ~ (x t )  for the 
positive and negative charges:

P =  π ^ + ( χ + ) Π ^ ( χ - ) ·  <4 ·8 ·3 6 )
« β

The average num ber density o f  positive and negative charges are proportional to 
the single particle density matrices,

(n±(x)> =  δ(χ -  χ |)>  =  N ±P±(x). (4.8.37)
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Thus, the densities (n-|-(x)), rather than the density matrices p+(x), can be used 
as variational functions. The total charge density is

(Pq) =  G +(«+(*)> +  G - («-(*)}> (4.8.38)
and the variational free energy is

Fp = \J ά3χά3χ'{ρα{ χ ) ) υ { χ - χ ! ) { ρ α(χ!))

+  J  ά}χ{ρα( χ ) ) φ ^ (χ )  (4.8.39)

+ T  J  ii3x(n+(x)) \n~~̂- + T  J  d3x(n_(x)) ln ^  ■

The mean-field equation o f  state for the average densities (n+(x)) is obtained by 
minimizing Fp subject to the constraints that the total num ber o f particles o f 
each species be fixed :

δ ρ ρ _ ^  (η+(χ )>
ί  ( Μ χ »  =  Γ  l ln ̂  +  V + Q±4>ix) = μ± ' (4·8·40)

where μ+ and are Lagrange multipliers (chemical potentials) and where 

φ{χ) = J  ί/ V  C/(x -  x')(pQ{x')) +  </>ext(x)

=  φ Μ (χ) +  4>ext(x) (4.8.41)

is the electric potential consisting o f  an external part </>ext(x) and an induced part 
φ ίηά arising from the induced charge (ρρ(χ)). Thus, when the Lagrange multipliers 
are chosen so that /  d}x{n+(x)) = N+, densities o f positive and negative charges 
satisfy

(n±(x)> =  , (4.8.42)

where

Z+ =  J  d3x e - Q̂ IT. (4.8.43)

Since the total potential φ(χ)  depends on the induced charge density, Eq. (4.8.42) 
m ust be solved self-consistently for the densities (n+(x)). W hen φ α1 is zero, the 
self-consistent solution is trivial: the average charge density (pq) and potential 
φ(χ) are zero, Z+ =  V, and (n+(x)) =  (n+) =  N + /V ,  where V  is the volume o f 
the system.

The charge-density response function We will now use the mean-field equations 
to calculate the charge-density response function and the dielectric constant o f a 
classical plasma. The charge-density response function is

m M )
A  negative sign appears on the right hand side o f  this equation because the 
external H am iltonian is +  /  Λ</>βχί(χ)ρρ(χ) and has a positive rather than the

yjk
高亮
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negative sign we have usually associated with coupling to external fields. The 
linear response o f  (n+(x)) to </>ext(x') can be calculated from Eq. (4.8.42): 

<5(n±(x)> Q± δ φ { \)  (n±)2 f  ,d δφ{y)
-  / I I dav — (4.8.45)δ φ ^ ( χ ' )  T  x ± / δ φ ^ ( χ ' )  N ± J  γ δφ™ι(χ') '  ’

where we used the fact tha t (n+(x)) =  (n±) are spatially uniform in equilibrium 
when </>ext is zero. The charge-density response function is

-  iw&Y  <«*>
where we used Q+(n+)2/ N + +  β _ (η _ )2/ΑΓ_ =  V 2(Q+N + +  g_AT_) =  0 and 
where

4tt
k2 =  y ( e i ( n +) +  e i(n _ > ) (4.8.47)

is the square o f  an inverse Debye-Hiickel screening length. Thus, we see that
the charge-density response function is proportional to the response o f  the total 
potential to an external potential, which can be calculated from Eq. (4.8.41):

4 ί ^ ) = ^(x * χ,) *  / d iyu{x  -  y)^ (y» χ,)· (4·8·48)

This is a self-consistent equation for χρρ(χ,χ'), which can be solved using 
Eq. (4.8.46) and the expression t/(q) =  Απ/ q 2 for the Fourier transform  of 
the Coulomb potential. We find

Xpp(q) =  -^ Z p p (q )  +  ^  (4.8.49)

or
2 2 k t qL

^ Τ π ϊ Τ Ϊ 2 (4 8 ·50)
for the Fourier transform  o f the charge-density response function. N ote that, 
unlike *„„(q) in neutral systems, χ ΡΡ{<\) tends to zero as q tends to zero, indicating 
that the charge density is incompressible a t q =  0. This is a result o f  the 
long-range nature o f  the Coulom b potential.

The dielectric constant and screening The dielectric constant is often o f greater 
im portance than  density response functions in charged systems. In insulators, 
the dielectric tensor e,;· relates the Maxwell electric displacement vector D  to the 
electric field E via D,· =  eijEj. In conductors with mobile charges, the dielectric 
constant at zero wave num ber is infinite. A  dielectric constant at nonzero wave 
num ber and zero frequency can, however, be defined through the response o f the 
spatially varying displacement D(x) to the spatially varying electric field E(x'):

Di{x) =  J  dix 'e ij{x — x' )Ej (x) .  (4.8.51)
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In isotropic systems, the dielectric tensor can be divided into a longitudinal part 
and a transverse part, i.e., its Fourier transform  can be decomposed as

fy(q) =  +  fr(q)(^i; -  M])> (4.8.52)
where §,· =  <jf;/|q|. In static situations, both E  and D  are irrotational and can be 
expressed as gradients o f  a potential. The electric field is determined by the total 
potential φ(χ), whereas the displacement is determined by the external potential 
</>e x t :

Ε =  - ν φ ,  D  =  — V<£ext. (4.8.53)

Thus, the response o f  D  to E  is determined by the longitudinal p art o f  the 
dielectric tensor

,4·8·54»

f lH q )  =  i  -  tf(q)xPP(q). (4.8.55)

Then,

or

Μ )  =  =  ^ 2  (4.8.57)

f i(q )  =  1 +(K2/q 2), (4.8.56)

and, as advertised, the dielectric constant diverges as q —► 0. The dielectric
constant gives the response o f  the total potential to the external potential, and
allows us to calculate φ(χ)  if we know </>ext(x). For example, if  a point charge of 
charge Q is placed at the origin, it will give rise to a potential </>ext(x) =  Q / |x| 
or 0 ext(q) =  4n Q /q 2. The total potential in the presence o f the external charge is 
thus

<ftext(q) _  4nQ
<?L(q) q2 +  k 2 

or

φ(χ) =  - ^ L - K|x|. (4.8.58)
W

The total potential dies exponentially to zero with a length k-1 , whereas the 
external potential dies algebraically to zero. This is the phenom enon o f screening. 
The mobile charges in the plasm a collect around the external charge to reduce 
the total charge in the vicinity o f  the external charge.

Though we have considered here explicitly only three-dimensional systems, it is 
clear that the expressions for the dielectric constant and charge density response 
functions depend only on the fact that t/(q) ~  q~2. Thus they also apply to 
Coulom b interactions with C/(x) ~  |x|~(li_2) in d dimensions. They apply, in 
particular, in two dimensions where U(x) ~  ln |x|.

When Debye-Hiickel theory is valid Mean-field theory provides a powerful yet 
relatively simple description o f Coulom b gases, and it is o f some interest to know 
when it breaks down. The H am iltonian is a function o f  the positions x+ o f the 
positive and negative charge carriers. We know that the Coulom b potential favors
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the form ation o f  charge-neutral bound states o f  positive and negative charges 
(i.e., atoms or molecules). The mean-field theory replaces individual position 
coordinates by average densities that are spatially uniform in the absence o f 
external potentials. It thus ignores altogether the possibility o f  bound states. It 
is a good approxim ation when kinetic energy dom inates over potential energy,
i.e., a t high tem peratures in classical systems (or a t high densities in Fermi 
systems). In classical systems, the kinetic energy per particle is 3772, while 
the average potential energy is o f  order β 2 /(η ) 1/3 when Q+ =  —Q — Q and 
(n+) — (n_) =  (n). Mean-field theory then applies for T (n )_1/3  >  Q2. A nother 
way to arrive at this result is to use the criterion that fluctuations in charge 
density should be small com pared to the square o f  the average density o f  either 
charged species, i.e., ([<5pg(x)]2) <  Q2{n}2. Using Eq. (3.4.18), which relates density 
correlations to the density response function, we find

for a classical plasma. This implies that the condition for the validity o f  mean- 
field theory is T(Q 2( n ) /T )5/1 < Q2(n}2 or T  > g 2 (n) 1/3 in agreement with the 
preceding argument.

Again, the im portant feature o f  the mean-field theory is the replacement o f  the 
full H am iltonian o f  Eq. (4.8.35) expressed in terms o f  the coordinates o f  individual 
charged particles by the free energy o f  Eq. (4.8.39) expressed in terms o f  the 
coarse-grained charge and num ber densities. The charge-density response function 
and dielectric constant can be obtained directly by expanding the free energy F  
to second order in deviations δη+ =  (n+(x)) — (n±)o o f the charge densities 
from their charge-neutral equilibrium values (n+)o with Q+(n+) +  g _ (n _ ) =  0. 
Defining ψ  =  -β _ ((η _ )ο /(« + )ο )1/2<5«+ +  g +((n+)o/(n_)o)1/2<5n_ and expanding 
Eq. (4.8.39), we obtain

Because ψ  and (<5pe (x)) are decoupled, this equation immediately gives

in agreement with Eq. (4.8.50).
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Problems

4.1 (Tetracritical and bicritical points) Consider the model Landau free energy 
density

/  =  \ r^ \  +  \τ2φ\ +  « 1 ΦΑ1 + νιφ\ + 2ίίηφ2ιφ2

with r\ = a (T  — T\) =  r — g, r2 = a (T  — T2) =  r +  g and u\, u2, and 
U12 positive. Show that (i) when u\u2 >  u\2, there are four phases in the 
mean-field phase diagram  separated by second-order transition lines meeting 
at a tetracritical point as shown in Fig. 4.6.10b, and (ii) when u\u2 < u\ 2, 
there are only three phases with a first-order transition line meeting two 
second-order lines a t a bicritical point as shown in Fig. 4.6.10a. A  complete 
solution to this problem should verify tha t each phase is the lowest free 
energy locally stable state. I f  you are ambitious, you may wish to consider 
w hat happens when u\2 <  0.

4.2 (Tricritical po in t in an  antiferrom agnet in a field) A n external magnetic field 
h in an antiferrom agnet couples to the m agnetization m rather than  to the 
order param eter (the staggered m agnetization) ms. Assume that the coupling



210 4 Mean-field theory

between ms and m is described phenomenologically via the free energy 

/  =  ^rm 2 +  umt +  ^ rmm2 -  hm +  ^  wm2m2,

where r =  a{T  — Τ ') ,  w >  0, and rm is independent o f  tem perature. Show 
that this model has a tricritical point at tem perature Tt and field ht, where

(2 urm)
Tt = T '  -

aw

2  url
hf =

wz
Show that the mean-field phase diagram  is similar to that shown in Fig.
4.6.4, where the second-order transition tem perature for h < ht is

^  wh2
Tc = T , -------γ η

a r i
and the first-order transition for h >  ht for small \h— ht\ is

_  _  wh2 1 2-i
Tc =  T t~ - ^ [n~ 4n 1

where η =  [1 — (h j /h2)].
4.3 As in the Blume-Emery-Griffiths model, there are three second-order λ  lines 

meeting at the tricritical point (r =  0, u4 =  0 , h =  0) o f  the model tricritical 
Landau free energy o f  Eq. (4.6.1) in an external field h coupling linearly to 
the order param eter. Calculate the equations for these lines. H int: the λ  lines 
term inate a plane o f  two-phase coexistence and can be treated in mean-field 
theory in much the same way as the critical point o f  the liquid-gas transition.

4.4 Calculate the values o f  H  and T  at the tricritical point o f  the m etamagnetic 
model free energy o f  Eq. (4.6.9), assuming z \ J \ / z 2 J i  >  3/5.

4.5 A  phase diagram  with a critical endpoint such as that depicted in Fig. 4.6.5 
can be described by a Landau free energy expanded to eighth order in the 
potential with a positive eighth-order and a negative fourth-order coefficient. 
Using the fact that an  eighth-order polynom ial may have up to four minima, 
sketch the form o f the Landau free energy (i) a t the critical point o f  Fig.
4.6.5, where there is two-phase coexistence, (ii) between the critical point 
and the critical endpoint, where there is four-phase coexistence, (iii) at the 
critical endpoint, where there is three-phase coexistence, and (iv) to the right 
o f  the critical endpoint, where there is two-phase coexistence.

4.6 In C hapter 2, we saw tha t the X-ray scattering intensity in the nematic 
phase has strong diffuse spots along the axis parallel to the director above 
a smectic-,4 phase but two strong diffuse annuli centered along the same 
axis above a smectic-C phase. Develop a Landau theory along the lines 
o f  those used in Sec. 4.6 to describe Lifshitz points and in Sec. 4.7 to 
describe the liquid-solid transition. This theory should reproduce the X-ray 
scattering intensity in the nematic phase and predict nematic-to-smectic-^, 
nematic-to-smectic-C, and smectic-^-to-smectic-C transitions and a Lifshitz
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point. Are any o f  these transitions first order in mean-field theory? (See 
Chen and Lubensky 1976.)

4.7 Calculate the phase diagram  for the model free energy o f  Eq. (4.6.19) in 
the vicinity o f  the Lifshitz point (r,cx) =  (0,0) when d =  3 and m =  1 (i.e., 
when χ χ  =  (0 , 0, z)) for

(a) a scalar order param eter φ  and
(b) an xy-order param eter φ = (φ ι ,φ ι) ·

For the scalar order param eter, you may assume φ  =  φο cos q0z in the 
m odulated phase. You should show that all phases are stable with respect 
to fluctuations (including fluctuations in q0 in the m odulated phases). For 
the scalar case, you should calculate the limit o f  metastability o f  the fer
rom agnetic (F) phase and tha t o f  the m odulated phase if  you are more 
ambitious.

4.8 (M aier-Saupe theory, 1958) Consider the following model for interparticle 
interactions in a nematic liquid crystal. Associated with each particle a is 
a symmetric traceless tensor Qfj =  ζ?,;·(Ωα) =  v fv j  — 5 ^,;, where va is a unit 
vector pointing along the long axis o f  the molecule specified by its solid 
angle Ωα on the unit sphere. The interaction H am iltonian is

α,α'

Show tha t the variational free energy Fp associated with this H am iltonian is 

F P =  ^ J d 3xd3x ’{Rij( \ ) ){R ij ( \ ’) ) U ( \ - \ ’)

+ N T  J  d3xdQ.p{x, Ω )1ηρ(χ , Ω), 

where p(x, Ω) is a single particle density matrix,

(R,j(x)) =  ( £ e ^ ( x - x “)> = N  f d C l p ( x , m i j ( t t )  
a J

and N  is the num ber o f  molecules. Then show that the best single particle 
density m atrix is

ρ(χ,Ω ) =  1
Z>

where

Ue(x, Ω) =  J  d3x 'U (x  — x')(Rij(x'))Qij(d )

and

Z  =  J  d3xdCle~ue^ T.

Finally, show that in spatially uniform nematics when there are no external 
forces tha t the nematic order param eter S defined via (QtJ·} =  S(n,-n; —^y/3),
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where n is the director, satisfies

S = ~  J  d(cos S)<Ts 1/0(0052 θ~(1/3))

where Uo = (N /V )U (q  =  0) and

Z '  = J  d( c o s % - st/o(cos2iM1/3)).

Expand the right hand side o f this equation in powers o f  S and show tha t it 
has an even num ber o f terms so that it predicts a first-order transition just 
as the simple Landau theory o f Sec. 4.6 does. W hat happens as T  —► 0.

4.9 (a) Use ΊτρΧ ηρ  mean-field theory to calculate the probability Ρ(θ)  tha t a 
spin makes an angle Θ with the x-axis. Use this to calculate the order 
param eters tpn =  (emlJ) near the critical point.

(b) Use symmetry arguments to develop a Landau theory for the xy- 
transition in terms o f  the param eters tpn including couplings between \pn 
and tpm for arbitrary n and m. Show tha t this theory predicts the same 
results as (a).

4.10 Consider the isotropic-to-nem atic transition in the vicinity o f the special 
po in t (the Landau point) where the coefficient o f  the third-order term in the 
free energy [Eq. (4.5.5)] is zero. Allow for both biaxial as well as unixial 
order using Eq. (4.5.2) for the nematic order param eter Qij. Show that 
two first-order lines and two second-order lines meet at the Landau point. 
O n one side o f  the Landau point, there is a first-order transition from the 
isotropic fluid to a state with S > 0 and on the other a transition to a state 
with S <  0. The two second-order lines enclose a biaxial region in which 
both S and η are nonzero.

cos 9  — -
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Field theories, critical 
phenomena, and the 
renormalization group

Mean-field theory, presented in the preceding chapter, correctly describes the 
qualitative features o f  m ost phase transitions and, in some cases, the quantitative 
features. Since mean-field theory replaces the actual configurations o f  the local 
variables (e.g. spins) by their average value, it neglects the effects o f  fluctuations 
about this mean. These fluctuations may or may no t be im portant. The more 
spins tha t interact with a particular test spin, the m ore the test spin sees an 
effective average or m ean field. I f  the test spin interacts with two neighbors, the 
averaging is minimal and the fluctuations are large and im portant. The num ber 
o f  spins producing the effective field increases with the range o f  the interaction 
and with the dimension. Thus we will find tha t mean-field theory is a good 
approxim ation in high dimensions but fails to provide a quantitatively correct 
description o f  second-order critical points in low dimensions. This chapter will be 
devoted to the study o f  second-order phase transitions when mean-field theory is 
not a good approxim ation.

We will begin by considering fluctuations o f  the order param eter about its 
spatially uniform  mean-field value. We will find tha t for spatial dimensions below 
an upper critical dimension dc (typically dc =  4), fluctuations always become 
im portant and invalidate mean-field theory for tem peratures sufficiently close to 
Tc. This will m otivate a generalization o f  L andau  theory tha t incorporates spatial 
fluctuations about a mean-field free energy minimum. This generalization is a 
field theory tha t emphasizes the special role o f  fluctuations o f  the order param eter. 
The partition  function trace in this theory is an  integral over all possible values o f 
the order param eter a t all points in space. We will discuss a simple approxim ate 
treatm ent o f  fluctuations tha t shows how critical exponents different from those 
predicted by mean-field theory can arise.

A fter the above theoretical in troduction  to the breakdow n o f mean-field theory, 
we will discuss the experimentally observed phenom ena o f  scaling and universal
ity. In  the vicinity o f  critical points, the free energy, susceptibility, and other 
therm odynam ic functions are generalized hom ogeneous functions o f  tem perature 
and conjugate field, and, as a result, no t all o f  the critical exponents introduced 
in the preceding chapter are independent. For example, near the critical point 
the only relevant length is the correlation length, which serves as a scale for all

2 13
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distances. Since we know how the correlation length varies with tem perature, we 
know som ething about how the therm odynam ic functions and correlations vary 
with tem perature. This is scaling. Critical exponents show rem arkably little vari
ation  am ong systems o f a given dimensionality even when there is wide variation 
in the m agnitude o f  the critical tem perature or in the nature o f  microscopic inter
actions. Any variation in exponents, in a given spatial dimension, that does exist 
is associated with changes in symmetry o f  the order param eter. This constancy 
o f  exponents for different transitions with the same symmetry order param eter 
and dim ension o f  space is called universality.

Universality and scaling were the essential clues tha t led to the development 
o f  the renormalization group by K enneth W ilson in the early 1970s. The renor
m alization group is a general calculational scheme for treating problem s where 
fluctuations a t m any length or time scales are im portant. I t has been applied with 
great success to the study o f  second-order phase transitions and critical phenom 
ena and to a num ber o f  o ther problems as well. I t has had such a significant 
im pact on how we think about fluctuation-dom inated physical phenom ena that 
every physicist should have some understanding o f  how it works. A t the end of 
this chapter, we will present a simplified in troduction  to the basic concepts o f  the 
W ilson renorm alization group.

5.1 Breakdown of mean-field theory

Mean-field theory is an approxim ation that replaces a fluctuating local order 
param eter by a spatially uniform  average order param eter. This is a good 
approxim ation if fluctuations o f  the order param eter about its m ean value are 
small. A  quantitative measure (first introduced by V.L. G inzburg, 1960) o f  the 
im portance o f fluctuations can be obtained by considering the average over a 
coherence volume, Υξ ~  ξ ά o f  the deviation δφ(χ)  = φ ( \ ) — (φ), o f  the local order 
param eter from its equilibrium value:

F luctuations are negligible if, in the ordered phase, {(δφοαh)2) is m uch less than

where G(x, x ') =  G(x — x ') is the order param eter correlation function introduced 
in Eqs. (3.5.13) and (4.3.21).

Rem arkably, as discussed in Sec. 4.3, mean-field theory itself provides a pre
diction for G (x,x ') =  Ty(x, x'), where χ (χ ,χ ')  is the susceptibility relating δ(φ(\)}  
to a conjugate external field a t x'. Thus, mean-field theory gives rise to its own 
internal consistency criterion. I f  Eq. (5.1.2) is satisfied by the mean-field values

(5.1.1)

(φ )2, i.e., if

[  άάχάάχ'{δφ(χ)δφ(χ'))  = V f 1 [  ddxG (x ,0) <  (φ )2, (5.1.2)
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for G(x,0) and (φ), then mean-field theory is internally consistent and a good 
approxim ation. I f  not, fluctuations are im portant, and an alternative theory m ust 
be found.

The left hand side o f  Eq. (5.1.2) can be obtained for φ 4 theories in mean-field 
theory using Eq. (4.3.17) for χ(χ,Ο) and Eq. (4.3.4) for (φ).  We obtain

where ξ =  ( c / |r |)1/2 is the correlation length and A d is a constant for fixed 
dim ension d. This equation can be reexpressed in a unitless form,

where ξο =  (c /a T c)l/2 is the bare coherence length [Eq. (4.3.16)] and Acj/ =  
T a 2/ 8u is the mean-field specific heat jum p per unit volume [Eq. (4.3.11)]. 
T hough this equation was derived by consideration o f  fluctuations about the 
ordered phase (i.e., T  < T C), it also applies in the disordered phase (i.e., T  > Tc).

For d > 4, ζ ά~4 diverges as T  —► Tc, and Eq. (5.1.4) is always satisfied near 
the critical point. For d < 4, ξ ά~4 tends to zero as T  —* Tc, and Eq. (5.1.4) 
is never satisfied near the critical point. Thus, mean-field theory provides an 
internally consistent description o f  the second-order phase transition  o f  φ 4 and 
related models for all d > 4. I t does not provide an  adequate description for 
d < 4. The dim ension dc below which mean-field theory breaks down is called 
the upper critical dimension. For phase transitions described by φ 4 and related 
theories, dc = 4. O ther transitions can have o ther values o f  dc (see Problem 5.1).

For d < dc, mean-field theory is valid for tem peratures sufficiently far from Tc 
that Eq. (5.1.4) is satisfied. As T  approaches Tc (either from above or below), 
fluctuations become m ore im portant, and the inequality in Eq. (5.1.4) is eventually 
violated. The tem perature TG a t which fluctuations become im portant is called 
the Ginzburg temperature and is determ ined by equality in Eq. (5.1.4):

Here and in w hat follows, we will use upper case T  to denote tem perature and 
lower case t = ( T  — Tc) / T c to denote reduced tem perature. Thus, to is the reduced 
G inzburg tem perature. (Later, when we discuss dynamics, t will denote time.) 
Alternatively, a Ginzburg length, ξο, can be defined via Eq. (5.1.4):

Mean-field theory is valid when ξ < ξβ and invalid when ξ > ξο. Note that 
\Tg — Tc\ —► 0 as ξο —► oo for d < 4. Thus, mean-field theory will be valid

((δφοώ)2) = T V f ' c - 1 [  / x | x | - (li- 2)y ( |x | / o
JV{

= Α άΤ ξ - (ά- 2)/ο < \r\/4u, (5.1.3)

(5.1.4)

(5.1.5)

ξ4ΰ~ά ~  Acj/^o =  c2/(8uT c), (5.1.6)

or

<sG ~  ζο(Αον ξ ί ) ι ' (4- ά) (5.1.7)
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Fig. 5.1.1. Schematic of the inverse susceptibility as a function of reduced 
temperature t = (T  — Tc) /T c showing crossover from linear mean-field 
dependence on t at large t to power-law behavior for t < tG.

even very close to a critical point for d < dc if  the bare coherence length ξο is 
large. This is the case for systems with long-range forces, or, as we shall see, 
for superconductors. W hen \Tq — Tc\ is not small, one can expect a crossover 
from mean-field behavior to critical behavior when the reduced tem perature 
t =  ( T  — Tc) / T c becomes o f order to- The inverse susceptibility showing crossover 
is sketched in Fig. 5.1.1. In  three dimensions, a m ore careful evaluation o f  Ad 
yields

1g =  „  2, . b 2 g6, (5.1.8)
32n2(Acv)%o

where A cY is m easured in units o f  erg cm - 3  K _1 and /cB =  1.38 χ  10-1 6  erg K _1 

is Boltzm ann’s constant. This is the form for tG that is usually used in three 
dimensions.

1 M ean-fie ld  transitions revisited

In  Sec. 4.4, we gave two examples o f  phase transitions that exhibited mean-field 
behavior. We can now ask why critical fluctuations are not observed in these 
transitions. In  the case o f  the smectic-,4 to smectic-C transition (data  in Fig. 4.3.4), 
the specific heat jum p is o f  order 106 erg cm - 3  K -1 , and the coherence length ξο 
is o f  order 2θΑ. Thus, tG «  10-5 . The transition tem perature is o f  order 300 K 
so tha t Tq — Tc «  3 x  10- 3  K. The experiments reported in Fig. 4.3.4 do not 
probe reduced tem peratures o f  order 10 -5 , and mean-field behavior is expected. 
The case o f  superconductors is even m ore dramatic. The specific heat jum p in 
alum inum  is o f  order 2  χ  10 4 erg m ole- 1 K. The lattice spacing in AI is 4A, whereas 
the coherence length is ξο *  1.6 x  104A. Thus, Acy  » ( 2  x 105/4 2) erg cm - 3  K - 1  

and tG «  10~16. The transition tem perature in AI is 1.19K so that access to its
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critical region is virtually impossible. The reason for the very small value o f  Tq 
is the enorm ous coherence length relative to the lattice spacing. This feature is 
com m on to m ost superconductors, with the exception o f the the so-called high Tc 
superconductors. This means tha t mean-field theory should provide a very good 
description o f  superconductors, as indeed it does.

5.2 Construction of a field theory

In  the preceding chapter, we studied the predictions o f  simple mean-field theory 
based on the phenom enological expansion o f  the free energy F  in powers o f  the 
order param eter (φ(\)) .  In  order to treat fluctuations tha t become im portant for 
T  < T q and d < dc, it is necessary to have a m ore microscopic description o f  how 
partition  functions and F[(</>(x))] are actually evaluated. One could, o f  course, 
begin with the microscopic H am iltonian expressed either in terms o f quantum  
m echanical operators or in terms o f  classical dynamical variables and attem pt 
to evaluate the partition  function directly. This is often a workable procedure. 
It is, however, usually very difficult to carry out in the vicinity o f  second-order 
phase transitions where, as we have seen, correlation lengths diverge. To study 
critical properties o f  phase transitions, it is often m ore useful to introduce semi- 
phenom enological field theories, where the trace operation is an  integral over all 
possible values at all points in space or all points on a lattice o f  the local order 
param eter treated as a continuous classical field. Field theories o f  this sort are 
also o f  considerable use in studying systems far from any phase transition. Their 
derivation will be described below.

1 Coarse graining

The partition  function discussed in the preceding chapter involves a trace over all 
possible states o f  the system. To facilitate discussion o f  the appearance o f order 
and properties o f  the ordered phases, we would like a form ulation o f  the partition  
function tha t emphasizes the role o f  the order param eter. One way to do this is 
to divide the system up into m any cells with dimensions large com pared to any 
microscopic length such as the interparticle spacing or range o f the interparticle 
potential. Each cell contains a large num ber o f  particles. The order param eter 
field, φ ( \ ), like the Ham iltonian, is a quantum  mechanical operator or a function 
o f  the classical dynamical variables (e.g. the m agnetization o f Eq. (3.5.1)). Its 
average over the particles in a cell centered at position x is 0(x). Since there 
are m any particles in each cell, φ {\)  can be regarded as a continuous classical 
variable, which can vary from cell to cell. This process o f  averaging over many 
particles in some volume o f space is called coarse graining. In  essence, we take the 
Landau form for the free energy and treat it as the energy for a particular local 
configuration o f  the order param eter. Then instead o f  considering the m inimum
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(d)

(a)

(b)

(c)

Fig. 5.2.1. Paths contributing to the functional integral of a one-dimensional 
field, (a) and (b) are paths with a spatially uniform order parameter, and (c) 
and (d) are paths with a spatially varying order parameter.

energy we allow for excitations according to their statistical weight. The states 
o f  the system can now be specified by the field φ(χ) and have an effective energy 
i f  [</>(x)]. The partition  function is thus an  integral, or m ore properly a functional 
integral, over all possible values o f  φ(χ)  a t all positions x:

Z  =  J  @φ(χ)β' {·* - 1  ddxHx)^ x))/T. (5.2.1)

The integral over φ(χ)  is often called a pa th  integral because in one-dimension 
it is an  integral over all possible paths o f  φ(χ)  in space. Some paths for a 
one-dimensional field are shown in Fig. 5.2.1.

In  purely classical systems, one can arrive a t Eq. (5.2.1) by introducing a delta 
function and setting the field φ(χ)  equal to φ(χ)  into the expression for the 
partition  function:

Z  =  J  3>φ(χ) T r ] J d W ( x ) - 4 > ( x ) \ e - iJf- f ddxh{x),l,{x)]/T. (5.2.2)

This yields Eq. (5.2.1) with

e- * / T  =  Tr J J  δ [0 (X) _  φ(χ )]β- * / τ  . (5.2.3)
X

For our present purposes, the distinction between the operator field φ(χ)  and 
its coarse-grained local average φ(χ)  is irrelevant, and we will denote both  fields 
by φ(χ). We will discuss in Appendix 5A how field theories, such as that o f 
Eq. (5.2.1), can be derived directly for models, such as the Ising and Heisenberg 
models discussed in Sec. 3.6, for which there is a strong constraint on the value 
o f  the local order param eter field (e.g. S,2 =  1).

The effective energy i f  is usually called a H am iltonian in the statistical me
chanical and critical phenom ena literature, even though it is not a function o f 
variables for which com m utation or Poisson bracket relations have been defined. 
It is closely related to the action o f  quantum  field theories and is, therefore, 
referred to as the action in some literature. Since we will usually not consider 
in detail the original microscopic Ham iltonian, we will usually use the symbol
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J f  ra ther than  i f  for the effective energy determ ining the weight assigned to 
configurations in a functional integral representation o f  the partition  function.

A  phenom enological form for J f  can be derived in much the same way as 
the Landau form for the mean-field free energy F  [Eq. (4.2.1)]. There should be 
a local part o f  J f  depending only on the order param eter at a single position 
in space and a part favoring a spatially uniform  order param eter. We therefore 
write

J f  = j  /x /[<M x)] + \J ddxc\y<t>(x)]2, (5.2.4)

where /  is a local function o f  φ{χ), which can be expanded in a power series in 
com binations which are invariant under the symmetry group o f the disordered 
phase. For example, /  could be identical to the φ 4-Landau free energy density o f 
Eq. (4.3.1). The H am iltonian o f Eq. (5.2.4) provides a description o f  the energy 
associated with long-wavelength, slow spatial variations o f  φ{χ). I t does not 
provide a realistic description o f  short-wavelength distortions. However, m ost 
phenom ena in the vicinity o f  critical points are controlled by long-wavelength 
fluctuations, and f SL in Eq. (5.2.4) is adequate provided short-wavelength fluc
tuations are suppressed. This can be accomplished by the so-called hard cutoff  
procedure whereby excitations with wave num ber greater than  a cutoff Λ ~  2π/α,  
where a is a length o f  order the range o f  interparticle interactions, are simply not 
perm itted in the partition  trace. O ther m ethods o f suppressing short-wavelength 
fluctuations, such as the addition o f a term  proportional to [V2</>(x)]2, are also 
possible. In  w hat follows, we will employ the hard cutoff procedure alm ost 
exclusively.

2 L a tt ice  f ie ld  theories and their continuum limit

The definition o f the functional integral in the partition  trace o f  Eq. (5.2.1) is a 
little vague. We will now refine this definition by considering the continuum  limit 
o f  a theory with fields φι defined on N  sites 1 o f  a ^-dimensional lattice. The 
partition  function for such a lattice model can be w ritten as

Z  =  Π /  dfae~ll* L[,M, (5-2.5)

where β  = 1 / T  and

J f i W  =  Σ Μ Φ ύ  +  \ Σ  -  ^ ) 2’ <5·2·6)
1 1,1'

where f  ι(Φ\) has a power series expansion about φι =  0 and Ciy has a finite 
range, typically a lattice spacing. Each φι can take on any value between +oo 
and —oo. A configuration entering the partition  sum in Eq. (5.2.5) is specified 
by the value o f  φι a t each site 1. Typical configurations on a one-dimensional 
lattice are shown in Fig. 5.2.2. The local term  f  ι(φ \)  favors particular values o f 
φι. For example, if  f L has the form o f Eq. (4.3.1), it can have a single m inim um
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Φ
(a)

(b)

(d)

ΠΦ)

Fig. 5.2.2. Configurations of a one-dimensional lattice field theory, (a) 
Low-energy configuration when /*, has a single minimum at φι =  0. (b) 
High-energy spatially varying configuration when f L has a single minimum, 
(c) The same as (a) when f L has two equivalent minima, (d) The same as (b) 
when f L has two minima. When the lattice spacing goes to zero, these paths 
become those of a continuum theory depicted schematically in Fig. 5.2.1.

a t 0i =  0 or two m inim a at φ\ =  ± ( |r |/4 u ) 1/2 if  r is negative. The interaction 
term favors equal values o f  φι a t all lattice sites. Thus, configurations such as

have a larger value o f and thus a smaller weight in the partition  trace than 
do configurations such as those in Figs. 5.2.2a and 5.2.2c, in which φι is spatially 
uniform  with a value near a m inim um  o f  f L.

The continuum  limit o f  the lattice m odel defined in Eqs. (5.2.5) and (5.2.6) is 
obtained by allowing the volume per lattice site v<) to tend to zero, Ri to become 
a continuous variable x, and φι to become φ ( \ )  while keeping the total volume 
V = N \o  fixed. In  this limit,

those shown in Figs. 5.2.2b and 5.2.2d, where φι changes rapidly from site to site,

(5.2.7)

(5.2.8)

(5.2.9)

where /  =  v0 lf L and
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(5.2.10)

Only the lowest order term  in the gradient expansion o f  Eq. (5.2.9) was retained. 
As discussed previously, implicit in the right hand  side o f this equation is an 
upper wave num ber cutoff A. The functional integral entering the continuum  
partition  function has the form al definition

Finally, the lattice paths o f Fig. 5.2.2 become continuous paths such as those in 
Fig. 5.2.1.

Both lattice and continuum  field theories are used extensively in condensed 
m atter physics. In  the study o f critical phenom ena, where interesting proper
ties are independent o f the way short-wavelength excitations are suppressed, the 
choice o f  which to use is largely a m atter o f personal taste. People with ex
perience with microscopic models defined on a lattice tend to  use lattice field 
theories, whereas those with m ore experience in quantum  field theories tend to 
use continuum  theories. We will usually use continuum  theories partly  because 
they are physically m ore appropriate for m any o f the systems we will study such 
as liquids and liquid crystals.

W hen the H am iltonian is harm onic in φ(χ), then the weight function 
becomes Gaussian, and the partition  trace in Eq. (5.2.1) can be evaluated exactly. 
This exact evaluation, which we will present in this section, is the first step in the 
developm ent o f perturbative calculations o f  the partition  function when has 
anharm onic terms.

The starting point for the evaluation o f  G aussian functional integrals is the 
identity

We will now derive the generalization o f this result to  m ultidim ensional integrals. 
Let C be an η x  n m atrix  with com ponents Ci; =  (i\C\j). I f  C is real and 
symmetric, then it can be diagonalized with real orthonorm al eigenfunctions (i\p) 
such tha t (p\C\p') =  SP,P’CP, where Cp is an eigenvalue th a t is necessarily real. We 
can therefore write

(5.2.11)

3 Gaussian integrals

(5.2.12)
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(2n)n/2 (d e tC ) - l/2 e ^ tCun >

exp [— ̂  Tr ln(C /  2π) +  jCyUj],

where the sum m ation convention on repeated indices is understood and where 
yp = J2t(P\i)yi and λρ = J2i(PΙ!')^ί· The Jacobian o f the transform ation from  the 
variable y t to yp is the determ inant o f the m atrix M  with com ponents (p\i). It 
is one because |d e tM | =  d e tM 2 |1/2 and (p\M 2 \p') =  J2i(p\i)(i\p') =  <W· The 
eigenfunctions (p\i) can always be chosen to  be real for a real symmetric matrix. 
It is often convenient, however, to choose them  to be complex (e.g. plane waves 
e,q R| with periodic boundary conditions). Since the complex functions can always 
be expressed as linear com binations o f real eigenfunctions, the final result of 
Eq. (5.2.13) rem ains unchanged.

The identity, Eq. (5.2.13), for multiple G aussian integrals can be applied directly 
to  the evaluation o f the partition  function o f an harm onic lattice m odel with

The convention for Fourier transform ations used here is the same as tha t discussed 
in the appendix to  Chapter 2 and is the one m ost suited for taking the continuum  
limit Vo —*· 0. A n alternative convention in which the factors o f vo do not appear is 
often m ore convenient for lattice models. In  Eq. (5.2.14), ryy are the com ponents 
o f a m atrix r. The orthonorm al eigenfunctions diagonalizing r are the functions 
(I|q) =  iV_ 1/ V q'R|. The eigenvalues o f r are

(5.2.14)

where

(5.2.15)

and

(5.2.16)

(5.2.17)

Thus,

d [ T , h  i] =  — T In Z  =  — T lnT  ln Z  =  -  T  ln άφχεβ(< +^ « )

where J ^ en  = ^ίφι and

(5.2.19)

The free energy o f  a continuum  model with
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=  \ l  άάχάάχ'ν(χ’χ^Φ ^Φ (χ"> =
J n

(5.2.20)

is merely the continuum  limit o f Eq. (5.2.18),

[̂Τ,Λ(χ)] = ^ T V  J - ^ Ι η [ β τ ( Φ ο / ( 2 π ) \

— i J  ddxddx'h(x)0 Go(x,x’)h(x’)

with jSr(q) =  Gq'(q) and

(5.2.21)

(5.2.22)

W ith the Fourier transform  convention o f  Eq. (5.2.16), r(q) is the same in bo th  the 
lattice and continuum  models. N ote tha t the free energy in the above equation is 
formally infinite in the limit vo —*· 0  (assuming r(q) rem ains finite in this lim it as 
it must). This infinity has no physical significance and can be removed merely by 
redefining the continuum  trace operation. The cell volume vo can be related to  the 
cutoff A o f the continuum  theory. As discussed in A ppendix 2A, the num ber of 
wave vectors q m ust be equal to  the num ber o f lattice points in a discrete theory: 

\ = N  =  V f  ddq /(2n)d. Thus, if there is a hard  spherical cutoff restricting |q| 
to be less than  A, then v0 = V / N  = dA~d/ K j  where K j  = Ωά/(2π)ά with Ω<* the 
solid angle subtended by a d-dimensional sphere. In  the continuum  model, N  has 
no meaning, bu t A does, and by the above relation, we can assign meaning to vo· 
In two and three dimensions, vo is, respectively, 4πΑ~ 2 and 6π2Λ~3.

It is worth noting th a t Eq. (5.2.22) is a restatem ent o f the equipartition theorem  
for classical harm onic Ham iltonians:

Eqs. (5.2.1) and (5.2.4) define a field theory from  which the therm odynam ic 
potential s i[T ,h (x )]  and its conjugate potential F [ { < / > ( x ) } ]  can be calculated. 
All possible configurations in functional space contribute to Z . As discussed 
above, some configurations contribute m ore to Z  than  others. The configuration 
contributing the m ost to Z  is the one minimizing β [ — f  ddxh(x)4>(x)], i.e., the 
functional integral is dom inated by the saddle point path  along which φ(χ) =  
</>sad(x) determ ined by

( # 1ι ) # ΐ 2)) =  j ^ < /> (x )e x p [ -^ ^ r (q ) |< /> (q ) |2]</>(qi)</>(q2)

(5.2.23)

Inverse Fourier transform ing this equation leads to Eq. (5.2.22).

4 M ean-fie ld  theory f r o m  fu n c t io n a l  integrals

(5.2.24)
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M ean-field theory consists o f approxim ating Z  by its contribution from  the saddle 
point path  only. Thus the mean-field approxim ation for the partition  function is

Z MF =  exp{—jS(^[</>sad(x)] -  J  ddxh(x)(l>satt(x))}

=  exp{-jS(i=W [(</>(x)}]- J  άάχΗχ)(φ(χ)))}, (5.2.25)

where FMf  is the mean-field free energy. It is clear from  Eqs. (5.2.24) and (5.2.25) 
tha t in mean-field theory (φ(χ)) =  </>Sa d ( x )  and tha t Fm f  =  . J ^ [ 0 Sa d ( x ) ] ·

Corrections to  mean-field theory can be studied by expanding in powers of

δφ(χ)  = φ(χ) -  (φ(χ)). (5.2.26)

By definition, (δ φ (χ )} =  0. As we have just seen, (φ(χ)) = φ$ad(x) in mean-field 
theory. In general, fluctuations will cause (φ(χ)) to differ from  </>sad(x) when 
(φ(χ)) is nonzero in ordered phases or in the presence o f external fields. There 
are well controlled ways o f calculating (φ(χ)) which are beyond the scope o f this 
book. G aussian fluctuations about the saddle solution can, however, be calculated 
using the m aterial presented in this section. Expanding to second order in δφ(χ), 
we find

— J  ddxh(x̂(x) = 3*Ρ((φ(χ))) — J  ddxh(x)̂ (x)) +  (5.2.27)

where

= ^ J  άάχάάχ 'δφ (χ )Ο ο 1 (χ ,χ ')δφ (χ ')  (5.2.28)

is the harm onic correction to the saddle po in t H am iltonian and 

β ό Η χ ,χ ')  =
-r_l / _  δβ  JP

δφ(χ)δφ(χ ') φ (χ )= (φ (χ ))

= fi[r +  12ιι(φ(χ ) ) 2 — c V 2]<5(x  — x'), (5.2.29)

is the inverse o f the mean-field correlation function, where the final form  applies 
only to a </>4-theory. Thus, harm onic fluctuations about the mean-field or saddle 
point solution are controlled by the mean-field order param eter correlation func
tion. The lowest order fluctuation corrections to  the mean-field free energy are 
obtained by evaluating the G aussian integral over δφ(χ), leading to

1 f ddq
F - F m f =  ± T V  J - ^ L d \n[G o\q)v 0 / ( 2 n)]

=  ^ T T r  ln[Go 1ν0/(2π)]. (5.2.30)

The trace in this expression is the logical extension to  continuous systems of 
the trace operation in discrete systems. The trace o f a m atrix A (x , x') is simply 
ΎτΑ = f  ddxA(x ,x) .  I f  A  diagonalizes under Fourier transform ation, then Tr^4 =  
J ] qy4(q). Eq. (5.2.30) is often called the one-loop approxim ation for the free 
energy. It depends on (φ(χ)) via the dependence o f Go on (φ(χ)), and can be 
expanded in a power series in (φ(χ)). The second-order term  in this expansion 
gives the one-loop correction to  the inverse correlation function, G~'(x, x ^  which
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in the disordered phase with (φ (\))  =  0 is

G ' W ' )  =  3βΡ
δ(φ(χ))δ(φ(χ '))

= G » '(x ,x ’) +  jrTrGo - ^Q  —  (5.2.31)
2  δ(φ (χ ) )δ (φ (χ ))

δ ΰ ΰ ι (χ 2 , χ ι)
=  G0 1(x,x') +  ^ J  d̂xid̂x2G(j{xi)x2)~

δ (φ (χ ))δ (φ (χ ') ) ’ 
where the second two forms apply only to  the disordered phase.

For a </>4-theory, this reduces to

G_1(x,x') =  Gq1(x >x,) +  12u<5(x — x')Go(x, x), (5.2.32)

which in the disordered phase when (φ(χ)) =  0 is

Ί
One-loop corrections to  fourth- and higher order term s o f  the expansion o f F  in 
powers o f (φ(χ)) can be calculated in a similar way.

5 Breakdow n o f  mean-field theory revisited

In the preceding section, we showed how fluctuations can lead to  a breakdow n 
of mean-field theory. We have just seen th a t the replacem ent o f  Z  by its con
tribution  from  the m ost probable path  with a spatially uniform  order param eter 
is equivalent to  mean-field theory. We will now show tha t the criterion for the 
breakdow n o f this approxim ation is exactly the same as the G inzburg criterion 
discussed in the previous section.

W hen h(x) is spatially uniform, the saddle point path  yielding mean-field theory 
is one with a spatially uniform  (φ (χ )}. This is a good approxim ation so long as 
the contribution  o f spatially non-uniform  paths to  Z  is unim portant. This is the 
case when the energy, # f n.u. =  \ c  J  άάχ(νφ)2, associated with non-uniform  paths 
is large com pared to T. We can estimate the m agnitude o f J ^ n.u. by noting tha t 
(φ)2 = \r\/Au a t the saddle po in t and tha t spatial correlations only extend up to 
a distance o f order ξ =  (c / |r |)~ 1/2. We can, therefore, estimate

#*.«. =  \ c  j άάχ ( ν φ ) 2 ~  1- € ξ Λ- 2(φ )2 =  (5.2.34)

In order for mean-field theory to be valid, F„.u. m ust be greater than  T,  or

{" > ? Τ - 2 ^ · » ( 5 Γ > 2 ^ Γ ·  < 5 ' 2 3 5 )

This is identical to  Eq. (5.1.4).
The G inzburg tem perature also indicates when perturbation  theory will break 

down. Consider the one-loop expression for
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d T G  Hq.O _  , 1? T  f  ddq 1
dr J (2n)d ( r + c q 2 ) 2 ( }

obtained from  Eq. (5.2.33). The perturbation  term  in this expression proportional 
to u diverges as ( u T /α 2 )ξ4 ~ <1 for d < 4 and becomes com parable to  unity at the 
G inzburg tem perature TG. Thus, for T  > TG, a  perturbation expansion in u (or 
the num ber o f  loops) presents no problems. For T  < TG, low-order term s in 
perturbation  theory become divergent, and simple perturbation  theory will not 
work. The renorm alization group, which we will discuss later in this chapter, 
m aps a critical problem with T  < TG to  a non-critical problem  with T  > TG, 
where perturbation  theory can be used.

5.3 The self-consistent field approximation

We have just seen tha t mean-field theory breaks down below an upper critical 
dim ension dc = 4. One can see explicitly how this happens in a simple treatm ent 
o f the φ 4-field theory. This approxim ation is variously called the self-consistent 
field, H artree or random  phase approxim ation (RPA). It becomes exact (as will 
be shown at the end o f this section) for n-com ponent fields in the lim it n —*· oo. It 
consists o f replacing one factor o f φ 2 in the φ 4 term  in f s t  by its average, (φ2), 
to  be determ ined self-consistently. There are six ways o f choosing the two factors 
o f φ  to  be paired in (φ2) from  the four factors o f  φ  in φ 4, and the harm onic 
free energy o f the RPA becomes \ r φ 2 +  6ιι(φ2 )φ 2. In an n-com ponent theory, 
the factor o f 6 becomes 2(n +  2). The correlation function G(q) can be evaluated 
using the equipartition theorem  as before [Eq. (5.2.22)]:

T G ~ l (q) = r +  q2 +  12ιι(φ2), (5.3.1)

where as before r = a (T  — Τ ') .  For T  greater than  the as yet to  be determ ined 
transition tem perature Tc,

( Λ  =  0 (χ ,χ )  =

_ [ * < L ____________ I _. (53.2)
J  (2n)d r +  cq2 +  1 2 ιι(φ2)

Eq. (5.3.2) provides a self-consistent equation for (φ2).
Before evaluating the integral in Eq. (5.3.2), we recall tha t the expansion of 

G(q) to first order in q2 is only valid for small q (long wavelength). For larger 
q, higher powers in the expansion are needed. Alternatively (see Sec. 4.3), one 
can say tha t the q2 form  is valid up to some cutoff Λ o f order the inverse bare 
correlation length, ξο =  {c /aTc)x/1. In this case, the integral in Eq. (5.3.2) is 
restricted to  a sphere o f radius Λ. Using Eqs. (5.3.1) and (5.3.2), we can now 
calculate the tem perature dependence o f χ~ι = T G ~ l (q =  0):
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-1 , n  r  f A 1X = τ  =  r +  l2 u T  / 77Γ--Τ---------,
Jo (2 π)ά τ  +  cq2

/■Λ
=  r+ 1 2 u T K ,i / qd~xdq(x +  cq2)-1 , (5.3.3)

Jo
where

K d = Sld/(2n)d, (5.3.4)

and Ω<* is the solid angle subtended by a sphere in d dimensions. A t the actual 
transition tem perature Tc, the susceptibility diverges: χ~ι = τ  =  0. This allows us 
to determine the critical tem perature for d > 2  via

„ - < T , - n - i ^ / * ^ — <5.3.5,
c Jo q2 C d - 2

This gives

T ‘ - ( i + f ^ O " ‘ r · (536)
The transition tem perature is depressed below the mean-field limit o f m etastabil
ity. N ote also tha t Tc —> 0 as d —> 2. This is the lower critical dimension dL at 
which critical fluctuations become so violent tha t no phase transition at nonzero 
tem perature is possible. For all d < dL, there is no transition at all. We will 
encounter d t  again in the next chapter.

We now express χ~ ι as a function o f r — rc = a (T  — Tc):

~l = τ = r — rc +  1 2 uKd J  qd 1 A  > T  T ‘dq
kτ +  cq2 cq2 y

= (a!/a)r— rc — \2uTc(Kd/c)Tld(x), (5.3.7)

where we dropped a term  of order ( Τ — Τ ^ τ Ι ^ τ ) ,  (a!/a) = i + 12uTc(Kj/ac)(Ad~2/  
(d — 2 )), and

Ιά(τ) = fA Qd~l^q ~ 2 }—■— r ; =  Γ ^ ·  (5 3 '8)Jo q2(T + cq2) Jo τ  +  cq2

For d > 4 , 1,ι(τ) is analytic and tends to Id(0) =  Ad~4 /[c(d — 4)] as τ —*· 0, and τ is 
a linear function o f small r — rc. Solving for τ in terms o f r — rc for small T  — Tc, 
we obtain

a ( T  -  Tc)
The critical exponent y = 1 is thus the same as in mean-field theory. The only 
modification in χ  for d > dc = 4 is in the value o f Tc and in the prefactor of 
(T  -  Tc)-1.

For d < 4, /^(τ) is divergent at τ =  0:
rA(c/t)‘/2 y d-3dy

I d =  c -W -2 ) /2 TW -4)/2

Jo l + y2
τ->0

c -(d-  2)/2x-e/2Bit (5.3.10)
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where e =  (4 — d) and Bd =  Γ[(ί2 — 2)/2]Γ[(4 — d ) /2]/2, Γ (χ) being the gam m a 
function. Thus, if  t ~ f/2 is small, the term  involving Id(z) in Eq. (5.3.7) can be 
neglected and τ ~  (r — rc). This implies a mean-field form for /  for T  > TG, 
where

TG = Tc +  a~l [l2BdK duTce~d/2]2/{4~d\  (5.3.11)

in agreem ent with the G inzburg tem perature [Eq. (5.1.5)] calculated previously. 
For T  < TG, τΙί{τ)  dom inates in Eq. (5.3.7), and we have

r — rc =  \2u(Kd/c )c - (d- 2)l2 Bdx(d- 2)l2, (5.3.12)

χ  =  τ - 1 ~  (r -  rcy y; y =  . (5.3.13)

N ote th a t the susceptibility exponent y —> 1 as d —> 4 as required.
In  this approxim ation, there are no q-dependent corrections to the mean-field 

/(q). Therefore,

Z(q) =  (τ +  cq2) - 1 =  / [ l  +  (« ί)2] ' 1, (5.3.14)

where

ξ 2 = ( φ ) ~ \ Τ - Τ {Γ 2ν. (5.3.15)

Thus, the correlation length exponent is

' - h - a h > ·  ,5 3 1 6 )
which again reduces to  its mean-field value o f 1/2 when d =  4.

The crossover o f the correlation length from  its mean-field to  its critical form
is o f some interest. From  Eqs. (5.3.14), (5.3.7), (5.3.10), and (5.1.7), we find

ξ 2 = ξ 2ΜΓ^ +  ή ξ / ξ β η  (5.3.17)

where g =  l2 K dB<i, ζΰ is the G inzburg length, and

{-  =  5 r ^ i ·  1 5 3 18)

These equations imply

( ξ ΜΡ, if £ «  £g ;
ξ ~  { (5.3.19)

I  if ί  >  &■
N ote th a t when <̂ mf ~  ζβ, ζ ~  ζβ·

This simple approxim ation shows the m ajor effects o f  fluctuation corrections to 
mean-field theory. First, fluctuations in general reduce the transition tem perature 
below its mean-field value. Secondly, they lead to critical exponents tha t differ 
from  those o f mean-field theory for physical dim ension less than  the upper critical 
dim ension dc. For d < dc, there is a crossover from  mean-field to critical behavior 
for reduced tem perature t less than  the G inzburg tem perature tG.
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1 The n-vector model in the limit n oo

The self-consistent field solution just presented becomes exact in the n 
o f the n-vector model. To see this, consider the n-vector H am iltonian

- \ I ‘ xr</> ■ φ + c[V<l>\ + n lu J  άάχ(φ  ■ΦΫ,

oo limit

(5.3.20)

where φ = (φ ι , . . . ,φη) is an n-com ponent vector field and where the quartic term  
is explicitly proportional to n' 1 to produce a meaningful n —*· oo limit. The 
exponential o f the quartic term  in can be expressed as the exponential o f  a 
quadratic term  with a fluctuating coefficient with the aid o f the G aussian identity 
in Eq. (5.2.13):

/ ioo

3>ψ(χ) exp

•100

1

16 u
ηβψ 2 (χ) -  ]τβψ(φ ■ φ)

(5.3.21)

where C is an un im portan t constant. In this expression, the integration contour 
is along the im aginary rather than  the real axis because o f the negative sign in 
the argum ent o f the exponential on the right hand  side. The partition  function 
can now be w ritten as

β
J*'dx\p2- / n  @φί(χ)@ψ(χ) exp

x  exp J  ddx[(r +  ψ(χ))φ ■ φ + c(V<£)2; 

= J  £% (x)exp  J  ddxxp2 — ηΦ[ψ(χ)]

where

exp(—ηΦ[ψ(χ)]) =

/
άφ(χ ) exp \  j  Λ [ < r + ψ(χ))φ2(χ ) + c(V</>)2

(5.3.22)

(5.3.23)

(5.3.24)

The integral on the right hand  side o f this equation is n identical replicas o f the 
same integral, and is, therefore, the nth power o f  an integral over a scalar variable. 
Thus, the argum ent o f  the exponential on the left hand side o f Eq. (5.3.23) is 
proportional to n as indicated. The integral in Eq. (5.3.24) can be evaluated 
formally using Eq. (5.2.13) leading to

Φ[ψ(χ)] =  ^Trln[jSG 1(χ ,χ ')/(2 π )], (5.3.25)

where

G '(χ ,χΟ  =  [r +  tp(x)]<5(x — x') — cV2<5(x — x'). (5.3.26)

The saddle po in t approxim ation to  the partition  function in Eq. (5.3.23) is exact 
oo and yields

ddq T

in the lim it n

Ψ
=  4"/ (2n)d r +  \p +  cq2

(5.3.27)
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and

T G -'fq )  = r +  \p + c q 2. (5.3.28)

A part from  the difference in prefactors o f u, these two equations are identical to 
(5.3.1) and (5.3.2).

5.4 Critical exponents, universality, and scaling

Critical exponents for m ost experim ental second-order transitions differ from 
those predicted by mean-field theory. Table 5.4.1 reviews the definitions o f critical 
exponents and critical am plitudes defining the strength o f leading singularities. 
N ote th a t the definition o f the critical am plitudes A  and A' for the specific heat 
are m ultiplied by a factor o f 1/a. This is to perm it a description o f situations 
in which the exponent a is either positive, negative, or zero. A  representative 
sample o f  transitions and associated exponents are listed in Table 5.4.2. I t is 
rem arkable tha t there is very little variation in the critical exponents between 
systems for fixed spatial dimension d. In three dimensions, β  is o f order 1/3, 
y o f order 4 /3 , v o f order 2 /3, and  the specific heat exponent a o f  order zero. 
There is, however, a substantial difference between exponents in two- and three- 
dim ensional systems. The renorm alization group introduced by K enneth W ilson 
in the early 1970s provided a m ethod for calculating exponents and established 
tha t they should depend on the spatial dimension, the symmetry o f the order 
param eter, and  the symmetry and range o f  interactions, bu t not on the detailed 
form and m agnitude o f interactions. Thus, there are universality classes, and all 
transitions in the same universality class have the same critical exponents. For 
example, all transitions in which the order param eter has up-down symmetry 
(n =  1, Ising) should have the same exponents. Indeed, transitions such as the 
ferrom agnetic transition in uniaxial magnets, the liquid-gas transition, and order- 
disorder transitions all have very nearly the same exponents as can be seen in 
Table 5.4.2. Similarly, experim entally determ ined critical exponents for different 
three-dim ensional systems with O3 symmetry have nearly the same exponents and 
again for different two-dimensional systems with n =  1 symmetry as can also be 
seen in Table 5.4.2.

1 E xp o n en ts  and scaling relations

A nother rem arkable feature o f  second-order phase transitions is tha t not all of 
the critical exponents are independent. For example, y is always o f order 2v and 
α +  2β +  y is o f  order 2. These relations are a result o f  the hom ogeneity or scaling 
properties o f  correlation functions and therm odynam ic quantities near T  = Tc 
tha t can be derived using the renorm alization group. This hom ogeneity is already 
present in the mean-field correlation function [see Eq. (4.3.17)],
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χ  =  T t  y t  >  0
Susceptibility

χ  =  Γ'(—t) Ί t <  0

C  =  - r “ t >  0
Specific heat

c  =  £ ( - t r t <  0

II © t >  0
Correlation length

T,II t <  0
II to T t <  0

Order parameter
{φ)  =  D j l h\h\{l~s)/s t =  0

Correlation function G(q) = t =  0

Table 5.4.2. Some critical exponents from  theory and experiment.

Exponent a β y V Ά

Property specific
heat

order
parameter

susceptibility coherence
length

correlation
function

Definition c  ~  r (φ) ~  tf X ~  t~ y G(q) ~  q~1+n

Mean-field 0 0.5 1 0.5 0

3D theory 
n =  0 (SAW) 
n =  1 (Ising) 
n = 2  (xy)  
n = 3 (Heisenberg)

0.24
0.11

-0 .0 1
-0 .1 2

0.30
0.32
0.35
0.36

1.16
1.24
1.32
1.39

0.59
0.63
0.67
0.71

0.04
0.04
0.04

Experiment 
3D n =  1 
3D n =  3 
2D n=  1

0.1 Ι ίω

0-13S
0.0^3

0.32+$
0.3415J
o.3i;S

1 ?4·16

1-4^
1.82+°o7

0-63+S
0·7ί£
1.02+07

0.03 - 0.06

Experiments on 3D n =  1 compiled from liquid-gas, binary fluid, ferromagnetic, and 
antiferromagnetic transitions.
Experiments on 3D n =  3 transitions compiled from some ferromagnetic 
and antiferromagnetic transitions.
Experiments on 2D n =  1 complied from some antiferromagnetic transitions.
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G(x,0) =  G(|x|) =  | x r w' 2)y ( |x | / 0 ·  (5.4.1)

The only length th a t appears in this function is ξ. The microscopic length is not 
im portant. A t T  = Tc, ξ =  oo, and G ~  \x\~id~2> is a hom ogeneous function (see 
Eq. (3.1.31) for the definition o f a hom ogeneous function) o f |x| in that

G(|x|) =  b - (d- 2)G(b- 1 |x|). (5.4.2)

The susceptibility χ  is the integral o f T - 1 G(|x|) over x:

χ  =  T ~ x j  ddxG ( |x|) =  Τ ~ ι ζ 2 J  ddyy~(d~2)Y (y )

~  £ 2 ~  (T  — Tcy v .  (5.4.3)

From  this we see tha t the divergence o f χ  is due to  the increasing spatial range 
o f  correlations in the order param eter field. Eq. (5.4.3) also says th a t y =  2v =  1 
since ξ ~  |T  — Tc|~v with v =  1/2  in mean-field theory. This is, o f course, the 
same value for y obtained by direct calculation in Sec. 4.4. In  this context, we see 
th a t y is completely determ ined by v and the way G falls off with |x| at T  = Tc.

In critical systems, the behavior o f  G(|x|) a t T  = Tc is characterized by an 
exponent η defined via

G(|x|) ~  | x r w_2+"). (5.4.4)

This suggests a generalization o f Eq. (5.4.1) to

G(|x|) =  \χ \-{ά- 2+η)Υ (\χ \ /ξ ) .  (5.4.5)

In  this form, G (|x |,i) (t = (T  — T c) / T ) satisfies the generalized homogeneity 
relation

G (|x |,t) =  b ^ d- 2+r,)G(b~x\x\,bx/vt), (5.4.6)

and /(q ,i)  =  T - 1 G(q, i) satisfies the relation

x(q,t) = b2 - ”x (b q ,b ^ t ) .  (5.4.7)

This equation is valid for all b. W hen t =  0, we can choose b =  |q |_1 ξ  q~l to 
obtain

/(q , t =  0) ~  q~(2~n) (5.4.8)

since ro tational invariance implies th a t χ should not depend on the direction of 
q. Alternatively, we can choose b =  f|-v . Then

X(q, t) =  | i r vz(q |i|_v, t/\t\), (5.4.9)

where

γ = (2 — η)ν (5.4.10)

is the susceptibility exponent th a t describes the divergence o f  χ(ί) =  /(q  =  0 , i). 
This result could also have been obtained by integrating Eq. (5.4.5) for G(x) over 
x to  yield χ  ~  ξ(2~η> ~

N ote tha t /(q , i) in Eq. (5.4.9) depends on q|£|—v and on t/\t\ =  +1. Thus, the 
scaling function for /(q , i) can be different for t > 0  and  t < 0 :

X(q,t) = \ t r X 2( q \ t D ,  (5.4.11)
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where X 2 (u) = x (q u /q ,± l ) .  W hen qξ =  0, X 2 depends only on the sign o f t. In 
com m only accepted notation, coefficients for t <  0  are denoted with primes and 
those for t >  0 w ithout so th a t X 2(0) =  Γ  for t > 0 and X 2 (0) =  Γ ' for t <  0, 
as indicated in Table 5.4.1. M ore generally, as already noted, X 2 (u) = X 2 (u) for 
t > 0 and X 2 (u) =  X 2 (u) for t < 0. A t t = 0, /(q, i) is independent o f t. This is 
com patible with Eq. (5.4.11) only if X 2 (u) ~  u~y/v as u —*· oo. Thus,

(Γ, as u —*· 0 , ί >  0;
Dmu - y! \  as u —► oo; (5.4.12)

Γ', as u —*· 0 , t <  0
summarizes the limiting forms o f X 2 (u).

The scaling equation for G(x, t) [Eq. (5.4.6)] can be used to determ ine the
order param eter exponent β  in term s o f v and η. Since G(|x|) =  (φ ( \ )φ (0)} and
G(|x|) =  G(|x|) +  (φ (\ ) ) (φ (0)} are identical for T  > Tc, we expect G to  obey the 
same scaling law as G. For T  < Tc, (</>(x)} is nonzero, and from  Eq. (3.5.8)

lim G(|x|) —*· (φ ) 2 ~  |T  — Tcf .  (5.4.13)
|x | - > o d

The choice b =  |i|~v in Eq. (5.4.6) leads to

lim G(|x|, i) -> |i|W-2+")v, (5.4.14)
|x | - > o d

which is independent o f x. Thus, com paring Eqs. (5.4.14) and (5.4.13), we obtain 

β = 1-( ά - 2  +  η)ν. (5.4.15)

This relation involves the spatial dimension d. Relations involving d are called 
hyperscaling relations. N ote tha t the mean-field exponents satisfy this relation 
only at the upper critical dim ension dc = 4. Com bining Eqs. (5.4.10) and (5.4.15), 
we find

γ +  2 β = ά ν .  (5.4.16)

Again this equation is satisfied by the mean-field exponents a t the upper critical
dim ension.f

The existence o f a single length scale allows the specific heat exponent a to 
be determined. The specific heat cv is the second derivative o f the free energy 
density /  with respect to  tem perature and diverges as |f|-a  as indicated in Table 
5.4.1. The free energy density has units o f  energy divided by volume. A n energy 
scale is provided by the transition tem perature Tc, and a volume is provided by 
ζ ά. Thus we estimate

/  ~  Τ 0ζ - ά ~  Τ0 ξ0~ V v, (5.4.17)

and

0Κ = - Τ | ^ ~ | Τ - Τ , | Λ- 2, (5.4.18)

from which we conclude
t  Above the critical dimension, hyperscaling relations such as Eqs. (5.4.13) and (5.4.15) break down 

because of the existence o f a dangerous irrelevant variable. See Sec. 5.8 for details.
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a =  2 — dv. (5.4.19)

Again this is a hyperscaling relation satisfied by the mean-field exponents only at 
dc. Com bining Eqs. (5.4.16) and (5.4.19), we obtain the relation

y +  2β +  a =  2. (5.4.20)

Hyperscaling applies quite generally to  transitions th a t are fluctuation dom inated 
(i.e., non-mean-field). W hen it applies, there are only two independent critical 
exponents, say η and v, and the critical point is said to obey two scale factor  
universality.

2 Scaled equation o f  state

The correlation function G (|x |,i) obeys a generalized hom ogeneity relation in 
which bo th  |x| and t are rescaled. It is predicted by the renorm alization group 
and found experimentally tha t any therm odynam ic function obeys a homogeneity 
relation in which t and external fields (such as h) rescale by different factors. The 
free energy density as a function o f external field satisfies

/(£, h) =  b~df ( b l/vt, bxh). (5.4.21)

(The free energy density /  is really the field-dependent free energy density a =  
s i / V  o f Eq. (3.5.9). Here, we adopt the com m on practice o f using the symbol 
/  for free energy regardless o f w hat its natural variables are.) W hen h =  0, this 
implies /  ~  ξ~ά as previously predicted. This equation allows us to calculate both  
the order param eter (φ) and the susceptibility:

(</>) =  | {  =  b - d+xf ' ( b l^ t ,  bxh), (5.4.22)
dn

X =  S  =  b~d+2Xf ”(bl^ t ,  bxh). (5.4.23)
dhz

W ith b =  f , this leads to

β = dv — A, y = —dv +  2Δ, (5.4.24)

with

Δ =  Αν =  β +  y. (5.4.25)

The exponent Δ is often called the gap exponent.
W ith the choice b =  |i|~v, Eqs. (5.4.21) to (5.4.23) can be reexpressed as

f ( t ,h )  = \t\2-« X 0 (h / tA),

(φ) = \ί\βΧ ι ψ / \ ί \ Α),

χ =  \ t r x 2 (h/\t\A), (5.4.26)

where each Xj  is a scaling function whose form depends in general on the sign 
o f t. This scaling relation for the equation o f state has been verified for some
systems in great detail. Fig. 5.4.1 shows da ta  for the Heisenberg ferrom agnet
EuO. The m agnetization divided by |i|^ is a function o f  h/\t\A and no t o f h and t 
separately. The scaling function Xi(u)  is different for t <  0 and t > 0.
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Fig. 5.4.1. Experimental equation of state near the ferromagnetic critical 
point of EuO [Cheng-Cher Huang and John T. Ho, Phys. Rev. B 12, 5255 
(1975)].

3 M ulticritical points

As we saw in Sec. 4.6, m ulticritical points are reached by fixing at least one 
non-ordering field in addition to  the tem perature. This implies tha t there m ust 
be at least one additional field to  describe scaling in the vicinity o f a multicritical 
point. For example, the scaling relations o f Eq. (5.4.26) m ust be modified in the 
vicinity o f the bicritical and tetracritical points discussed in Sec. 4.6 to  include 
the field g. The scaling relation for the susceptibility becomes

X(t,h,g) =  b~d+2i f ”(bl/vt, bAh, bA*g)

=  | t r X 2( ty |t |A.g /|t |* ) , (5.4.27)
where

φ =  l gv. (5.4.28)

In the simple model o f Eq. (4.6.18), two fields, φ ι and φ 2, are critical at the
bicritical or tetracritical point P, t = h = g =  0, in Fig. 4.6.10. Thus, the transition
at P when g =  0 has n = 2 symmetry, whereas the transitions along the lam bda 
lines with g φ  0 have Ising symmetry. M ore generally, the point P could have On 
symmetry and the lam bda lines some symmetry lower than  0„. The exponents 
appearing in Eq. (5.4.27) are thus those o f the On critical point P. W hen g is 
nonzero, there is a second-order transition along the lam bda lines with equations 
J =  lc(g) meeting P. The susceptibility diverges along these lines, and we can use
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Table 5.4.3. Amplitude ratios.
Adapted from V. Privmam, P.C. Hohenberg, and A. Aharony, in Phase 
Transitions and Critical Phenomena, Vol. 14, eds. C. Domb and J.L. Lebowitz 
(Academic Press, New York, 1989).

A /A ’ Γ /Γ ' ξο/ξό

3D theory
n =  1 0.52 4.9 1.9
n = 2 1.0 0.33
n =  3 1.52 0.38

3D experiment
n =  1 0.5 - 0.63 4.5 - 5.0 2 . 0

n = 2 0.49 - 0.74 5.0 1.7 - 2.0
n = 3 0.84 - 1.6 1.8

Experimental data are representative of magnetic and 
liquid-gas transitions.

Eq. (5.4.27) to  determine their equations. The susceptibility will diverge at some 
value o f the argum ent o f X 2 (h =  0 ,g /|i |^ ). Thus

tc(g) =  g 1̂ ·  (5.4.29)

If  φ  > 1, the two lam bda lines will be tangent to the line g =  0 at P, as depicted 
in Fig. 4.6.11a. If  φ  < 1, the lam bda lines will approach P linearly because the 
scaling field t is really a linear com bination o f tem perature and anisotropy field, 
and the linear term  will dom inate g 1̂  near g =  0. As we shall see in Sec. 5.8 
[Eq. (5.8.75)], φ  is expected to  be greater than  one so tha t the two lam bda 
lines are tangent at P as shown in Fig. 4.6.11. Generalizations o f Eq. (5.4.27) to 
tricritical, Lifshitz, and other multicritical points is straightforward.

4 A m pli tude  ratios

N ot only are critical exponents universal within a given universality class, but 
unitless ratios o f am plitudes governing the strengths o f leading singularities and 
scaling functions expressed in appropriately scaled units are also. For example, 
the ratio  Γ / Τ '  o f the am plitudes Γ  and Γ ' determining, respectively, the strength 
o f  the divergence o f the order param eter susceptibility above and below Tc is 
universal. In  mean-field theory, this ratio  is 2 as can be seen from  Eq. (4.3.7). 
Similarly, the am plitude ratios A /A !  and ξο/ξ$  for the specific heat and the 
correlation length are universal. As can be seen in Table 5.4.2, the variation of 
critical exponents am ong universality classes in a fixed spatial dim ension is small. 
The variation in am plitude ratios is m ore pronounced, as can be seen from  Table 
5.4.3. Thus, am plitude ratios provide a more stringent test o f universality classes 
than  do critical exponents.
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Table 5.4.4. Critical exponents from three-dimensional renormalization 
group and series.
From J.C. le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39, 95 (1977); Phys. 
Rev. B 21, 3976 (1980).

n Exponent RG e-expansion Series

n =  0 a 0.236 +  0.0045 0.25
β 0.302 +  0.0015 0.305
y 1.1615 +  0.0020 1.163 1.1615-1.167
V 0.588 +  0.0015 0.589 0.60

n =  1 a 0.110 +  0.0045 0.11-0.13
β 0.325+0.0015 0.330 0.303-0.318
y 1.241 +0.00020 1.242 1.241 -  1.250
V 0.630 +  0.0020 0.632 0.638

n =  2 a -0.007 +  0.006
β 0.3455 +  0.0020 0.357
y 1.316 +  0.0025 1.324
V 0.669 +  0.0020 0.676

n =  3 a -0.115 +  0.009
β 0.3645 +  0.0025 0.379
y 1.386 +  0.0040 1.395 1.315-1.333
V 0.705 +  0.0030 0.713 0.670 -  0.678

5 Theoretical calculations o f  critical exponen ts  and amplitude  
ratios

Critical exponents can now be calculated with considerable accuracy with a variety 
o f techniques including high tem perature series, renorm alized field theories at fixed 
spatial dimension, e-expansions about the upper critical dim ension coupled with 
exact results in two dimensions, and M onte-Carlo. We will discuss calculations of 
critical exponents to first order in e =  4 — d a t the end o f this chapter. Happily, 
the results o f  all o f these techniques agree am ong themselves and reasonably well 
with experiments. In Table 5.4.4, we review theoretical predictions for critical 
exponents in three dimensions.

5.5 The Kadanoff construction

In the last section, we saw th a t therm odynam ic functions near second-order crit
ical points exhibit scaling with universal exponents determ ined by the symmetry 
o f the order param eter. There remains, however, to  develop a theoretical under
standing o f the origin o f scaling and universality. In  this section, we will present 
a theory due to  K adanoff (1966) th a t provides a heuristic explanation for the 
origin o f scaling. It also provides a starting point from  which to  build the W ilson
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renorm alization group, which, as we shall see, perm its the actual calculation of 
critical exponents and scaling functions.

To be concrete, let us consider an Ising m odel with spins s(y) a t sites y on 
a d-dimensional lattice o f N  sites with lattice constant a. A t the critical point, 
the correlation length ξ is infinite, and the spins at different spatial positions are 
strongly correlated. Thus, the average spin,

S av(x ) =  b - d Σ  s(y), (5.5.1)
yec( x)

in a cell c(x) containing bd sites centered at x behaves at the critical point like 
the spin s(y). In particular, the correlation function o f the average spin dies off 
with distance with the same power law as the correlation function o f the original 
spin:

b~2d Σ  Σ  W y o s to ))  =  W x o w * 2»  ~  ix! - x 2r 2“ , (5 .5.2 )
y i € c ( x 1) y 2€ c ( x 2)

where ω =  j (d  — 2 + η) = β / ν  [Eqs. (5.4.4) and (5.4.15)].
In  the K adanoff construction, the original lattice is divided into Ν ' = b~dN  

cells centered on a new lattice (Fig. 5.5.1) with lattice constant a! =  ba. Each cell 
centered at x in the original lattice contains bd sites o f the original lattice and 
corresponds to a site in the new lattice. Distances in the new lattice are m easured 
in term s o f the new lattice constant a' so th a t the position o f a site in the new 
lattice corresponding to  a cell a t x in the original lattice is x ' =  x /b .  A t each site
x / b  o f the new lattice is a block spin variable,

s'(x ') =  s’( x /b ) =  b“ssav(x), (5.5.3)

proportional to the average spin in the cell centered at th a t site. Since correlation 
functions o f sav(x ) and s(y) for y in a cell centered at x scale in the same way at 
the critical point, it is not really necessary to distinguish between sav(x) and s(x), 
and we can express Eq. (5.5.3) as

s'(x/b) =  fc“ss(x). (5.5.4)

The exponent cos in the fo-dependent proportionality  constant in the above two 
equations will be determ ined shortly. K adanoff argued tha t there is a H am iltonian 
th a t is a function o f the block spin variables on the new lattice. A t the critical 
point, this new H am iltonian is in some sense identical to the original H am iltonian 
expressed in term s o f s(y) on the original lattice. In  particular, the correlation 
function o f the block spin variable as a function o f distances m easured in the 
new lattice should be identical to  the correlation function o f the original spin as 
a function o f distance in the original la ttice :

(s '(xi/b)s'(x 2 /b)) =  62“s(Sav(XlKv(X2)}
2ω

(5.5.5)^  -  * 1  
b b

Com paring Eqs. (5.5.5) and (5.5.2), we conclude tha t

ios = ω. (5.5.6)
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x = 6x '

o-*-
ba

-►o

Fig. 5.5.1. The coarse-graining procedure of the Kadanoff construction. The 
original spins on sites y are grouped into cells and associated with a block 
spin at its central sites x. At the critical point, the block spins on the 
superlattice should exhibit the same correlations as the original spins on the 
original lattice. Here the scaling parameter b is 2.

The exponent ω, therefore, determ ines the relation between original and block 
spin variables.

The scaling o f the external field h(y) conjugate to the order param eter s(y) 
under the above block spin transform ation can be determ ined by requiring that 
the free energy associated with the external field does not change. I f  h(\)  varies 
so slowly in space th a t it can be assumed constant within any cell, then the 
H am iltonian describing the interaction o f spins with the external field can be 
expressed either in term s o f the original spins on the original lattice or in terms 
o f the block spins on the new lattice:

=^ext =  -  Σ  h(y)s(y) =  &'(XV ( X')· (5·5·7)
y  x'

Since h(y) is slowly varying and can be assum ed to  have the same value h(\)  
for each y in a given cell c(x), we can reexpress the H am iltonian o f the original 
lattice as

=^ext =  - J 2  hW b<i ( b~d Σ
x  \  yec( x)

=  - ^ l i ( x ) ^ “ /(x ') ,  (5.5.8)
X

where we used Eq. (5.5.3) to express ,sav(x) in term s o f s'(x')· C om paring the first 
and last lines o f  this equation, we obtain

h'(x') =  h’(x /b )  = bd~mh(x) . (5.5.9)

It is easy to  verify from  the scaling relations presented in the last section tha t
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λ = d — ω =  (β +  γ ) /ν .  (5.5.10)

The exponent λ  associated with the external field h is precisely the same exponent 
th a t appears in the phenom enological scaling relations o f  the preceding section 
[Eq. (5.4.21)].

Block variables can be defined for any function o f the spin operators. For
example, the local energy density for a ferrom agnetic Ising model is

£(y) =  - l j ' ^ 2 s ( y ) s ( y  +  S), (5.5.11)
δ

where <5 is a nearest neighbor vector. It rescales according to e’(x /b)  =  b“‘£av(x). 
The reduced H am iltonian =  j f /  T  near the critical po in t can be expanded in 
the reduced tem perature t = (T  — Tc) / T c as

X  =  X c + \ ( t J / T c) Y ^ s (y ) s ( y  +  0) +  0 ( t 2)
y><5

=  / c - ( i / r ^ £ ( y ) ,  (5.5.12)
y

where is the reduced H am iltonian at the critical point. Thus the field 
conjugate to  the energy density is proportional to the reduced tem perature, and 
we can conclude, following the argum ents leading to  Eq. (5.5.9), that

ί ' =  ^ - “«ί =  ^ ί .  (5.5.13)

In the preceding section, we saw th a t the scaling exponent associated with t is 
the inverse o f the correlation length exponent. Thus

λ, =  -  =  d — ωε. (5.5.14)
v

M ore generally, there are a wide variety o f additional local fields, φ α(y), involving 
for example m ulti-spin interactions or anisotropies, th a t can be constructed from
the original spin variables s(y). External fields hx coupling linearly to φ Λ(y) can
be introduced into by the addition o f term

= - h x Σ  <My) (5.5.15)
y

to the reduced H am iltonian. U nder the K adanoff transform ation, the field φ α(χ) 
(or equivalently its average in a cell centered at x) will transform  with a dom inant 
exponent ω α according to

φ ’̂ χ /b)  =  6““<Mx) · (5.5.16)

Its conjugate field ha will then transform  as

K  = bx’ha (5.5.17)

with

λ 0ί = ά — ω0ί. (5.5.18)

N ote th a t λ α can be positive, as it is if φ χ is the order param eter or the energy
density, or it can be negative. If  λ α is positive, ha grows with successive rescalings
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associated with the transform ations from  original to  block spin variables and is a 
relevant field; if λχ is negative, ha approaches zero with successive rescalings and 
is an irrelevant field. The field φ χ is also classified as relevant or irrelevant if its 
associated exponent ωχ is, respectively, less than  or greater than  d.

The H am iltonian can be expressed either in term s o f the original variables on 
a lattice o f N  sites or in term s o f the block variables on a lattice o f  Ν ' =  b~dN  
sites. The free energy F  calculated with either set o f variables is the same. This 
implies a simple relation between the original free energy density / ( t ,  h, ha) =  F / N  
and the block free energy density f ( t ' ,h ' ,h 'J  =  F /N ' :

N f ( t ,  h, K )  =  b~dN f( t ' ,  h', h’J  (5.5.19)

or

f ( t ,h ,ha)  =  b - df ( b 1 /vt ,bxh,bx*ha) . (5.5.20)

This is precisely the scaling form  o f the free energy introduced in the last section. 
The arbitrary  rescaling factor b can be eliminated, as discussed in the last section, 
by choosing b =  t~v. In this case,

f ( t , h ,h a) =  \t\dvX (h \ t \ -A,ha\t\~A’ ) (5.5.21)

depends only on the fields hx and h in the com binations ha/\t \A’‘ and h/\t\A , where

Δα =  AaV (5.5.22)

and

A =  λν =  y +  β. (5.5.23)

If  λα < 0, ha\t\~A* =  ha\t\ Δ* tends to  zero as t —*· 0, and the field ha does no t affect 
the leading order singularities in /  at the critical point. This is why such fields 
are called irrelevant. N ote tha t if one is interested in the leading singularities of 
/ ,  one could have set all irrelevant fields equal to  zero initially. This fact, as we 
shall see, is in essence w hat is responsible for universality. If  two H am iltonians 
differ only by irrelevant fields, they will have the same leading critical exponents 
and thus be in the same universality class.

T hough the irrelevant variables do no t affect the leading singularities near the 
critical point, they do give rise to  nonzero corrections to  leading singularities that 
are called corrections to scaling. Consider, for example, a system with a single 
irrelevant variable hi with λ \ν  =  —Δ λ <  0. The susceptibility will satisfy a scaling 
relation χ =  |f|— Ii|Al)- As t —► 0, fci|t|Al —*· 0 for any hi, and we can expand 
X 2 as a power series to  obtain

χ =  Γ | ί Π  +  Ehi\t\~y+A[ +■■■ , (5.5.24)

where E =  X'2 (Q). Thus, the irrelevant term  leads to  subdom inant singularities 
in χ, which m ay even diverge if Δ ι <  y. The existence o f such corrections to 
scaling considerably complicates the determ ination o f critical exponents from  
experim ental data.

The introduction o f  block spins tha t interact via the same H am iltonian as do 
the original spins leads naturally  to  scaling o f the free energy. The K adanoff
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construction, however, assumes bu t does no t dem onstrate tha t the original and 
block spins interact via the same H am iltonian, and it does no t provide an algo
rithm  for actually calculating any critical exponents. The W ilson renorm alization 
group to  be discussed in the next few sections quantifies the ideas o f the K adanoff 
construction. It provides a precise m eaning to  identical original and block spin 
H am iltonians and provides algorithm s for calculating critical exponents.

5.6 The one-dimensional Ising model

In this section, we will introduce the renorm alization group for the simplest possi
ble example -  the one-dimensional Ising model. We will begin by reviewing exact 
calculations o f correlation functions and the free energy o f the one-dimensional 
Ising model, showing how T  =  0 can be treated as a second-order critical point. 
We will then show how decim ation o f spins leads to  block spins analogous to 
those o f the K adanoff construction.

1 E x a c t  solution

In the one-dimensional Ising model, there is a spin variable σ,· =  +1 at each site
i =  1,2, N  on a one-dim ensional lattice. The reduced H am iltonian is

- J ?  =  - J ? / T  + L ^ f f i  +  ^ C
i i i

=  k E ^ i  +  2 L E ( ^ ^ i )  +  E C
i i i

= Υ Κ ( σ „  σ;+ι) ,  (5.6.1)
i

where K  =  J / T  and L =  h / T  with J  the exchange integral and h the external 
m agnetic field. C is a constant th a t defines the zero o f  the free energy. It is 
introduced to  facilitate discussion o f  the renorm alization group. The partition 
function for this model can be calculated exactly using transfer matrices. The 
exponential o f  Κ ( σ , σ ’) is a two-by-two m atrix in the variable σ and σ ' with 
entries

_  r p K + L  p - K

e*(σ’σ,) =  eC [ β- κ  p - L  =  M.(K, L, C) . (5.6.2)

W hen h =  0 and C =  0, M (K .L .  C ) takes on a simple form,

M ( K . 0.0) =  c o sh K (l + σ σ ' ΐ 3η1ι Κ )  , (5.6.3)

which will be useful in w hat follows.
Bulk properties in the therm odynam ic limit are insensitive to  boundary condi

tions. Calculations are m ost easily carried out in a model with periodic boundary 
conditions in which σΝ+ι is identical to  σ\ or equivalently in a model in which
lattice sites lie on a circle with sites 1 and N  connected. In this case, there are N
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bonds connecting N  spins, and the partition  function can be expressed as a trace 
of a product o f transfer m atrices:

Z N =  Σ e
σι,02 ,-,gn

^(σΐ,σ2)^Κ(σ2,σ3) ^ί(σΝ-ΐ,σΝ)^(σΝ,σι)

=  Ύ τΜ Ν =  βΝ<:( λ 1 + λ Ν_), (5.6.4)

where λ + and λ -  are the eigenvalues,

λ+ =  eK cosh L +  (e2K sinh2 L +  e~2K ) ^ 2 , (5.6.5)

o f M ( K ,L ,  0). W hen h =  0, the larger eigenvalue is A+ =  2 coshK .  In the limit o f 
large N , λ ϋ  can be ignored relative to  A+, and the free energy per spin becomes

τ  =  i im T f [ - lnZiv]1 N —»oo i V

=  — C — 1η[β* coshL  +  (e2K sinh2 L +  e-2* ) 1/2]. (5.6.6)

In the low Τ  (K —* oo) low h (L  —► 0, Le2K <  1) limit,

f - f 0 ^ - T e ~ 2K - ^ e 2K(h2 / T ) ,  (5.6.7)

where /o  =  —J  — T C .  This shows, as expected, tha t the ground state energy 
per spin is J  (when C =  0) and th a t there is a gap in the excitation spectrum  
leading to an exponential approach with tem perature to  the ground state. The 
susceptibility a t low tem perature is

x = ~ U = T ~le2K· (5·6·8)
Thus, χ  diverges as T  —> 0, indicating th a t there is a critical point a t T  =  0 in 
the ID  Ising model. In  the high-tem perature limit, e* —► 1 + K  +  ± K 2. Then

/ - ♦ - T i n 2 -  \ h 2/ T  (5.6.9)

when C =  0. This implies tha t

χ  =  Τ ” 1 (5.6.10)

is the fam iliar Curie spin susceptibility.
C orrelation functions are also easily calculated in the ID  Ising model. In 

particular

G(n) =  J -  Σ  β~ ^ σ ισ»+ι 
Z n  o t l s

1_ σ 1βκ *σι,σ2* · · · eK(<T»'<T»+i)<7n+1eiC(<T''+i'<T»+2) · · · ^ ( σΝ.σι)
‘ N  σ ι , . . . , σ Ν

l— Σ  σ ιβηΚ{σι’σ"+ι)σ η+1ε{Ν- η)κ {σ"+ι’σι). (5.6.11)
Zjv

W hen h and C are zero, we can calculate
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e nK (a,a') =  2"_ 1 (Co sh K )"(l +  σσ ' tanh" K )  (5.6.12)

from  Eq. (5.6.3). Using this result in Eq. (5.6.11), we obtain

G(n) =  ^ - 2 Ai_2(coshK ) N ^  σι(1 +  σ ισ π+ι tanh"K)ff„+i
Z n σι,σ„+ι

x ( l  +  σ„+ισι tanh  "K )

=  - J -  (2 cosh K  )N tanh" K  (1 +  ta n h ^ -2" K ). (5.6.13)
Z n

W hen N  —► g o  at fixed n, this reduces to

G(n) =  tanh  nK  =  e~n/i, (5.6.14)

where

ξ =  — [ln (tanhK )]- 1  T-^° ^ e2K (5.6.15)

is the correlation length th a t diverges as the T  =  0 critical point is approached. 
We can now see th a t there is scaling in the vicinity o f T  =  0 if functions are 
expressed in term s o f the correlation length. The susceptibility is the sum over n 
o f T ~ l G{n):

Τ χ  =  ^ G (n ,0 )  =  ^ (tan h K )"
η n

=  (1 -  ta n h K ) ' 1 -♦  γ 2κ =  ξ. (5.6.16)

The scaling relations o f Sec. 5.5 predict χ  ~  £y/v, and we conclude from  the above 
equation that

y /v  =  1 (5.6.17)

for the ID  Ising model. N ear T  =  0, the free energy [Eq. (5.6.7)] can be expressed 
as a scaling function o f  L and ξ :

T - ' ( f  +  J )  ~  - e ~ 2K(l +  \ h 2 e*K) =  <T7a(L£). (5.6.18)

This is to be identified with the scaling form  for the free energy [Eq. (5.4.26)] 
expressed in term s o f ξ =  |t |_v rather than  reduced tem perature t:

f  „  ξ - ( 2- « ) / ν χ ^ ξ Δ /ν ) (5.6.19)

Com paring Eqs. (5.6.18) and (5.6.17), we obtain 
2 - a  Δ _  y + £  =  χ

V V V

Since y /v  =  1, this leads to  β =  0. Alternatively, we can use y /v  =  1 =  2 — η
to  obtain >7 = 1  and β =  \(d  — 2 + η)ν =  0. To see tha t this is the correct
identification o f β, we note tha t as T  —*· 0,

^  =  e2KL· =  £°ma(L£). (5.6.21)
T  C L

In  summary, the exact solution o f the one-dimensional Ising model shows tha t 
there is a critical po in t a t T  =  0 a t which the correlation length and susceptibility
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diverge. The free energy and related functions satisfy standard  scaling relations 
with exponents y /v  =  (2  — a)/v  =  1 , η =  1 and β =  0 .

2 Decimation and  renormalization

A new lattice with block spin variables can be obtained in the ID  Ising model 
merely by tracing (decimating) over blocks o f  b — 1 spins leaving a spin a t every 
bth  site, as shown in Fig. 5.6.1. The partition  function o f the new lattice is
identical to  th a t o f the original lattice and can be expressed as

Z n (K ,L ,  C) =  T rM N =  T r [ M T ' =  Ζ Ν·(Κ', L', C'), (5.6.22)

where Ν ' =  N / b  is the num ber o f sites in the new lattice. The potentials o f the
decim ated lattice are determ ined by

M ( K ’, L ’, C ') =  M b(K ,L ,  C) . (5.6.23)

W hen L  =  0, this leads, with the help o f Eq. (5.6.3), to  a simple relation

ta n h K ' =  (tan h K )fc, (5.6.24)

or equivalently

K '  =  tanh - 1  [(tanhK ) b] , (5.6.25)

between K '  and K  tha t is independent o f C. We will consider the equation for 
C later in this section. Eq. (5.6.24) is a renorm alization group recursion relation 
that can be iterated an arbitrary  num ber o f times. A fter an infinite num ber of 
iterations, K  reaches a f ixed point value K* determ ined by K ' =  K  =  K % in 
Eq. (5.6.23). There are only two fixed point solutions to  this equation: 

tanh  K  =  0 ( T  =  oo) ,

ta n h K  =  1 (T  =  0) . (5.6.26)

The function tanh  K  lies between zero and one. Thus, unless K  =  oo, tanh  K  will 
diminish upon iteration o f the recursion relation approaching the fixed point at 
tan h K  =  0 as the num ber o f  iterations tends to infinity. If  K  =  oo, ta n h K  will 
rem ain equal to  unity after any num ber o f  iterations o f the recursion relation. 
Since all values o f  K  o ther than  K  =  oo flow towards K  =  0, the fixed point 
tanh K  =  0 ( T  =  oo ) is said to  be stable. The set o f values o f K  flowing to 
K  =  0 is called the basin o f  attraction o f the K  =  0 fixed point. The fixed point at 
K  =  co is unstable and its basin o f attraction  consists o f  the single point K  =  oo.
The flow o f tanh K  and T  under Eq. (5.6.24) is depicted in Fig. 5.6.2.

The stable fixed point describes all finite tem perature behavior. I t is associated 
with the param agnetic phase. The unstable fixed point describes the Ising critical 
point at T  =  0. The recursion relation, Eq. (5.6.23), can be expressed in term s of 
the correlation length [Eq. (5.6.15)]:

ξ' =  ξ /b  . (5.6.27)

This is merely the statem ent tha t the correlation length m easured in term s of 
the lattice constant o f the new lattice is b~l times th a t m easured in term s of
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Fig. 5.6.1. Schematic representation of the one-dimensional Ising model 
showing sites of the original lattice with lattice constant a and sites on the 
new lattice with lattice constant ba. The b — 1 spins between sites of the new 
lattice are removed by a trace or decimation operation.

tan h  K  =  0 ta n h  K  =  1

T  =  0 oo

Fig. 5.6.2. Renormalization group flows for tanhK and for T  showing the 
stable fixed points at tanhK =  0 (T =  o o )  and the unstable fixed points at 
tanhK =  1 (T =  0).

Ferromagnetic

Fig. 5.6.3. Renormalization group flows for the one-dimensional Ising model 
in a field [Eq. (5.6.29)] showing the three fixed points of Eq. (5.6.30). [D. R. 
Nelson and Μ. E. Fisher, Ann. Phys. 91, 226 (1975).]
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the lattice constant o f the original lattice. This is a general property o f all 
renorm alization group transform ations. The correlation length decreases when 
the lattice is rescaled. There are only two fixed points to this recursion relation: 
ξ =  0 and  ξ =  co. The first corresponds to the non-critical high tem perature fixed 
point, and the second corresponds to the critical point.

Recursion relations for L and C also follow from  Eq. (5.6.23). W hen b =  2, we 
find

x (l +  y ) 2
x  =

y =

(x  +  j;)(1 +  x j ;)

y(x +  y)
(1 +  xy)

W' =  ^  y  (5.6.28)
(i +  y ) ( x  +  y)(i +  *y)

where

x =  e~4K , y  =  e~2L , w =  e~4C . (5.6.29)

The equations for x and y  do no t depend on w and have three fixed points. They 
are

( 1 ) χ* =  / = 0

(2 ) x* =  1 , y  arbitrary,

(3) x* =  0 , y* =  1. (5.6.30)

The first fixed point is an isolated fixed point corresponding to  a frozen spin 
configuration (aligned spins at all tem peratures as a result o f an infinite external 
field). The second fixed poin t describes the high tem perature param agnetic phase. 
The th ird  fixed point describes the T  =  0 critical po in t tha t is our prim ary 
concern. The recursion relations can be linearized in the vicinity o f the th ird  fixed 
point to yield

Ay' =  (—2 L') =  2 Ay =  2(—2 L),

Δ χ ' =  4 Δ χ ,  (5.6.31)

where Ay =  y  — y '  and Δ χ =  x —x*. These equations imply tha t the singular part 
o f the free energy satisfies the scaling law derived from  the exact solution o f the 
Ising model. The free energy per spin is

f ( K , L ,  C) =  ~ l n Z N(K ,L ,C )

=  - ^ 7  In Z NiK ' ,L ' ,C ' ) ,  (5.6.32)

where the second line follows from  Eq. (5.6.22). The partition  function depends 
on C only via the prefactor eNC, and the free energy per spin can be w ritten as 
f ( K , L , C )  =  C + / sing(K,L). Thus, apart from  term s involving the nonsingular C, 
Eqs. (5.6.32) and (5.6.31) imply

/sing(Ax', Ay') =  b-1 / si ng(b2A x, bAy) (5.6.33)
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for rescaling param eter b =  2. W ith Aj; =  —2L  and Δ χ =  e 4K, we then have

/sing(e_JC, L) =  e -^ /s in g  {Lem ) (5.6.34)

in agreem ent with the exact result Eq. (5.6.19).
This simple example shows th a t critical points can be described by renor

m alization group recursion relations. The exponents obtained by linearizing the 
recursion relations in the vicinity o f unstable critical fixed points are the expo
nents describing the scaling o f the free energy. Thus, the renorm alization group 
recursion relations yield critical exponents. These properties are generally valid. 
W hat is no t apparent from  this example is tha t the fixed point describing a critical 
po in t m ust be unstable in one or m ore directions, but it can be, and in general 
is, stable in o ther directions. All potentials or H am iltonians in the subspace 
perpendicular to  the unstable directions o f the fixed point have the same critical 
exponents. This is the origin o f  universality.

5.7 The Migdal-Kadanoff procedure

In the preceding section, we saw th a t renorm alization group recursion relations 
for the ID  Ising model can be obtained by decim ating a regular sequence o f spins. 
The T  =  0 critical po in t o f the ID  Ising model is clearly special. The challenge 
is to develop a renorm alization group procedure applicable to finite-tem perature 
critical points in higher dimensions. In this section, we will study a simple 
approxim ate renorm alization procedure due to  M igdal (1975) and K adanoff 
(1976) tha t yields nontrivial critical points in dimensions greater than  one and 
th a t gives reasonable predictions for phase diagram s o f real physical systems 
such as xenon adsorbed on graphite. We will first apply this procedure to  the 
Ising model just above one dimension. F rom  this, we will be able to  m ake some 
statem ents about the general structure o f renorm alizations and how they predict 
critical exponents and universality.

1 The Ising model on a hypercubic lattice

The ID  Ising model suggests an obvious approach to  models in two or more 
dimensions: decimate spins on a subset o f lattice points leaving spins on a new 
larger lattice-constant lattice interacting via a new H am iltonian determ ined by 
the decim ation procedure. Consider, for example, spins σ on a square lattice with 
lattice constan t a and N  sites interacting via a reduced H am iltonian j ^ N(o,a). 
The square lattice can be decom posed into two sublattices (m arked with squares 
and circles in Fig 5.7.1) with lattice constant ba =  y/2a. The trace over spins σ\ on 
the sublattice m arked with circles yields a new reduced H am iltonian j ^ Ni(a',ba) 
(Ν' =  b~2 N )  describing interactions am ong spins σ' on the “square” sublattice 
defined via
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e ■MTN, (o',,ba) _  j r  e ~ J ? K(a,a) (5.7.1)

Clearly, the partition  functions associated with the two H am iltonians and 
are equal since

Unfortunately, this procedure leads after several iterations to hopelessly com pli
cated Ham iltonians. For example, if N is a nearest neighbor Ising H am iltonian, 
then j ^ n '  will have no t only nearest neighbor but also next nearest neighbor and 
four-spin interactions o f the form  .Ĵ 4 =  γ ^ σ  1 0 2 0 ^ 4 , where the sum  is over all 
four-spin plaquettes illustrated in Fig. 5.7.1. A second decim ation applied to  J ^ N> 
produces a new H am iltonian with further neighbor and m ore multi-spin
interactions. Clearly, some m ethod o f truncating the range and complexity o f 
interactions is needed. Various truncation m ethods, none o f  which is fully con
trolled, have been proposed. The simplest, and in m any ways the m ost successful, 
is the bond-m oving scheme introduced by M igdal and elaborated by Kadanoff. 
The M idgal-K adanoff procedure is a two step process illustrated for the square 
lattice in Fig. 5.7.2. First, bonds o f nearest neighbor interaction strength K y on 
b — 1 lines parallel to the y-axis are broken and moved to  create bonds o f strength 
b K v a t every bth  line. The sites originally connected by the broken bonds are 
no longer connected to  their neighbors along the y-axis. The spins at these sites 
can be removed by the one-dimensional decim ation procedure discussed in the 
previous section. The recursion relations o f the M igdal-K adanoff procedure are, 
therefore,

where R b is the operator defined by the ID  decimation. In  the Ising model, 
R b(K)  =  tanh - 1  [(tanhK ) b], as can be seen from  Eq. (5.6.24). The recursion 
relations in Eq. (5.7.3) have the undesirable property th a t K y and K x are treated 
unsymmetrically. To restore symmetry at least partially, the same process can be 
repeated with the lattice ro tated  by 90° so th a t bonds parallel to  the x-axis are 
moved and decim ation is along the y-axis.

The extension o f the M igdal-K adanoff approach to arbitrary  dim ension is 
straightforward. There are nearest neighbor interactions K p (p =  1 ,...,d) for 
bonds parallel to the d axes o f a d-dimensional hypercubic lattice. Bond moving 
and decim ation are alternated (as illustrated in Fig. 5.7.3 for the three-dim ensional 
case) to produce

These equations again do no t preserve the equality o f coupling constants in 
different directions. A t least partial symmetry can be restored by perform ing 
the same series o f operations for all equivalent orientations o f the lattice. For 
com plicated problems, this is often the best procedure to follow. To illustrate 
how these equations describe a non-trivial critical point a t finite tem perature, it is 
m ore instructive, however, to consider them  in the limit where b —> 1. Though it

(5.7.2)

K'y =  bKy , K'x =  R b(K x) , (5.7.3)

K ’p =  bd~pR b(bp~ 1 K p). (5.7.4)
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Fig. 5.7.1. An Ising model on a square lattice showing the original lattice 
with N  sites (marked ·  and □) and lattice constant a and the new lattice 
with N ' =  b~2N  sites and lattice constant ba =  *Jla after spins at the sites 
marked by ·  have been removed by decimation. Also indicated are a 
plaquette of the new (dashed lines) and one of the original (solid lines) 
lattices. Four-spin interactions involve products of spins on a plaquette.

x-borid 
trace 

------ ►

x-bond 
move 

------ ►

Fig. 5.7.2. The Migdal-Kadanoff procedure for a square lattice. First, b — 1 
bonds parallel to the y-axis are broken and moved to the right to create new 
bonds of strength bKy. Then, spins on the (b — 1) sites per cell not connected 
with y-bonds are removed by decimation. This process can be repeated in 
the opposite order to restore the symmetry of the x- and y-directions.

is impossible to  remove a non-integral num ber o f  bonds in the procedure used to 
arrive a t the M igdal-K adanoff recursion relations, the final equation [Eq. (5.7.4)] 
has a well defined analytic continuation to  all b. Setting b =  eil ~  (1 +  61), we
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have

R l+S,[(l +  <5/)(p-1)K] =  tan h - 1  ([tanh((l +  <5/)(p-1)K )]1+<5i)

=  tan h - 1  (tanh [(1 +  (p — 1)<5/)K]

x [ l  +<5/ln(tanhK )]) +  0[(<5/)2] (5.7.5)

=  (1 +  (p — 1 )δΙ)Κ +  δ Ι [^ sinh2K  ln(tanhK )].

This expansion and Eq. (5.7.4) allow us to  calculate the rate o f change o f K  
resulting from  an infinitesimal change b =  edi in the lattice constant,

^  =  (d -  l )K  +  ]-[sinh2K  ln (tanhK )] . (5.7.6)
dl 2

W hen d =  1, this equation is identical to Eq. (5.6.24) in the lim it b —*· 1 +  δΐ. For 
small d — 1, new structure appears at small T  =  K ~ l . To see this, we expand 
Eq. (5.7.6) to second order in T :

di — ' T + \ T \  (5.7.7)

where e =  (d — 1). The fixed points o f this equation occur when d T /d l  =  0, and 
are trivially

T* =  0 , and T* =  2e. (5.7.8)

The fixed point at T  =  0 is stable, whereas the one at T  =  2e is not, as can be 
seen by the linear stability equation in the vicinity o f T  =  2e:

JO rwn

— -  =  ( - ε + Τ ' ) δ Τ  = ε δ Τ  =  λ ,δ Τ ,  (5.7.9)
dl

where δ Τ  =  Τ  — Τ ' .  Thus for T  < 2e, the flow is towards the fixed poin t at 
T  =  0 describing the ordered phase o f the Ising model. For T  > 2e, the flow is 
tow ard T  =  go or the param agnetic phase. These flows are illustrated in Fig. 5.7.4.

The M igdal-K adanoff recursion relations yield a non-trivial fixed point that 
describes the Ising critical point. To see how the correlation length exponent 
follows from  the above recursion relations, we note that, in the vicinity o f 
T  =  T \  Eq. (5.7.9) can be integrated to yield δΤ(1) =  eel6 T (0). But, under 
the rescaling transform ations, the lattice spacing goes from  a to  ela, and the 
correlation length m easured in term s o f the new lattice constant is ξ( 1 ) =  β~ιξ(0 ). 
On the o ther hand, ξ(1) ~  (<5T(/))-v . Therefore,

M = e - i = f ^ V V =  (^ r  (5 7 10)
£(0) \ δ Τ ( 0 ) )  1 1 j

from  which we conclude

v =  f  =  - .  (5.7.11)
λ  t €

Thus stability exponents at fixed points o f renorm alization group recursion rela
tions are equivalent to  critical exponents o f  the critical po in t associated with the 
fixed point.
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Fig. 5.7.3. The Migdal-Kadanoff procedure in three dimensions for b =  2. 
The original lattice is shown in (a). In step (1), bonds parallel to the z-axis 
are broken and moved to create bonds of strength 4K z. Then bonds parallel 
to the x-axis are broken and moved parallel to the y-axis to create new 
bonds of strength 2Kx. The result is the lattice shown in (b). In step (2), sites, 
connected only by bonds parallel to the y-axis are removed by decimation, 
producing new bonds that are translated parallel to the x- and z-axes to 
produce bonds of strength 4R2(Ky). Finally, in (3), sites connected only by 
bonds parallel to the x-axis are removed, producing new bonds that are 
translated to produce final bonds with strength 2R2(2KX), and sites 
connected only by z-bonds are removed to produce bonds of strength 
R2(4K,). The result of steps (1) to (3) is depicted in (c).

2 General properties o f  recursion relations

The M igdal-K adanoff treatm ent o f the Ising model in 1 +  e dimensions provides 
a simple illustration o f how the renorm alization group describes critical points 
with divergent correlation lengths and how critical exponents can be calculated 
from  the stability exponents o f fixed points o f  recursion relations. This example 
is, however, artificially simple, and there are a num ber o f  features o f more 
com plete calculations th a t are o f some interest. In  a general renorm alization 
group procedure, there is a H am iltonian characterized by a set o f potentials K a 
(e.g. the nearest neighbor, next nearest neighbor, etc. interactions in an Ising 
model). U nder rescaling and removal o f degrees o f  freedom, the H am iltonian 
changes and is characterized by a new set o f potentials Κ'Ά th a t are functions 
o f the original set (i.e., Κ'Ά =  Φα(Κα)). The renorm alization group equations,
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• ----------- «----------- · ----------------------- >------------------------ #
T =  0 I *  =  2e T = o o

Fig. 5.7.4. Renormalization group flows for the Ising model in 1 +  e 
dimensions from the Migdal-Kadanoff procedure. The fixed point with 
T* =  2e describes the Ising critical point. It is unstable with respect to 
temperature. For Τ  < Τ ' ,  the flow is toward the zero temperature fixed 
point of the ordered phase. For Τ  > Τ ' ,  the flow is toward the the high 
temperature paramagnetic phase.

therefore, generate flows in a m ulti-dim ensional space, as illustrated schematically 
in Fig. 5.7.5. Fixed points are typically unstable in a few directions in this space 
and stable in m any others. In  o ther words, associated with each fixed point, there 
is a local basin o f attraction  o f dim ensionality less than or equal to the total 
dim ensionality o f the space o f potentials. All points in the basin o f attraction  
o f a fixed po in t flow toward the fixed point. Points outside o f the basin of 
attraction  flow away. Flow toward the fixed poin t is described by negative 
stability exponents, and flow away from  the fixed poin t is described by positive 
exponents. Negative exponents are associated with irrelevant potentials (or fields), 
and positive exponents are associated with relevant potentials. There are two 
relevant fields: the tem perature and the field conjugate to the order param eter, 
for fixed points describing standard  second-order critical points. H igher order 
critical points, such as tricritical and tetracritical points, have m ore relevant fields. 
The positive exponents determine the dom inant singularities o f  the free energy 
near a critical point. All points near the basin o f  attraction o f a given fixed point 
flow away from  the basin o f  attraction  with rates determ ined by the positive 
exponents o f the fixed points. Thus, all initial H am iltonians near the basin of 
a ttraction  o f a fixed poin t have the same critical properties. This is universality. 
I t follows directly from  the renorm alization group description o f critical points.

3 The P o t ts  lattice gas and krypton on graphite

As we have seen, the M igdal-K adanoff scheme on a hypercubic lattice treats 
bonds along different directions differently. This is no t the case for a triangular 
lattice. The bonds on a triangular lattice are on one o f three grids o f equally 
spaced parallel lines a t relative angles o f 120°. Divide the lines in each grid into 
two alternating sets as shown in Fig. 5.7.6a by full and dashed lines, respectively. 
Now translate every dashed bond one line over to create doubled bonds on each 
full line, as shown in Fig. 5.7.6b. The lattice param eter o f the new lattice is 
twice th a t o f the original lattice. Three o f  the four sites in each new unit cell are 
connected along only a single direction to neighboring sites by doubled bonds. 
A trace over these sites can now be perform ed as in a one-dimensional model.
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Unstable direction

Fig. 5.7.5. Schematic representation of renormalization group flows in a high 
dimensional space. Fixed points describing ordered or disordered phases 
generally have a basin of attraction with dimension equal to that of the space 
of potentials. Fixed points describing critical points have a basin of attraction 
of lower dimensionality. Standard second-order critical points have fixed 
points unstable in two directions, and stable in the remaining dimensions.

After bond moving and the trace operation, the lattice has the same symmetry 
and same num ber o f sites per cell as the original lattice.

Noble gas atom s adsorbed on a graphite substrate provide an example o f  a 
physical system with interesting phase transitions on a two-dimensional triangular 
lattice. We saw in Sec. 2.9 th a t krypton atom s are larger than the hexagons of 
graphite and tha t a ^ x , / 3  com m ensurate overlayer structure is favored. This 
suggests grouping the adsorption sites into a superlattice o f cells each containing 
three sites, as shown in Fig. 5.7.7. Each cell can be in one o f four states: it can be 
em pty or it can have a krypton atom  a t any one o f the three adsorption sites in 
the cell. Let n\ be the occupation num ber variable th a t is one if cell 1 is occupied 
and zero otherwise, and let σ\ =  1,2,3 indicate which o f  the sites in the cell is 
occupied. The repulsive interaction between krypton atom s favors occupancy of 
equivalent adsorption sites in neighboring cells, i.e., it favors σ\ = σγ if  1 and 1' are 
nearest neighbors. A model which describes this repulsion and allows for partial 
occupancy o f each cell is the Potts lattice gas with reduced H am iltonian

----- r τ ι\λ  ______ 1 λ i ^
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(a) (b)

Fig. 5.7.6. (a) Triangular lattice showing three grids of parallel lines divided 
into two subsets shown, respectively, as full and dashed lines, (b) The same 
lattice after dashed bonds have been shifted over one line to create doubled 
bonds on the full lines. This lattice now has four sites per unit cell. Three of 
these (indicated by open circles) are connected to neighbors only along a 
single line.

Fig. 5.7.7. Division of the triangular lattice of hexagonal adsorption sites 
into a superlattice of cells each containing three sites. A unit cell of the 
superlattice is shaded.

where the sum is over the nearest neighbor bonds <  1, 1' >  o f the triangular lattice 
o f  cells.

M igdal-K adanoff recursion relations can be derived for this H am iltonian 
[Berker et al. (1978)]. They are

f  =  ± ln  (R i/IU )

K '  =  j M R j R i R t / R t )

Δ' =  61n(Ki/J<2), (5.7.13)
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where

Ri =  1 +  3z2 , Ri = z 2 +  (2x~ 2 +  x 4 )y2 z 4,

R 2 = z  +  (2 x~* +  x 2 )yz3 , R4  =  z 2 +  (x ~ 2 +  2 x )y 2 z 4,

X = e2J , y  =  e2 K , z =  e“ A/3. (5.7.14)

There are three independent potentials and thus a three-dim ensional param eter 
space in which renorm alization flows take place. The fixed po in t structure is quite 
complex. There are fixed points corresponding to five distinct types o f critical 
behavior: Ising critical, four-state Potts, tricritical three-state Potts, Potts critical 
endpoint, and a fourth-order critical point. In  addition, there are fixed points 
describing first-order transitions a t which the correlation length is zero rather 
than infinite. The connectivity o f these fixed points is shown in Fig. 5.7.8.

From  the Lennard-Jones potential between krypton atoms, the values o f K / J  
and J  are estim ated to be 2.10 and 32.8/ T ,  where T  is the tem perature. W ith 
these values, the predicted phase diagram  for krypton on graphite is shown in 
Fig. 5.7.9. N ote tha t there is a liquid-to-solid lam bda line described by the Potts- 
tricritical fixed point. Experim ental points on this phase diagram  are also plotted. 
The agreem ent between theory and experiment, though no t quantitative, is quite 
good for a model theory with no adjustable param eters. O ther values o f the ratio 
K  / J  lead to different phase diagrams, including one in which there is a liquid-gas 
critical po in t and a liquid-to-solid lam bda line term inating a t a critical endpoint.

5.8 Momentum shell renormalization group

1 Thinning o f  degrees o f  f r e e d o m  and rescaling

The renorm alization group consists o f a thinning o f degrees o f freedom followed 
by a rescaling o f lengths. We have seen in the preceding sections how the thinning 
procedure can be im plem ented by tracing over variables on a subset o f sites on 
a lattice. The renorm alization group transform ations can also be carried out by 
thinning degrees o f freedom in m om entum  or wave num ber space rather than in 
real space. Recall th a t fields φ(χ)  defined on lattice sites x can be expressed in 
terms o f their Fourier transform ed fields φ(q), where q is restricted to the first 
Brillouin zone (BZ) o f the reciprocal lattice. There are exactly N  vectors q in the 
first BZ if  the direct lattice contains N  sites (see A ppendix 2A). The volume of 
the first BZ in a reciprocal lattice associated with a hypercubic direct lattice with 
lattice constan t a is (2π /α )ά, and the volume per po in t is (2n /a )d/N .  In the field 
theories introduced in Sec. 5.3, the lattice Brillouin zone is replaced by a spherical 
zone o f the same volume with radius Λ defined via Q<iAd/d  = (2n/a)d, where 
Ω<* is the solid angle o f a d-dimensional sphere. The cutoff Λ is proportional to 
(2π/α). The thinning o f degrees o f freedom  now consists o f tracing over all fields 
with wave vector q lying in the spherical shell defined by A /b  < q < A. This
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Fig. 5.7.8. Fixed-point connectivity for the recursion relations of Eq. (5.7.13). 
Renormalization group trajectories flowing through the various types of fixed 
points are indicated as follows: first-order (dotted line); Ising critical (dark 
solid line); Potts tricritical (filled triangles); Potts tricritical endpoint 
(triangle-dot); and fourth-order (open squares). The light solid lines (from C 
to S and from S to B) do not correspond to any phase transition. The fixed 
points in this diagram describing continuous transitions are as follows: C -  
Ising critical; P4  -  four-state Potts; P3 -  three-state Potts; P3E -  Potts 
tricritical endpoint; and B -  fourth-order critical point. The fixed points 
describing discontinuous transitions are as follows: So -  three-solid 
coexistence; F4± and F40 -  three-solid-gas coexistence; and F 2 -  liquid-gas 
coexistence. Finally, there are the fixed points Li, Ga, and S, describing, 
respectively, the liquid state, the gas state, and smooth continuation between 
the liquid and gas phases. [A.N. Berker, S. Ostlund, and F.A. Putman, Phys. 
Rev. B  17, 3650 (1978).]

trace operation defines a new H am iltonian with Ν '  =  N / b d degrees o f freedom 
and an upper wave num ber cutoff A /b .  The reduced cutoff is equivalent to an 
increased lattice spacing a' =  ba. The next step is to rescale lengths so tha t 
distances are m easured in the units natural to the new H am iltonian. This is 
done by introducing a rescaled wave vector q' =  bq. The cutoff for q' is Λ, as it 
was for q in the original system prior to thinning o f degrees o f  freedom. This 
transform ation is equivalent to the transform ation x' =  x / b  o f the real space 
renorm alization procedures. A final step in m om entum -space renorm alization
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Fig. 5.7.9. Phase diagrams for krypton on graphite as predicted by the 
position space renormalization group for the Potts lattice gas in (a) the 
temperature-chemical potential plane and (b) the temperature-density plane. 
The dotted line F4-B in (a) is a line of first-order transitions corresponding 
to the solid-gas coexistence line Fs-B-FG in (b). In both (a) and (b), P3 -B is a 
line of Potts tricritical transitions, and B is a fourth-order point. The 
experimental points in (b) were taken from various references. [A.N. Berker, 
S. Ostlund, and F.A. Putman, Phys. Rev. B  17, 3650 (1978).]

group procedures is a rescaling o f the fields φ(q) via φ ( ^ /b) = ζφ '(q'). The choice 
o f the rescaling param eter ζ will be discussed below.

The counting o f  degrees o f freedom is m ost straightforw ard if φ(χ) is defined 
on a lattice. However, the low wave num ber Fourier transform s for fields defined 
on a lattice and those defined a t all points in space are the same. Since the 
operations o f the m om entum  shell renorm alization group involve the Fourier 
transform  fields φ(q), they can be used for either lattice or continuum  models. In 
w hat follows, we will adopt the language o f the latter approach.

To summarize, there are three steps in m om entum -space renorm alization group 
procedures.

(1) Thinning o f degrees o f freedom by tracing over fields φ(q) with A /b  < q < A.
This leads to a new Brillouin zone with radius (cutoff) A /b .

(2) Rescaling o f lengths via q' =  bq. The cutoff associated with q' is A.

(3) Rescaling o f fields via φ ( ^ /b) = ζφ '(q').
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Fig. 5.8.1. Effect of thinning of degrees of freedom on the Brillouin zone. The 
original spherical Brillouin zone has radius A. All fields with wave vectors q 
satisfying A /b  < q < A are removed, leaving a new Brillouin zone with 
radius A/b.  Next, wave vectors are rescaled via q' =  bq. The Brillouin zone 
associated with q' is now A, the same as that for q before thinning. Note, 
however, that the total number of wave vectors q' is N' =  N / b  rather than N.

Fig. 5.8.2. (a) Schematic representation of the fields φ(χ) with spatial 
variation in one dimension with maximum wave number in its Fourier 
transform equal to A. (b) The fields φ(χ)  after the high wave number degrees 
of freedom have been removed. The maximum wave number of oscillations 
is now A /b  rather than A  (c) The rescaled field φ'(χ') as a function of the 
rescaled length x' =  x/b.  The maximum wave number in the rescaled units is 
now A so that the oscillations in φ'(χ') are similar to those of φ(χ) in (a).

Steps (1) and (2) are depicted schematically in Fig. 5.8.1. The effects o f these 
transform ations on the real space field φ(χ)  are depicted in Fig. 5.8.2.

We now turn  to  how these renorm alization procedures are actually implemented 
for field theories o f the type discussed in Sec. 5.3. For simplicity, we will restrict 
our attention for the m om ent to  systems with Ising symmetry and a single scalar 
field φ(χ). First, the reduced H am iltonian j^ a with cutoff Λ is expressed as
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a functional o f the fields φ(q), which are decom posed into high and low wave 
num ber parts:

Φ(<ΐ) = Φ<(<ΐ) +  Φ>(<ΐ), (5-8.1)

where

ώ<(α  ̂ _  f  Φ(q) if 0 <  9 <  „ 2
φ  ( q ) - \ 0  if A /b  < q < A  (5·8·2)

/ 0 i f  0 <  q <  A/b; a 8 ^
Φ M ' i m  i ! M b < q < K .  (5-83)

Fields φ <(χ) and φ >(χ) are defined as the Fourier transform s o f φ <(q) and 
φ >(q). Clearly, φ(χ) =  φ <(χ ) +  φ >(χ)· Thinning o f  degrees o f freedom is 
accomplished by integrating out the fields φ >(q). This leads to a new H am iltonian 
■ ^ K jb W ^ ) )  =  [0(q)l with cutoff A /b  defined via

e-^ /i .[0 <(q)l _  J ̂^ )>(q)e- ^ [ 0 <(q)+0>(q)] _ (5.8.4)

This defines the effect on the H am iltonian o f the operator R‘h removing degrees 
o f freedom. Next, rescale m om entum  via q' =  bq and fields via

0<(q7fe) =  ζ φ ’(q') · (5.8.5)

This operation  defines a second transform ation Rsh. The com bined operation 
R h  = R sbR lb is the complete renorm alization operation associated with removal o f 
degrees o f freedom with wave vectors in the shell A /b  < q < A and rescaling.
The operator Rt applied to  [</>(q)] leads to  a new H am iltonian with cutoff A
th a t is a functional o f φ'(q ') :

^ A 0 ' ( q ' ) ] = * ^ A 0 ( q ) ]  · (5-8-6)
Eqs. (5.8.2) to (5.8.6) provide a formal definition o f the m om entum  space 
renorm alization procedure. We will implement these procedures in some simple 
situations below.

2 Correlation fu n c t io n s

Before carrying out explicit calculations, however, it is useful to  consider how 
correlation functions can be calculated using either the original H am iltonian 
or the transform ed H am iltonian Jti? Λ. This will provide us with some guidance 
as to how the field rescaling factor ζ should be chosen. If  q < A /b ,  then 
Φ(q) =  Φκ(q) =  ζ φ ’φ q), and we can use either a or to calculate its
correlation function. In particular,

(0 (qi)tf>(q2)) =  ^  f  ^ Φ ^ β - ^ ^ ^ Φ ^ Φ ^ ) ,

=  ^  f  ̂ ( ^ - ^ " ' Ψ φ ' ^ φ ' ^ )  (5.8.7)
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where q' =  bq and Z ' =  /  9>φ'(q '^ ^ I 'W ) ] .  The correlation functions are 
non-zero in translationally invariant systems only if qi =  — q2, and they are 
proportional to  the Fourier transform  G(q) o f the correlation function (φ(χ)φ(χ')). 
The first line o f Eq. (5.8.7) is, therefore,

< 0(qi)0(q2)) =  G(q i)F <$q„_q2 =  G(q)(2 n ) ^ ( qi +  q2). (5.8.8)
Here it is understood tha t G(q) depends on the potentials in the original H am il
tonian λ· The second line o f Eq. (5.8.7) yields

m b q M 'ib  q2)) =  G'(bqi)(2n)dS(bq2 +  bq2), (5.8.9)

where G'(q) depends on the potentials in the renorm alized H am iltonian 
Because S(bq) =  b~dS{q), these equations imply that

G(q) =  C2 b~dG’(bq) . (5.8.10)

This equation, when applied at the critical po in t where bo th  G(q) and G'(q) are 
proportional to  q~{2~n), implies

=  = C2 b - {d+2̂ ]~  , (5.8.11)q 2 “ ' i  (bq)2~i q2~i
where A  is the critical point am plitude arising from jT a , and A' is th a t arising 
from the rescaled H am iltonian Thus

ζ2 =  ^ ά+2- η](Α /Α ')  . (5.8.12)

The ratio  A /A !  can depend on b. We can, however, use our freedom to choose ζ 
to fix A  =  A'. In this case

ζ =  ftW+2->i)/2 ; (5.8.13)

and G(q) =  Aq~{2~n) when calculated using either A or Though other 
choices for ζ are sometimes useful, this is the choice th a t is generally used.

3 The  Gaussian model

The m om entum  space renorm alization procedure can be carried out exactly for 
the G aussian m odel with reduced Ham iltonian,

Χ ο ,λ  =  (r +  cq2 )W(q )\2 +  V0

=  [  (r +  cq2 ) |0 <(q)|2 +  /" (r +  c<g'2) |0 >(q)|2 +  K0
t/q J q

=  X ο,λ X ο,λ +  ^ 0, (5.8.14)
where Vo is a constant potential independent o f  φ(q) analogous to  the constant 
potential C introduced in our discussion o f the Ising model in Sec. 5.7, and where fA_ fA ddq f<_ fA/b ddq _ fA ddq

Λ  ~ Jo (2n)d’ Jq -  Jo (2π)2’ Jq ~JA/b(2n)d· ^  V
(Throughout this section, we will use r, c, and u as param eters in the reduced 
H am iltonian. They differ from our usual definitions by a factor o f 1 / T . )  The
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decom position o f into a part depending only on φ < and a part depending 
only on φ > makes the evaluation o f J f A//, trivial:

_  e- ^  j @ r i q ) e - ^ e- ,

= e-^-v° z<, (5.8.16)

or

^ M b  =  +  Fo -  In Z 0>. (5.8.17)

Thus, after rescaling φ <(q) according to  Eq. (5.8.5),

=  ν ’ϋ +  \ j\r’ +  c'q'2 m q ' ) \ 2 , (5.8.18)

where

r’ =  C2 b~dr =  b2 r, (5.8.19)

c' =  C2 b~(d+2)c =  c, (5.8.20)

where we used ζ 2 =  bd + 1  since η is trivially zero for this model. The constant 
p art Kq o f J f A is Vq — In Zq plus an additional p art arising from the Jacobian 
associated with the change o f variables φ <(q’/b)  =  ζφ>(q'). We will not consider 
this term  further. We note, however, th a t it is needed in the calculation o f  the 
free energy. N ote th a t choosing ζ to  satisfy Eq. (5.8.13) is equivalent to  keeping 
the coefficient c constant. In fact, for the G aussian m odel the am plitude o f A  o f 
Eq. (5.8.11) is 1/c. Usually, c is fixed at unity initially, and it rem ains unity under 
successive applications o f R b. The correlation length,

ξ' =  ( c '/ r ')1/2 =  b~l {c/r ) 1 1 2  =  b~*ξ , (5.8.21)

of the rescaled H am iltonian is b~l times the correlation length ξ o f the original 
Ham iltonian, regardless o f the choice o f ζ.

The recursion relation for r [Eq. (5.8.19)] has two fixed points: r* =  0 and r* =  oo. The la tter is the high-tem perature fixed point describing the disordered 
phase; the form er is the G aussian fixed point describing the critical point at 
T  =  Tc. The exponent A, =  1/v controlling the growth o f  r in the vicinity o f  the 
critical fixed poin t is 2. Thus, the renorm alization group predicts

v =  \  (5.8.22)

for the G aussian critical point. This is in agreement with the direct calculations 
presented in the preceding chapter. We have already indicated tha t the exponent 
η is zero. Thus, the values o f the exponents v and η for the G aussian fixed point 
are the same as those o f the mean-field theory.

As for the M igdal-K adanoff equations, it is often more elegant to  rescale 
lengths by an infinitesimal am ount at each iteration o f R b. This is accomplished 
by removing an infinitesimal shell o f width δ I o f wave vectors by setting b =  1 +δΙ. 
A  rescaling o f lengths by a factor el results from repeated rescalings by 1 + δΐ 
via el =  lim^/_0(l +  δΙ)ι/δΙ. Potentials and the correlation length ξ(1) can thus
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be regarded as continuous functions o f  I. Recursion relations become differential 
equations. In particular, from Eq. (5.8.19) with b =  (1 +  δΐ)

r(l +  SI) =  (1 +  Sl)2 r(l) (5.8.23)

or

^  =  2r(l) . (5.8.24)

Integration o f this equation leads to

r(l) =  e2lr{ 0), (5.8.25)

and el =  [r(l)/r(0 )\ll2.

4 The e-expansion

Exact m om entum  shell recursion relations can be obtained for the G aussian 
model because there is no cross coupling between the high- and low-m om entum  
fields φ > and φ < . The addition o f terms to  the G aussian H am iltonian cubic 
or higher order in φ  will lead to  such couplings and make the evaluation of 
■3?\β(Φ<) non-trivial. Before attem pting to deal with non-linear term s in 2P 
let us investigate how potentials scale in the vicinity o f the G aussian fixed point. 
Consider the H am iltonian

PA =  u p J  άάχ φ ρ( χ )

=  Up f  φ ( ^ ) φ ( ^ 2) . . . φ ( - ^  - , . . - q p_i) (5.8.26)
J n -12..qP-i

of order φ ρ. We can calculate how u p scales near the G aussian fixed point by 
replacing φ (q) by φ < ( q) and rescaling q according to  q' =  bq and φ < (q) according 
to  Eq. (5.8.5) with ζ =  b(d+2)l2. This leads to

u'p =  Cpb - {p- 1)dup =  fc[-(p-2)<i+2p]/2Up =  ^ P Up (5.8.27)

because there are p  — 1 q-integrals in Eq. (5.8.26). The exponent λρ =  [2p  —  (p  —
2 )d \ / 2  is (d  +  2 )/2  for p  =  1 and 2 for p  = 2. Thus, the external field h (p  =  1) 
and the tem perature r (p  =  2) are relevant at the G aussian fixed point in all 
dimensions. For p >  2, λ ρ is negative, and u p will flow to zero and is irrelevant at 
the G aussian fixed poin t for all dimensions

d  >  d c(p )  =  . (5.8.28)
P — 2

Thus, d c( 3) =  6, d c(4) =  4, and d c(p  >  4) <  4.
The H am iltonian in Eq. (5.8.26) has a potential o f zero range in tha t it 

couples fields a t a single point in space. Potentials with nonzero range are also 
perm itted by symmetry. For example, A in Eq. (5.8.26) could be replaced by

d d X \ d d x 2d d x id d x 4u ( x i ,  x 2, X3, X4 )

x</>(xi)</>(x2 )</>(x3)</>(x4) (5.8.29)



264 5 Field theories and critical phenomena

u(q1 ,q 2 ,q3,q4)<t>(qi)<t>(q2 )<t>(q3)<t>(q4) (5.8.30)
q1.q2.q3.q4q1.q2.q3.q4

u(q i,q2,q 3,q 4) =  j  d\ddx 2 ddx 3 ddx^e ,(

x u ( x i , x 2 , X 3 , X 4 ) (5.8.31)

=  u(qi,q2,q3) (2 ^ <,i ( q i + q 2 +  q3 + q 4). (5.8.32)

The local interaction o f Eq. (5.8.26) is retrieved by setting

u ( X i , X 2 , X 3 , X 4 )  =  U 0 ( X i  -  χ 2 ) δ ( χ 2  -  Χ 3) δ ( Χ 3 -  x 4 ).

Then u(qi,q2,q3) =  u is independent o f wave num ber. M ore generally, w(qi,q2,q3) 
depends on wave num ber and, like r(q) =  r +  cq2, can be expanded in powers of 
wave num ber:

where q2 represents any quadratic com bination o f qi, q2, and q3 perm itted by 
symmetry. Using the scaling procedures o f  the preceding paragraph, it is straight
forward to  show th a t the coefficient o f q2 in u(q i,q2,q 3) scales as C4 b~3db~ 2 =  b2~d 
and is m ore irrelevant than  u =  u4. In  general, any potential o f any order can be 
expanded in powers o f q. The lowest power o f  q is always the m ost relevant.

To simplify our discussion, we will now restrict our attention to Ising and 
On models with no external m agnetic fields so th a t no odd order potentials are 
perm itted. In this case, the G aussian fixed point above four dimensions is stable 
with respect to all potentials except the tem perature variable r. This means that 
the G aussian fixed poin t with its mean-field exponents determ ines the critical 
properties o f all 0„ models above four dimensions. Just below four dimensions, 
the potential u4 =  u in addition to  r is relevant a t the G aussian fixed point, and 
we expect flow away from  the G aussian fixed point with u =  0 to  a new fixed 
poin t with u =  u > 0, with u approaching zero as d —» 4~. Critical exponents 
a t the new fixed po in t will depend on u* and will approach mean-field values 
as d —* 4~. Thus, the m om entum  shell renorm alization group should predict a 
change from mean-field to non-mean-field critical exponents when d falls below 
the upper critical dim ension dc =  4, in agreem ent with the heuristic argum ents of 
preceding sections.

Since u* is expected to  be small near four dimensions, and all o ther potentials 
except r are irrelevant, we can restrict our attention to  a H am iltonian param etrized 
only by r and u with u small. O ther H am iltonians with m ore potentials will flow 
tow ard this H am iltonian under successive iterations o f the renorm alization group. 
Since u is small, we can calculate the renorm alized H am iltonian A and recursion 
relations perturbatively in u. O ur H am iltonian is thus

«(q1 .q 2.q 3) =  u +  0 (q2), (5.8.33)

\  o,\ +  k ,

where u4 =  u. The H am iltonian has the same form as A:

(5.8.34)
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A /b - /
d x \ν < (φ < ) 2 +  ^ < ( ν φ < ) 2 +  ^ ( φ < ) 4 (5.8.35)

It is obtained as before by integrating over φ >:

ρ-[5ΤΛ/ί,(0<)-^Λ (0<)]

where

and
J» = / 3>φ e

(Λ)~. - π Ι 9 ίφ >ε~π °ΛΑ.

The exponential in Eq. (5.8.36) can be expanded in powers of
1

4  .

e A)> =  1 - T O >  +  2 < T O > >  +  ···

=  exp{—( J f Λ)> +  -  [{(J'fλ )2)> — ( X λ)>] +  "  '}·

(5.8.36)

(5.8.37)

(5.8.38)

(5.8.39)

The evaluation o f ^Λ/ί>(</><) is thus reduced to  the evaluation o f averages of 

powers o f with respect to  ·# ’ο,λ·

Consider first (5 f^ )> . The binom ial expansion o f (φ <(χ) +  φ >(χ ))4 leads to  five 
distinct term s in this quantity, each with a different power o f φ >(χ). The average 
with respect to o f  any odd power o f φ >(χ) is zero, and only the three terms 
even in φ >(χ) are nonzero:

< ^ ) >  =  UJ  άάχ (φ <(χ ) ) 4  +  6 u J  Λ(</><(χ))2((</)>(χ))2)>

+u j  άάχ{(φ >(χ))4)>. (5.8.40)

This equation and Eq. (5.8.36) for J f A/5 imply u< =  u and

r < =  r +  12u /  G0(q),f  J  q

(5.8.41)

where Go(q) =  (r +  q2)_1 when c =  1 and where ((</>>(x))2)> is expressed as an 
integral over q o f Go(q). The contributions to  J f  A/i> to  second order in u can be 
calculated in m uch the same way as the first-order contributions after expressing 
the average o f products o f φ >(χ)  in term s o f Go(q). In  Appendix 5B, we will 
calculate bo th  first-order and second-order contributions for 0„ rather than  Ising 
models, after outlining the rudim ents o f diagram m atic perturbation theory.

To obtain J f ;A, we use the results o f A ppendix 5B for r <, c< and u< and rescale 
0 <(q) according to  Eq. (5.8.5). The la tter rescaling leads to  r' =  b~dC2 r< and 
u' =  fc~3d^4u<. The recursion relations for On models are then
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r>
-dr 2

' i
=  b~dCz [r +  4(n +  2)u G„(q)] (5.8.42)

d  =  b~(d+2)C2c =  1 (5.8.43)

u' =  b~3dC4 [ u - 4 ( n  +  8 )u2 Γ  Gl(q)]. (5.8.44)
Jq

N ote tha t we have retained contributions to  the recursion relation for u' to second 
order in u, whereas we have retained only term s linear in u in the equations for 
r’ and d . This is because, as we shall see below, the second-order term  in u in 
the equation for u ' is essential if u is to  have a nontrivial fixed point. The fixed
point value for u is then o f order e =  4 — d. Thus u1  term s in the r’ and d
equations are o f order e2 and do not contribute a t order e. There are no term s in 
the equation for d  tha t are linear in u. Thus, to  keep c =  1, we choose ζ 2 =  bd + 1
as in the G aussian case. Taking the continuum  limit b -*  (1 +  SI), we obtain the
differential m om entum  shell recursion relations:

J- f  -  2r(l) + 4Kj(„ + 2)T^ L  (5.8.45)

= ™(1) - 4 Κ,(„ +  8)ϊγ| ^ .  (5.8.46,

where e =  4 — d. There are two fixed points to  these equations as shown in 
Fig. 5.8.3: the G aussian fixed point with r =  u =  0 and a new Heisenberg fixed 
poin t with

= 4 ( ϊΤ 8 )κ ;+ 0 ,ί2 )

-  4 S r + 0 ''2>· <5's-47)
The G aussian fixed point is unstable with respect to  u and r. The Heisenberg 
fixed point, on the o ther hand, is stable with respect to u and unstable with 
respect to  r. Linearizing the recursion relations Eqs. (5.8.45) and (5.8.46) about 
the Heisenberg fixed point, we obtain

( £ £ ) _ ( - *  ^ ) ( £ ) ,  

where dr =  r — r* and du =  u — u . The eigenvalues o f  the m atrix in the above 
equation are

Λ =  -  =  2 - ^ | β  (5.8.49)
v n +  8

Xu =  - e  . (5.8.50)

The flows implied by these equations are shown in Fig. 5.8.3. A ny point along 
the line connecting the Heisenberg fixed point to  the G aussian fixed point will 
flow tow ard the Heisenberg fixed point. Thus, all initial H am iltonians along 
this line are in the same universality class and have the same positive expo
nents.
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(a) (b)

Fig. 5.8.3. Fixed points for the 0„ model (a) for d >  4 and (b) for d < 4. 
When d >  4, the Gaussian fixed point G is stable with respect to u. When 
d < 4, the Gaussian fixed point is unstable with respect to u, and a new 
Heisenberg fixed point H with u’ ~  e appears.

5 n-vector model w ith cubic anisotropy

In the n-vector model we have been studying, there are only two fixed points 
within the e-expansion: the G aussian fixed point and the Heisenberg fixed point. 
This structure rem ains valid to  at least th ird  order in e and is alm ost certainly 
valid for all 2 <  d < 4. Far more com plicated fixed point structures are possible. 
In this section, we will study the n-vector model with cubic anisotropy. This is 
the paradigm  for systems with m ore com plicated fixed point structure.

The reduced H am iltonian for a Heisenberg model with cubic anisotropy is

^=/λ {ς ?Φι + \(νΦ>γ +«(Σ̂ )2+ϋΣ^}·(5·8·51)
This model is equivalent to  th a t o f Eq. (4.6.18) with g =  0 and u\ =  u2 introduced 
in our discussion of mean-field bicritical and tetracritical points. It differs from 
the usual n-vector m odel H am iltonian by the term  containing (ftf. This term  
represents the effects o f lattice anisotropy on spin order and should always be 
present in n =  3 Heisenberg systems on a cubic lattice. For d >  4, only r is 
relevant, and the G aussian fixed point is the only fixed point. For d <  4, both  
u and v are relevant, and recursion relations for bo th  m ust be treated together. 
Proceeding as before, we obtain to  first order in e,

j { =  ( 2 - t f r  +  4KA(n +  2)u +  3 v ] ~ - 7y  (5.8.52)

^  =  (€ - 2 ^ u - 4 K d[(n +  S)u2 + 6 u v ] - ^ - ^ ,  (5.8.53)
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J  =  ( e - 2 ^ v - 4 K d[l2uv +  9v2] - ^ r ^ ,  (5.8.54)

η =  0 (u 2 ,uv ,v2). (5.8.55)

As before, we seek fixed points with u, r, and v o f order e. Thus, we have

(e -  4K d[(n +  8)u +  6v'])u =  0 , (5.8.56)

(e -  4K d[12u +  9v'])v' =  0 . (5.8.57)

These equations have four fixed points:

Gaussian : uG =  vG =  0, (5.8.58)

Heisenberg : uH =  ^  * +  g) , vH =  0, (5.8.59)

Ising : u, =  0 , Vj =  (5.8.60)

c u b i c : -  ϊ έ α  ’ "'c  =  ι έ ϊ ·  ,5 ·8·61»
The th ird  fixed point is called the Ising fixed point because it corresponds to n
non-interacting replicas o f the Ising model. N ote th a t vj =  uH (n =  1). To study
the stability, we linearize Eqs. (5.8.53) and (5.8.54) in the vicinity o f each fixed 
point:

^  =  ( e - 4 K d[2(n +  8 )u + 6 v ' ] ) S u - 2 4 K du S v ,  (5.8.62)
dl
JC

—r  =  ( e - 4 K d[l2u +  1 8 ν * ] )δ ν -4 8 Κ άν*διι. (5.8.63)
dl

The stability exponents arising from this equation are

G aussian : XUG =  XVG =  e, (5.8.64)

Heisenberg : λ#  =  —e, λ νΗ =  - — ^8e, (5.8.65)
n

Ising : A? =  ^e , λ ν, =  - e ,  (5.8.66)

cubic : λ ς  =  —e, λ ς  =  ~ 2 ~ ·  (5.8.67)

N ote th a t the Heisenberg fixed poin t is stable and the cubic fixed point is unstable 
for n < 4, whereas the converse is true for n > 4. Eqs. (5.8.53), (5.8.54), (5.8.62), 
and (5.8.63) imply flow diagram s as shown in Fig. 5.8.4. For all values o f n, there 
is a fixed point th a t is locally stable. Note, however, tha t there are regions of 
the u — v plane th a t do not flow to a stable fixed point within the e-expansion 
(e.g. v < 0 for all n > nc). This is usually called a runaway. I t is not always clear
where runaways lead. In  this (and indeed in m any similar cases), one can show
tha t this runaw ay implies a first-order transition.

Finally, we obtain the therm al exponent λ ι =  v-1 by linearizing Eq. (5.8.52):

from  which we obtain

λ, =  2 - 4 K d[(n +  2)u +3»*], (5.8.68)
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(a) (b)

Fig. 5.8.4. Renormalization group flows in the u — v plane showing the 
Gaussian (G), Heisenberg (H), Ising (I), and cubic (C) fixed points (a) for 
n < nc =  4 +  0(e) and (b) for n > nc.

1 n — 1
v c - 2 +  - f o T '

(5.8.69)

for the cubic fixed point. The therm al exponents for the o ther fixed points have 
already been given.

6  Quadratic anisotropy

In  Sec. 5.5, we argued tha t the shape o f the lam bda lines meeting at a bicritical 
point depended on the m agnitude o f  the crossover exponent φ =  Agv for the 
anisotropy field g. This exponent can easily be calculated to  first order in e. To 
do this, replace the quadratic term  in the Heisenberg reduced H am iltonian by

* 0  = \ j  ά ^ Σ η Φ ΐ  

The recursion relations for each rt for an isotropic quartic term  are

( ϊ γ τ μ + Σ , γ ^ )  ■= 2  rt +  4K du

(5.8.70)

(5.8.71)

Linearizing about the Heisenberg fixed poin t and setting dr =  Sri and Q, =  
<Sr, — n_ 1 Sr, we obtain

^  =  [2 -  4K du ( n  +  2)]5r, (5.8.72)
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^  =  2(1 - A K ^ S Q i .  (5.8.73)

The first o f these equations gives the Heisenberg correlation length exponent
[Eq. (5.8.49)]. The second gives the exponent Xg associated with the anisotropy
field,

^  =  2 - < ^ T 8 > ·  ' 5 8 7 4 )

φ  -  '  + W T s f  ' 5S75)
Thus φ > 1, and the lam bda lines a t a bicritical po in t are tangent to each other, 
as depicted in Fig. 4.6.11.

7 Crossover

A t the beginning o f this chapter, we discussed crossover from mean-field behavior, 
at high tem peratures, to  critical behavior below the G inzburg tem perature. This 
crossover can be calculated explicitly within the e-expansion. The idea is to  start 
at some tem perature near the critical point and to  use the renorm alization group 
recursion relations to m ap the original critical H am iltonian onto a non-critical 
H am iltonian for which perturbation  theory converges.

We will consider here crossover for the susceptibility o f the isotropic On model. 
O ur approach follows closely tha t o f Rudnick and Nelson (1976). We begin by 
rewriting Eq. (5.8.10), relating G evaluated with the original H am iltonian to 
G evaluated with the rescaled H am iltonian J f  as

G(q, r, u) =  G(el q, r(l), u(/)). (5.8.76)

In  general, the exponent η can be /-dependent, and η I in the above should be 
replaced by / 0( άΙ’η(1’). In φ 4  theories, η =  0 (e 2) and we can set η =  0 in our 
present treatm ent to  first order in e. N ear the critical point, r (or a t least r — rc) 
and q are small, and the perturbation  expansion for G(q, r, u) in powers o f u 
is divergent. The scaling param eter / can be chosen so tha t r(l) a n d /o r  elq is 
o f order unity so th a t the perturbation  expansion o f G(elq,r(l),u(l)) presents no 
problems. The recursion relations Eqs. (5.8.45) and (5.8.46) for the potentials r 
and u for the On model are

Tl =  2r +  A T T r  (5·8·77)

^  * ( T ^ p  (5.8.78)

where A  =  4K ^ n  +  2) and B =  4Kn(n +  8). We wish to  integrate these equations 
retaining only contributions to lowest order in e. As we will show shortly, to 
linear order in e, we can set r =  0 in the equation for u, which then becomes

d̂  =  e u -  Bu2. (5.8.79)
dl

This equation can be integrated exactly. The result is
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u(l) =  u0
QdY

(5.8.80)

where uo is the value o f u(l) a t / =  0 (assumed to  be o f order e or smaller), and 

Q(l) =  1 +  ^  (eel -  1 ). (5.8.81)

N ote tha t

{1, as / —» 0;
(5.8.82)

(Buo/e)eel, as / —» oo
so tha t

{uo, as / —» 0;
(5.8.83)

e /B  =  u ,  as / —» oo, 
where u is the value o f u a t the Heisenberg fixed point. To show th a t corrections 
to  Eq. (5.8.80) for u(l) com ing from r are o f order e2, we set u(l) =  f(l)u\(l),  
where ui(l) satisfies Eq. (5.8.79). Then

dl
dl

=  - B u \ ( f 2 - f )  +  f 2 u2
1

-  1 (5.8.84)
L ( l + r ) 2

ui is o f order e, and /  —» 1 as ui -*  1, implying th a t /  =  1 + 0 ( e 2). Thus, to  order 
e, we can, as advertised, ignore the r in the equation for u and use Eq. (5.8.80) 
for u(l).

Next, we m ust integrate the equation for r(l), rem em bering th a t r(l) may 
become o f order unity. To carry out the integration to  order e we write

dr =  (2 — Au(l))r(l) +  Au(l)
dl

+Au(l)
1

- l + r ( / )
1 +  r(l)

Then, setting r(l) =  es(,)?(/), where

S(l) =  2 1 -  f  Au(l')dl' =  21 +  0(e), 
Jo

we find
rl

f(l) =  ro +  J Q Au(l') +  Au(l') “  1 +  r(l')

(5.8.85)

(5.8.86)

dl’, (5.8.87)
+  r(V)

where ro =  r(l =  0). To evaluate r(l) to  order e, we recall tha t du/dl =  0 (e 2),
-sm = _=  —(1 /2 )(de2 l/d l)  +  0(e), and r(l) =  e2lro +  0(e). Therefore,

/Jo
and

/ 'Jo

Au(l')dl '

d l 'e -s inAu(l')

[e~S{l)u(l) -  u(0)] +  0 (e2), (5.8.88)

1

rl

1 +  r(l') 

r0 r(l')

» - l + r ( 0

= ί Λ “(Ή τ τ ^ ) +0(Γ)
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= J  d l ' l-A u(l ') | r 0 l n ( l + r ( O )  +  O(e) (5.8.89)

=  y - s{l)Au(l)r(l)\n[l +r(l)] -  ^ u ( 0 ) r ( 0 ) ln [ l  +  r(0)] +  0(e2). 

Using these two equations, we can now write the equation for r(l) as

t(l) =  es(,)i(0), (5.8.90)

where

t(D =  r(l) +  ^Au(l)  -  1 Au(l)r(l) ln (l +  r(l)) +  0 (e 2). (5.8.91)

The variable i(0) is actually the reduced tem perature ( T  — Tc) / T c. The phase
transition  occurs a t i(0) =  0 or at r(0) =  —\Au(0) +  0 (e 2).

The quantity  S(l) can be evaluated analytically:

S(l) =  2 1 - A  f  dl'u(/')
Jo

f l eel
=  21 — Au 0 /  dl'-— - r — r^ — ,— t t  (5.8.92)

1 +  (Buo/e)(e‘l -  1) '

=  21- ^ l n  Q(l), 

from which we obtain

t(l) =  e2 , [Q(l)]-A/Bt( 0) (5.8.93)
e2 ,t(0), as / —> 0;

(5.8.94)
e(2 ~Ae/BV(Buo/e)t{0 ), as / —* oo.

This shows the crossover behavior we are after. For (Buo/e)eel <C 1, we have 
mean-field behavior. For (Buo/e)eel »  1, we have Heisenberg critical behavior 
with t(l) ~  ev_1,i(0) with v_1 =  2 — [(n + 2)/{n +  8)]e. Crossover between the two 
behaviors occurs at the G inzburg reduced tem perature t =  (Buo/e)1/e.

To com plete the calculations we m ust express physical quantities such as the 
susceptibility in term s o f t(l). To do this, we choose Γ  such tha t

ί(Γ ) =  1 (5.8.95)

and perturbation  theory presents no problem. To evaluate G(r(l)) =  G(q =  
0, r(l), u(/)), we use the result (Eq. (5.2.33)) from one-loop perturbation  theory, 
which in four dimensions is

d*q 1
G - H m  =  r(l) +  A u ( l ) J ~ 2)4 r(l) +  q

=  r ( l ) + ^ - u ( l ) - l - A r ( l ) [ \ n ( i + r ( l ) - \ n r ( l ) ]  (5.8.96)
A  2

= t(l) +  ^u( l ) \nt ( l ) .  (5.8.97)

Thus, a t / =  /*,



5.8 Momentum shell renormalization group 273

G(ri n )  =  ± - ) =  L

Finally, using Eq. (5.8.76) with η =  0, we have 

G(r) =  e2,* G (r(f)) =  e2l\  

where /* is determ ined by Eqs. (5.8.93) and (5.8.95): 

B uq
1 + ( ' - 0

—A/B
t =  1,

(5.8.98)

(5.8.99)

(5.8.100)

where we set i(0) =  t. A n approxim ate solution to  this equation, which reproduces 
correctly both  the large and small /* limits to  lowest order in e, is

el =  t~•1/2 1 + B
Up

€te! 2

A / 2 B

(5.8.101)

so that

G =  t-1 1 + B
€te! 2

A / B

t - l if (Buo/e)Aie/2;
(5.8.102)

t - l - ( e / 2 ) ( A / B ) if (Bllo/e) >  f ' 1.

The susceptibility exponent y is 1 for t »  to and 1 +  [(n +  2)/(n +  8)]e for TXtG.
A useful way to  visualize crossover behavior in a function like G(i) is via an 

effective tem perature-dependent critical exponent defined via 
d log G(i)

yeff(i) =  — (5.8.103)
d lo g t

This exponent can be calculated directly from Eqs. (5.8.99) and (5.8.100). Fig. 5.8.5 
shows yeff(0 evaluated from these equations with n =  1, e =  1, and B uq =  10-2 . 
The crossover from G aussian behavior with y =  1 to  Heisenberg critical behavior 
with y =  1.2 occurs a t t =  (Buo ) 2 =  10-4 .

8  Dangerous irrelevant variables

As we saw in Sec. 5.5, irrelevant variables are fields with a negative scaling 
exponent tha t scale to zero at the controlling fixed point. Normally, irrelevant 
variables do not contribute to the leading scaling behavior, though they do 
determ ine corrections to scaling. Sometimes, however, quantities o f physical 
interest diverge as some inverse power o f an irrelevant variable. In this case, the 
irrelevant variable cannot be ignored. It is called a dangerous irrelevant variable, 
and participates in determ ining leading singularities near a critical point.

Let v be an irrelevant variable with exponent λ ν =  — |λ„| such th a t v(l) =  e ' " 1 
in the vicinity o f the fixed po in t o f interest. Then let A(t,v)  be some observable 
tha t scales as

A(t,v) =  e*AlA(t(l), v(l)), (5.8.104)

where t(l) =  ev l,t. Then, if A(t(l),v(l)) ~  [v(l)]~a,
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log (t)

Fig. 5.8.5. The effective critical exponent yeff(t)> showing crossover from 
Gaussian to Heisenberg critical behavior.

A(t,v)
ρλΑΐ+<?\λν\1 1 - { λ Α+σ\λν\)ν (5.8.105)

[ν(1 )]σ va νσ 
The leading divergence o f A  is determ ined bo th  by λΑ and the exponent λν o f the 
irrelevant variable v.

The simplest example o f an observable, with a dangerous irrelevant variable, 
is the free energy above the upper critical dimensions. The free energy density /  
has dimensions o f inverse volume. For a φ 4 model, it m ust therefore satisfy the 
renorm alization equation

f ( r ,u )  =  e - dlf(r(l),u(D)· (5.8.106)

Below four dimensions, u —* u* a t the critical point, and we can choose Γ  such that 
|i(/*)| =  ev l r \t\ =  1 (see preceding subsection). In  this case, f ( r ( l ' ) ,u(/*)) =  /* , 
and

f ( r ,  u) =  e~ilT  ~  |t |*  ~  |i |2-*, (5.8.107)

in agreem ent with the scaling predictions for Sec. 5.5.
Above d =  4, we know mean-field theory applies and predicts /  ~  — \t\2 for 

t <  0. The above argum ent would incorrectly predict /  ~  |i |dv =  |i |d/2. The 
problem  is that, above four dimensions, u(l) =  e~eluo is an irrelevant variable and 
/  [diverges as u —* 0 Eq. (4.3.10)]:

Λ Π
W > M r » =  m n .

Thus, using Eq. (5.8.106) and  setting r(l')  =  e21 r =  1, we obtain

(5.8.108)
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f ( r  u) =  —e~d r— r ^  —̂
J{ ,U> leeH-Wuo

= e~4 r - ^ = - ~  (5.8.109)
1ouq 16uo

as required.
A nother example where there is a dangerous irrelevant variable is the Heisen

berg m odel when there is cubic anisotropy [Eq. (5.8.51)] and when the Heisenberg 
rather than  the cubic fixed point is stable. W hen there is no cubic anisotropy, 
the direction o f order is arbitrary, and the correlation function for directions 
perpendicular to  the order diverges as q~2. W hen there is cubic anisotropy, the 
order param eter aligns along one o f the cubic axes, and the correlation function 
for directions perpendicular to  the order is finite at q =  0 and proportional to 
the inverse o f the cubic potential v. W hen the Heisenberg fixed point is stable, v 
scales to  zero and is irrelevant. Thus, v is a dangerous irrelevant variable for the 
perpendicular correlation function and determines the exponent o f its power-law 
divergence as the critical point is approached from below. We will leave the 
detailed derivation o f this result to  Problem 5.7.

9 The  utility o f  the e-expansion

The first order in the e-expansions th a t we have presented do not make num er
ically accurate predictions o f the critical exponents in physical dimensions, and 
one m ay ask why one should bother at all with such calculations. Their great 
virtue is th a t they provide an analytically not-too-com plicated way o f determ ining 
w hat types o f universality classes one can expect. Though the numerical values 
o f exponents change considerably as one moves away from the upper critical 
dimension, the topology o f flow diagram s does not. Thus, one can investigate in 
a well-controlled and relatively simple way which interactions will lead to new 
universality classes and which will not. We have seen how the addition o f a 
cubic anisotropy can lead to a new universality class with exponents th a t differ 
from those o f the isotropic models. O ther anisotropies and potentials can also do 
this. For example, d ipolar forces, which are always present in m agnetic systems, 
can change the universality class o f ferrom agnets bu t not o f antiferrom agnets. 
A nother example is the effect o f quenched random  impurities on critical points. 
The e-expansion has been one o f our m ost powerful tools to assess how ran
domness can change universality classes. The e-expansion can also be used to 
calculate equations o f state, crossover functions, and am plitude ratios. It is the 
one calculational tool tha t allows for straightforw ard calculations o f virtually all 
functions o f interest in the vicinity o f a second-order critical point, and is in a real 
sense responsible for the rather detailed understanding we now have o f critical 
phenom ena.

The e-expansion is really an asym ptotic expansion. W ith considerable effort, 
reasonably high order term s in this series have been calculated. W ith sophisti-
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cated resum m ation techniques, the series can be resum m ed to yield exponents in 
three dimensions tha t are in very good agreem ent with those obtained by other 
techniques, as can be seen in Table 5.4.4.

Appendix 5A The Hubbard-Stratonovich transformation

Though the phenomenological continuum coarse grained field theories we introduced in 
Sec. 5.2 are usually quite adequate for the study of properties near second-order phase 
transitions, it is sometimes valuable to have an exact functional integral representation 
for the partition function of strongly constrained models such as the Ising and n-vector 
models. Here we will present a method for obtaining such a representation (Hubbard 
1954, Stratonovich 1957). For simplicity, we will consider only the Ising model, though 
generalizations to any microscopic Hamiltonian that can be expressed as a quadratic form 
are straightforward.

We begin by expressing the Ising Hamiltonian as a sum over all sites 1 and Γ rather 
than over bonds <  1, 1' >:

J? =  Y  Al'SiSr, (5A.1)
1,1'

where Si =  + 1  and Ji i< is the exchange integral which in the simplest model is zero unless 
1 and Γ are nearest neighbor sites. We now use Eq. (5.2.13) to write

=  exp

=  A Π  / άφι exp - 2 y ,  ΦιΚφΦν +  Φι$ι (5A.2)
1J' 1

where Ky' =  and A = (2n)~N/2(de tK )^ l/2. The Ising model partition function in an 
external aligning field is then

Z  = A Π  / άφι exp Trexp y > , + /Μι)$ (5A.3)

The trace (Tr) in this expression is over the Ising spin variables. Note the spin variable Si 
appears linearly rather than quadratically in Eq. (5A.3). This simplification allows for an 
exact evaluation of the trace over Si and is the great virtue of the Hubbard-Stratonovich 
transformation of Eq. (5A.2). The integrals over φι are, of course, nontrivial. It is easy 
to show that (Si) =  d\nZ/d[ih \  =  Κ\χ(φ\) by integrating by parts after shifting the
derivative with respect to /Mi to a derivative with respect to φ\>. Thus, averages of 
the unconstrained field φι are proportional to averages of the constrained field Si. The 
dependence of Z on hi can be cast into a more convenient form by changing variables: if 
Ψι ~  Φι +  βΜ, then
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• L u' i,r

(5A.4)
1 1

where

βίι.(ψ) =  — lnTreSv’ =  — ln(2 coshi/>). (5A.5)
Both Eqs. (5A.3) and (5A.4) have the form of a lattice field theory like that of Eqs. (5.2.5) 
and (5.2.6). Their continuum limit can be carried out as described Sec. 5.2.

Appendix 5B Diagrammatic perturbation theory

In this appendix, we present an outline of low-order diagrammatic perturbation theory 
and calculate the second-order contributions to the recursion relation for u in Eq. (5.8.46). 
Diagrammatic perturbation theory is used extensively in both relativistic and nonrelativistic 
field theories, and the reader is encouraged to look at some of the many excellent texts on 
the subject for further details.

The essential ingredient of perturbation theory for any field theory is that the average 
of a product of an even number of fields with respect to a Gaussian weight function 
produced by a harmonic Hamiltonian can be expressed as the sum of products of the 
Gaussian correlation function or propagator Go(x,x')· To see this, we use Eq. (5.2.21) for 
s i  — —T ln Z  and

In general, if there are 2n fields in the product, then there will be a sum of (In — 1) ■ (2n —
3) · · · 3 · 1 distinct products of propagators. This follows from the fact that each field will 
be paired or contracted with every other field to produce a propagator Go- Thus, with a 
product of 2 n fields to be averaged, the first field can be contracted with any of (2 η — 1 ) 
others. There then remain (2n — 2) unpaired fields, the first of which can be contracted 
with (2n — 3) others, and so on. Thus, for n =  2, there will be 3 χ 1 =  3 terms, as shown 
in Fig. 5B.1.

The above expansion also applies to averages of products of fields φ >(χ) with respect 
to the Hamiltonian in the presence of a field h(x) coupling to φ >(χ). In this case, the 
factors of Go(x,x') in Eq. (5B.1) are replaced by

(5B.1)

Direct application of this formula for n =  1 and n =  2 yields

(φ(χι)φ(χ2)) =  Go(xi,x2) (5B.2)
and

(Φ(ΧΙ)Φ(Χ2)Φ(Χ3)ΦΜ) =  Go(Xl,X2 )Go(X3 ,X4 ) +  Go(Xl,X3 )Go(X2 ,X4 )
+ G 0(X i ,X 4 )G 0(X2,X3)· (5B.3)

q
(5B.4)

where
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φ(χ)  φ(χ) φ<(χ) φ<(χ)

φ (χ)  φ (χ)  φ<(χ) φ<(χ)

X X
φ<(:

(a) (b) (c) (d)

Fig. 5B.1. Diagrams in coordinate space to first order in u. The vertex u is 
represented by a dot. (a) Representation of the perturbation Hamiltonian 

K before averaging over φ >. The four lines represent fields φ(χ). 
Integrating over the fields φ > leads to contraction of internal lines and 
diagrams (b) - (d).

We now turn to the representation of the perturbation expansion [Eq. (5.8.36)] of J f \ /b  
in terms of diagrams. The potential u in is represented by a dot and factors of φ  by 
lines. The perturbation Hamiltonian is then depicted as a dot from which four lines 
emerge, as depicted in Fig. 5B.1. Each of the four lines has a free end. An integration 
over x to obtain - tfK is understood. Alternatively, in the wave number representation 
(Fig. 5B.2), the four lines represent <£(qi), φ(q2 ), φ(q3 ), and φ (—qi — q2 — q3) because the 
integral over x constrains the sum over wave numbers of the four φ  fields to be zero. 
An integral over qi, q2, and q3 is understood. Each line can be decomposed into a φ κ 
and a part. The average over φ'-1" leads to the contraction of pairs of φ5* fields to 
form propagators Gg. This process can be represented by connecting pairs of φ  lines 
together. Uncontracted lines with free ends are called external legs and represent φ κ fields. 
Contracted lines, which always begin and end at a vertex, are called internal lines and 
represent a factor of Gg. If diagrams are represented in coordinate space, as in Fig. 5B.1, 
connected lines represent Gg(x,x') and connect vertices as positions x and x'. Since the 
internal line in Fig. 5B.l(c) originates and terminates at the same point x, it represents a 
factor of Gq ( x , x ), and the contribution of this diagram is proportional to

qi -qi-q2-q3 qi -qi-q2-q3 qi - q i

(a) (b) (c) (d)

Fig. 5B.2. Same as Fig. 5B.1 in wave number space.

(5B.5)

(5B.6)
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If diagrams are represented in wave number space, as in Fig. 5B.2, a connected line 
represents a factor of Gg(q2 ). In this case, it should be remembered that Gg (q2) results 
from the contraction of two fields φ>(ς2) and and implies a delta function setting 
q3 =  —q2 . The contribution of Fig. 5B.2(c) is thus proportional to

The three terms in Eq. (5.8.40) are represented either by diagrams 5A.lb-d or by diagrams 
5A.2b-d. Diagrams (b) have four external legs and contribute to u<, diagrams (c) have two 
external legs and contribute to rK, and diagrams (d) have no external legs and contribute 
to the constant terms Vq. To obtain Eqs. (5.8.40), weights must be assigned to each of 
these diagrams. This can be done by counting the number of ways of contracting lines to 
obtain a given diagram. The weight assigned to diagrams (b) is trivially 1 since there is 
only one way for all lines to be external φ κ legs. This agrees with the coefficient of (φ< )4 

in Eq. (5.8.40). There are six ways of picking two lines out of four to form the singly 
contracted line in diagrams (c). Thus diagrams (c) contribute to r< with a factor of 12 
when the 1 /2  in the definition of r is included. Finally, the weight of diagrams (d) is 3 
because a given line can be contracted with any of three others, and there is only one way 
to contract the remaining two lines. These weights agree with Eq. (5.8.40).

We now turn to the evaluation of (p f^ )2)> using diagrams. The factor of Λ)2 prior 
to the average over φ'-1" can be represented by two vertices each with four φ lines as shown 
in Fig. 5B.3a. The average over φ > will contract pairs of φ lines in all possible ways. The 
diagrams resulting from this average fall into three categories, as shown in Figs. 5B.3b, 
c, and d. In Fig. 5B.3b, there are no contractions coupling the vertex at x to that at x'. 
These are called disconnected diagrams. They are identical to the diagrams representing 

and thus do not contribute to the cumulant, {(X1 Kf ) > — ( ^ Λ)>, appearing in 
the expression Eq. (5.8.39) for The diagrams in Fig. 5B.3d are called one-particle
reducible diagrams because they can be divided into two disconnected parts by cutting a 
single Gq line. Diagram d(l) is zero because the internal line connecting the two vertices 
must have the same wave number as the external legs. The external legs represent φ κ 
fields whereas internal lines represent a contraction of φ> fields and from the definition 
of φ> and φκ, it is impossible for both internal lines and external legs to represent fields 
with the same wave number. A similar argument applies to diagram 5B.3d(2) with six 
external legs. Thus, the diagrams in Fig. 5B.3c are the only ones which contribute to 
Fig. 5B.3c(2) is proportional to

It is a second-order contribution to r>(q). Unlike Fig. 5B.lc, it depends on q and contributes 
a term of order u2 to the equation for c'. It, therefore, leads to an order e2 correction to 
η. Its q =  0 part contributes a e2 correction to v. To first order in e, however, it can be 
ignored. Fig. 5B.3c(l) is responsible for the u2 contribution to the equation for u'. As can 
be seen from its representation in Fig. 5B.4, it is proportional to

It is the qi =  q2 =  0 limit of this diagram that contributes to the equation for u!. To

(5B.7)

Similarly the contribution from Figs. 5B.l(d) or 5B.2(d) is proportional to

(5B.8)

(5B.9)

w2 [  G o (q )G o ( -q -q i -q 2) ,1’̂ 0 u2 / ( Go(q))2 (5B.10)
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(a) (b)

(1) (2)

(c)
(3) (4)

>
(1) 

(d)

(2)

Fig. 5B.3. Diagrams to second order in u. (a) Two factors of t f  K each with 
one vertex and four φ  lines, (b) Disconnected diagrams, (c) Diagrams 
contributing to ^ λ / 6 · (1) contributes to uK, (2) to r< and (3) and (4) to Vg. 
(d) One particle reducible diagrams that do not contribute to κ/b as 
explained in the text.

determine its weight, we note that the two external legs at each vertex can be chosen from 
the four original legs in any of six ways for a total factor of 6  x 6  =  36. In addition, 
the internal lines connecting the two vertices can be contracted in two ways for an extra 
factor of 2. Finally, there is a factor of 1/2 in the coefficient of the cumulant in the 
expression for κ/b in terms of K in Eq. (5.8.39). The total weight of this diagram in 
u< is 2 x 36/2 =  36 in agreement with Eq. (5.8.44) when n =  1.

A similar diagrammatic analysis of perturbation theory can be carried out for 0„ models 
in which

where the summation convention on repeated indices is understood. In this case, it is 
useful to represent the vertex u by a dotted line as shown in Fig. 5B.5. The two φ -legs 
emanating from either end of the vertex must have the same Cartesian index. The average

is zero unless i =  j.  The leading order diagrams contributing to r are shown in Fig. 5B.6 
and those contributing to u in Fig. 5B.7. First consider the contributions to r in which there 
are two external legs. Each of these diagrams, like the contribution to r from Fig. 5B.2c in 
the Ising case is proportional to f  Gg (q). In Fig. 5B.6a, there are two choices for the end 
to be contracted. There is a factor of Gg for each of the n indices j  in the contracted loop. 
Finally, there is the factor of 2 coming from the factor of 1/2 in the definition of r. Thus

(5B.11)

(ΨΓ(Χ)Ψ /(*'))> = <5yGo(x,x') (5B.12)
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Fig. 5B.4. Diagram 5B.3c(l) showing wave number dependence of internal 
and external lines.

j  J

i  i

Fig. 5B.5. Representation of K for 0 n models. The dashed line represents 
the vertex u. At each end of this vertex are a pair of φ  lines with the same 
Cartesian index i or j  =  1 ,.,.,η.

i  i  i  i

i  i

(a) (b)

Fig. 5B.6. Diagrams contributing to r to linear order in u.
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(c)
Fig. 5B.7. Diagrams contributing to u to second order in u.

the total weight of diagram 5B.6a is 2 x 2 χ n =  4n. In Fig. 5B.6b, there are two choices 
for the external leg at each end of the vertex and only one way of connecting the internal 
lines. (The index i is the same for the external legs and for the internal line.) Therefore, 
the weight of this diagram is 2 x 2 x 2 =  8, and the total weight of the two diagrams in 
Fig. 5B.6 is 4(n +  2). This is the weight in Eq. (5.8.42). Next consider contributions to u 
from the diagrams in Fig. 5B.7. Again the contribution of each of these diagrams to m> 
is proportional to j^[Gg(q)]2. Since interactions will always have 0„ symmetry, we need 
only consider diagrams in which all external legs have i — 1. To obtain the weights of 
these diagrams the factor of 1 /2  arising from the cumulant expansion in Eq. (5.8.39) must 
be included. In Fig. 5B.7(a), there are two choices at each vertex for the pair of external 
legs and two ways to connect the internal lines for each of the n values of i for a weight 
of (2 x 2 x I n ) /2 =  An. In Fig. 5B.7b, there are two choices for the right hand vertex, two 
choices for the pair of external legs in that vertex, two choices for each of the two right 
hand external legs, and two ways of connecting the internal lines. The internal legs must 
have i =  1. The weight of Fig. A7(b) is therefore 2 x 2 χ 22 x 2/2 =  16. In Fig. 5B.7c, there 
are two choices for each of the four external legs and two ways of contracting the internal 
lines for a factor weight of 24 x 2/2 =  16. The total weight of the u2 contributions to u< 
from the diagrams in Fig. 5B.7 is therefore 4n + 16  +  16 =  4(n +  8). This is the result used 
in Eq. (5.8.44).
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Problems

5.1 Calculate the upper critical dimension dc for the following critical points:
(a) The tricritical point with free energy density

/  =  ^ τ φ 2 +  u6^ 6 .

(b) The (d, m) Lifshitz point described by the H am iltonian
r i i m i ^

j e  = J  ddx  γ φ 2 + -  Σ ^ Φ ) 2 +  ϊ Έ  +  UV
i=l i—m+l
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H int: I t is useful to  introduce correlation lengths ζ\\ ~  r~ { / 1  and ξ± ~  r ~ 1 / 4  
to  describe correlations in the two directions defined in the free energy. The 
correlation volume is then
(c) The strongly anisotropic d ipolar m agnet with H am iltonian

*- J ά<*χ \rΦ2 + ηφ4 +  J  -~i[cq2+ v{q\/q2)]\<t>{q)\2,
where the || specifies the single direction defined by anisotropy fields. Again, 
it is useful to introduce anisotropic correlation lengths via

G~‘(q) =  [r +  c(qj +  q l )  +  v q l / (q f \+ q l)]

~  r [ ί + ( q ± ξ± )2 + v ( q ]lξ ]]/q ± ξ± )2]

+ 0 [rq2̂ 2 , r (q \^ \ \ /q ^ L )%  
where ξ\\ =  r~ vi and with vy =  1 and v_l =  1/2.

5.2 Show th a t the RPA predicts th a t the liquid-solid transition tem perature in 
three dimensions for the model o f the liquid-solid transition considered in 
Sec. 4.6 is zero when the coefficient o f the th ird-order potential is zero. The 
model H am iltonian is

F=\J ̂ p\-r+c((l2-ko)2Mq)n(-q)+ J  d3x n \ x ) .

5.3 Assume the correlation function in an anisotropic system obeys the hom o
geneity relation

G(X||, x_L, i) =  fc-(d- 2+" ) G ( r (1+/,'i)xI, b~lx ±t b l/vt) 

where t =  (T  — Tc) / T c. D eterm ine the critical exponents governing the 
behavior o f G(X||, x± =  0, t =  0), G(x|| =  0, x±t t =  0), the correlation 
lengths ζ\\ and ξ±, the susceptibility, and the order param eter for t <  0 in 
term s o f the exponents η, μ\\ and v.

5.4 (a) Calculate the transfer m atrix and free energy for the one-dimensional 
Blume-Emery-Griffiths model defined in Eq. (4.6.17).
(b) Use the results o f (a) to  determ ine the M igdal-K adanoff recursion relations 
on a triangular lattice for J, K ,  and Δ.
(c) (For the truly am bitious) D eterm ine the fixed points and flows for the 
recursion relations derived in (b).

5.5 (a) Calculate the transfer m atrix and free energy for the one-dimensional 
s-state Potts model with reduced H am iltonian

h  =  - k J 2  - 1 ]  >
<i,r>

where σι =  1,..., s.
(b) Determ ine the continuous recursion relation for K .  This equation should 
reduce to Eq. (5.7.6) in the Ising limit when s =  2. Then calculate the critical 
exponent v in 1 +  e dimensions for s > 0.
(c) Analytically continue the recursion relations derived in (b) to s =  0. Show 
tha t they lead to  a lower critical dim ension o f 2 ra ther than  1, and calculate
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v in 2 +  e dimensions. The s =  0 limit o f the Potts model counts spanning 
trees on a lattice, and its correlation functions give the resistance between 
two points in a resistor network. (See Fortu in  and K asteleyn 1972; Lubensky 
1978; Stephen 1976.)

5.6 Calculate the scaling exponent for up for p =  3 and p > 4 to  first order in e.
5.7 Consider the O3 Heisenberg model with cubic anisotropy [Eq. (5.8.51)].

(a) Show th a t the order param eter aligns along one o f the cubic directions 
when v > 0 .

(b) Assuming th a t φ  aligns along the z-axis, show th a t in mean-field theory

for r <  0 (i.e., th a t Gxx diverges in mean-field theory as r Vl with y± =  i)·
(c) Use this result to  show that, near four dimensions,

with y and v the susceptibility and correlation length exponents o f the 
Heisenberg fixed point and λνΗ the exponent for v a t the Heisenberg fixed 
poin t [Eq. (5.8.60)].

5.8 Bond percolation is defined m athem atically as the form ation o f an infinite 
(or sample spanning) cluster o f sites connected by occupied bonds on a 
lattice whose bonds are occupied with probability p and unoccupied with 
probability 1 — p. The form ation o f this infinite cluster is analogous to  the 
passage o f a fluid (coffee) through a porous medium  (coffee grounds). A n 
infinite cluster exists for p greater than  a critical value pc. The probability 
# (p )  ~  (p — pcf  tha t a site is in an infinite cluster grows continuously from  
zero for p >  pc. Thus percolation is a geometrical phase transition with # (p ) 
playing the role o f the order param eter in a therm odynam ic phase transition. 
The probability S(x, x') tha t two sites are in the same cluster is the analog of 
the nonlocal susceptibility χ (χ ,χ ') , and S(p) =  J  ddx S (x ,x ')  is the analog of 
the susceptibility χ.

(a) The percolation problem  can be described by the s-state Potts model in 
the limit s -*  1 (Fortuin and K asteleyn 1972; Lubensky 1979). Use the 
mean-field theory for the Potts model developed in Sec. 4.8 to  show that 
there is a continuous phase transition in which the order param eter is 
positive (as a probability m ust be) with γ  = β =  I and v =  1/2. Then 
show tha t the upper critical dimension dc for percolation is 6.

(b) Let e/, I =  0, l,...,s  — 1 be a complete set o f  orthonorm al s-dimensional 
vectors with eo =  s~1/2( l, 1,..., 1). Show that

where

γ± =  y +  \xH\v
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where ej are the com ponents o f e/. Use the H ubbard-Stratonovich trans
form ation to  derive the field theory

where =  s 1 J2sa=l e" e° e " . From  this, derive the recursion relations

η =  6K 6w 2(s — 2 ),

where e =  6 — d, and show tha t the exponents for percolation are η =  
—e/21 and v-1 = 2  — (5e/21). W hat are α, β, and y? The integral

where S is the region defined by b 1 <  k <  1 and b 1 <  |k  +  q| <  1 with 
b =  1 +  δ I, m ay prove useful. The exponent η is set by the requirem ent 
th a t the coefficient o f (V tp)2 be equal to  unity under renorm alization. 
Thus, you will need the recursion relation for this coefficient.

5.9 Yang and Lee (1952) showed th a t the partition  function for the Ising model 
has zeros in the complex Η  =  H ' +  iH" plane tha t become densely distributed 
in the therm odynam ic limit. For T  < Tc, these zeros give rise to  branch cuts 
in the free energy and m agnetization along the im aginary H  axis originating 
at the Yang-Lee edges H  = ± iH "(T ) .

(a) Assume tha t the free energy has a singularity o f the form

Deduce from  this th a t the gap exponent Δ =  ^(d +  2 — η)ν is unity so 
tha t the exponents η and v satisfy

and are thus not independent (Fisher 1978).

(b) Use the Landau free energy /  =  \ ^ φ 2 +  u<̂ 4 — itιφ  to  show th a t σ =  3/2, 
β  =  γ =  1/2, and v =  1 /4  in mean-field theory. From  this, show that 
the upper critical dimension dc for the Yang-Lee edge is 6. A t a given 
r (tem perature), the values, hc and  φ€, o f h and φ  a t the Yang-Lee edge 
are determ ined by the conditions d f  / δ φ  =  0 and d2f  / 8 φ 2 =  0. The latter 
condition can be satisfied because φ 0 is imaginary.

(c) Let φ =  φ 0 +  ψ. Show th a t fluctuations near the Yang-Lee edge can be 
described by a field theory with

f  1  ̂ Λ
^  (ψϊ +  (Vtp/)2) -  wXhhh\ph\p,2\ph +  0(\pf)

= ^ ( e - 3 ^ w  +  3bK 6 ( s - 3 ) w J,

r d6k 1 1 _  δΐ δΐ
(s (2π)6 r +  k 2 r +  (k +  q) 2 ( 1 + r ) 2 3

(l+0(r)),(5P .l)

f ( H ,  T ) ~  \H"

2
d + 2 — η
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t f -I dd> c(V tp)2 +  iwtp3 ί'ΔΑψ

where Ah — h — hc. Derive recursion relations for w and c, and show that 
η =  —e/9  and v =  \  +  j^e  to first order in e. You may wish to  use the 
integral in Eq. (5P.1).



6
Generalized elasticity

In the preceding several chapters, we have seen th a t the order established below 
a phase transition  breaks the symmetry o f the disordered phase. In m any cases, 
the broken symmetry is continuous. For example, the vector order param eter 
m o f the ferrom agnetic phase breaks the continuous rotational symmetry o f the 
param agnetic phase, the tensor order param eter Qtj  o f the nematic phase breaks 
the ro tational symmetry o f the isotropic fluid phase, and the set o f  complex 
order param eters pc, o f the solid phase breaks the translational symmetry o f the 
isotropic liquid. In these cases, there are an infinite num ber o f equivalent ordered 
phases th a t can be transform ed one into the other by changing a continuous 
variable Θ. If  rotational symmetry is broken, Θ specifies the angle (or angles) 
giving the direction o f the order param eter; if translational symmetry is broken, 
Θ specifies the origin o f a coordinate system. Uniform  changes in Θ do not 
change the free energy. Spatially non-uniform  changes in Θ, however, do. In 
the absence o f evidence to the contrary, one expects the free energy density /  to 
have an analytic expansion in gradients o f Θ. Thus we expect a term  in /  tha t 
is proportional to (VO)2 for Θ varying slowly in space. We refer to  this as the 
elastic free energy, / e 1, since it produces a restoring force against distortion, and 
we will refer to  Θ as an  elastic or hydrodynam ic variable. Probably the m ost 
fam iliar example o f such a free energy is elastic energy o f  solids where Θ is the 
displacement o f the lattice. I t is, however, one o f the m ost com plicated o f what 
we will call generalized elastic energies arising from  broken continuous symmetry. 
In this chapter, we will study the generalized elasticity and  its consequences for a 
num ber o f systems exhibiting broken continuous symmetry.

The free energy o f a system with a broken continuous symmetry is invariant 
with respect to spatially uniform  displacements th a t take the system from  one 
point in a ground state m anifold to  another. In general, there is one elastic variable 
(or degree o f  freedom) associated with each generator o f translations within this 
manifold. Thus, there is a single elastic variable for an xy-model whose ground 
state m anifold is simply the unit circle, and there are two elastic variables in an 
O3 model whose ground state m anifold is the unit sphere. N otable exceptions to 
this rule are systems, such as smectic liquid crystals and  crystalline solids, with 
periodically broken translational symmetry. These systems are invariant with 
respect to  both  translation  and rotations, and  one m ight expect both  translational 
and ro tational elastic variables. Low-energy ro tational distortions are, however,

288
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" I " /  /  /  — ------------

" t “ /  /  /  ----------------- -

■■ I " /  /  /  -------------------

Fig. 6.1.1. Different ground states for the xy-Hamiltonian. The vector order 
parameter can point anywhere in a two-dimensional plane.

completely determ ined by spatially varying translational distortions, and there 
are only translational elastic variables.

6.1 The xy-model

The simplest continuous symmetry (17(1) or 0 2) is tha t o f ro tations in a two- 
dim ensional plane. The order param eter tha t breaks this symmetry can be 
either a two-dimensional vector (s) =  s(cos0 , s in 0 ) or a complex num ber (ψ) =  
\{\p)\e'e, whose respective direction or phase is specified by the angle Θ. A 
useful representation o f systems with this symmetry is the xy-model on a lattice 
introduced in Sec. 3.6. In  this model, there is a spin s(x) =  s(cos0(x), sin0(x)) of 
m agnitude s a t each site x on a lattice. These spins interact with their nearest 
neighbors via an exchange interaction in the H am iltonian o f Eqs. (3.6.3) and 
(3.6.5). D ifferent equivalent ground state configurations o f this model are shown 
in Fig. 6.1.1. We will use the term  xy-model to  include all systems such as 
superfluid helium or hexatic liquid crystals with a complex or two-dimensional 
vector order param eter. It is useful to  bear in mind, however, tha t the hexatic 
order param eter is usually written as {ψβ) =  K W k 6'0 to emphasize its invariance 
with respect to rotations through 2 π / 6.

1 The elastic f r e e  energy

The free energy in the ordered phase o f the xy-model has the form  o f the base of 
a wine bottle, as shown in Fig. 6.1.2. The m inim um  value o f the free energy occurs 
on a circle a t the base o f the wine bottle. The radius o f the circle specifies the 
m agnitude o f the order param eter (s =  |(s)| or |(ψ)|). The position on the circle 
is determ ined by the angle Θ. Spatially uniform  changes in Θ lead to  a ro tation 
around the base o f the wine bottle bu t do not change the energy. Spatially 
non-uniform  changes in Θ such as those depicted in Fig. 6.1.3 will, however, 
increase the free energy F. In the absence o f any indications to  the contrary, we 
expect Fe\ =  F[0(x)] — F[() =  const.] to  be analytic in V 0 . Furtherm ore, since the
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uniform  state is a m inim um  with respect to  all possible variations o f the order 
param eter, there are no linear term s in the expansion o f Fe\ in terms o f VO. The 
simplest form  for Fei consistent with these requirem ents is

Fe]= l- J d dx p s[Ve(x)]2. (6.1.1)

The energy associated with gradients o f Θ can be arbitrarily small, and one often 
refers to dynam ical modes associated with an elastic variable as soft modes. Fe\ 
is invariant both  with respect to  uniform  displacements o f  Θ and with respect 
to  uniform  displacements and rotations o f space. This is because in the model 
we are considering, ro tations o f the spin variable are completely decoupled from  
rotations in space: the total symmetry group is a direct product o f the spin 
and space symmetry groups. This is not always the case, as we shall see in 
the next section. The coefficient ps is called the spin-wave stiffness or helicity 
modulus in m agnetic systems, the superfluid density in superfluids, and is often 
referred to  simply as a rigidity. In d dimensions, ps has units o f energy/(length )d -2 

or force/(length)d-3. A n energy scale is provided by the transition tem perature 
Tc (which for the lattice model is o f the order o f the exchange J). A t low 
tem peratures, the length scale is tha t o f the interparticle spacing a (the lattice 
param eter in the lattice model). Thus we expect ps to be o f order Tca~(i~2i at 
low tem peratures. For the lattice model o f Eq. (3.6.3), ps =  s2 Jza~ (d~2i/4 d  at 
T  =  0, where z is the coordination num ber o f the lattice. N ear Tc, the length 
scale is set by the correlation length, and one could argue tha t ps should be 
o f order Τ0 ζ~(ά~2\  i.e., ps should go to zero a t a second-order critical po in t as
|T  — TcjM~2,v. Scaling in critical systems predicts this result, as we shall see
shortly. In mean-field theory (see Sec. 4.3), ps =  c |(s)|2 ~  | T  — Tc|, which agrees 
with the scaling result only at the upper critical dimension dc =  4, as expected of 
hyperscaling relations (Sec. 5.4) th a t involve the spatial dimension.

2 Boundary  conditions and external f ie lds  

In  the absence o f external fields,

P . * m  =  0 . (6.1,2)

This predicts tha t the lowest energy state is one o f  spatially uniform  Θ. If, 
however, boundary conditions are imposed, non-uniform  solutions for Θ may be 
required. For example if Θ is constrained to be zero along the plane z =  0 and θο 
along the plane z =  L, we have 

θ

Fei =  \ p sL d- 2 e2. (6.1.3)

N ote th a t the energy is independent o f L when d =  2. We shall see in several 
different ways tha t two dimensions is quite special for this model. Eq. (6.1.3) can
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Fig. 6.1.2. The free energy as a function of a two-component order parameter 
in the ordered phase of the xy-model for temperatures near the transition 
temperature Tc (right) and for temperatures much less than Tc (left). It has 
the shape of a wine bottle, with all states on the circular minimum having 
the same energy. At low temperatures, the deep well fixes the magnitude of 
the spin at the value s0 at the minimum of Fa. The steep well implies that 
fluctuations in the magnitude of the spin about s0 are negligible.

I /  /

\ \ \  I /// I / /
\\\ i /// i / /

\ t /  t /  /

(a) (b) (c)

Fig. 6.1.3. (a)-(c) Spin configurations with a spatially non-uniform θ(χ). 
These configurations have a higher free energy than do those with a spatially 
uniform θ(χ). (c) Shows spin configurations corresponding to the boundary 
conditions of Eq. (6.1.3).

be rew ritten as an expression for ps in terms o f the difference between the free 
energy F[()q], with boundary conditions Θ =  0 at z =  0 and θ — θο a t z =  L, and 
the free energy F[0], with boundary conditions Θ =  0 a t z =  0 and z =  L:

ps =  lim 2L 2~d(F[e0] -  F [0]) /6 l  (6.1.4)
L —*oo

This equation can be regarded as a definition o f the helicity m odulus ps.
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An external field h(x) breaks the ro tational symmetry o f the original H am ilto
nian via the addition o f  a term,

Fext =  -  J  ddxh(x) ■ (s(x))

=  — J d dx\s(x)\[hx c o s 6 (x) +  hy s inθ(χ)], (6.1.5)

to  the free energy. W hen h is spatially uniform  and is along the x-axis, the 
m inim um  energy state is one with 0 =  0 and |(s(x))| independent o f x, i.e., 
(s) =  sex (m agnetization aligned with h along x). A  small additional field 3hy in 
the y-direction will increase Θ from  zero to δθ  and lead to  a non-zero y-com ponent 
o f (s): δ (sy ) =  stiO, corresponding to  a tilt o f the m agnetization vector. To first 
order in hy, the m agnitude o f the m agnetization, s, will not change. The response 
o f (sy) to a perpendicularly applied field is thus

, Λ _  <5(·ΜΧ)) _  δθ(χ ) , ,  , c\
*±(Χ,Χ) Shy(x') S0 hy(X') ‘ ( *

To calculate δ θ /Shy, we minimize the total elastic free energy F T =  Fei +  Fext 

expanded about Θ =  0 for small hy :

^/>S(V0)2 +  i shx6 2 — shy0 — shx +

δ F
-j j f -  =  [-/>SV2 +  shx] Θ -  shy =  0, (6.1.8)

i“ f t 7 2 + s 4 * ] | ^ = s 5 ( x - x ' )- 

Therefore, the transverse susceptibility is

=  (6L 9) 
This result agrees with mean-field theory [Eq. (4.3.26)] with the identification 
ps =  cs2. N ote th a t Eqs. (6.1.8) and (6.1.9) define a “field” correlation length 
6i =  (Ps/hx)~1/2 in m uch the same way th a t Eq. (4.3.14) defined the correlation 
length near second-order phase transitions.

FT =  J  ddx (6.1.7)

3 The Josephson scaling relation

In  the critical region, we expect Gj_(q) to  obey the generalized scaling relation 
discussed in C hapter 5:

G±(q,hx) =  q - ^ Y M ,  hxC A) (t ξ  ( T  — Tc) /T ) .  (6.1.10)

This relation predicts G± ~  t ^ /h x when q =  0 because Δ =  (β +  y)v and  y =  
(2 — η)ν, in agreem ent with the prediction required by symmetry th a t G± =  T s /h x 
(s ~  t^). W hen hx =  0, it can be used to  predict the tem perature dependence 
o f Ps -
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G±(q) =  q - (2~,')Y M ) = ^ - 1
PsQ

ps =  lim s2< r" F ~ 1(< z£ )~ i2/i<f' ~ i (d_2)v , (6.1.11)
r -> 0

where we used s ~  and the hyperscaling relation [Eq. (5.4.15)] for β. This result 
agrees with tha t obtained earlier by dim ensional analysis. I t was first derived by 
Brian Josephson (1966) and is called the Josephson relation. W hen both  q and h 
are nonzero, a more com plicated form  than  tha t derived above is expected for 
G± (q) in the critical region.

4 Fluctuations

The energies associated with elastic variables like Θ can be arbitrarily  small. 
The existence o f such low energy distortions can have profound effects on other 
properties o f the system -  in particular on the value o f the order param eter (s) or 
(ψ). (s) is the average o f the field s with respect to  some therm odynam ic weight 
function. Assume Θ =  0, i.e., assume (s) =  sex, and param eterize s(x) with its 
m agnitude s(x) and angle ,9(x) with respect to  the x-axis

s(x) =  s(x) [cos 9(x), sin 9(x)] . (6.1.12)

The lattice xy-model is a special case o f the above in which s(x) is constrained to 
be a constant. N ote again the distinction between 9 and θ. Θ specifies the direction 
o f the average spin at x, whereas 9 specifies the direction o f the unaveraged spin 
field. I f  (s) is nonzero, 9 will not be uniform ly distributed between 0 and 2π but 
will have a greater probability to have a value near Θ.

W ith Θ =  0 we have

{sx) =  (s(x)cosS(x)) =  s,

(sy) =  (s(x) sin 9(x)) =  0. (6.1.13)

The free energy functional is invariant with respect to  uniform  rotations o f s.
Thus, we expect the same kind o f expansion o f the H am iltonian t f  in term s of
9 as we developed for F  in term s o f Θ:

t f  =  t f  j [s(x)] + t f e\ [#(x)],

t f t \  =  \ j  ddxp 's[s(x)] [V9(x)]2. (6.1.14)

In general, t f \ \  should include higher order term s in V.9. The value o f p's depends 
on s(x). In  the mean-field theory, as we discussed at the end o f the preceding 
chapter,

F[(s(x)>] =  JT[(s(x))] , (6.1.15)

so th a t p 's((s)) is equal to ps in this case. A nother interesting limit is tha t o f 
low tem peratures, where the fluctuations in the value o f  s(x) are small. As the 
tem perature is lowered, the wells in t f  become steeper, as shown in Fig. 6.1.2. 
These steep wells fix the value o f s(x) at a preferred value s q . In this case, we can
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set p 'v(s(x)) =  p 'v(.so) =  Ps· This low -tem perature limit can be obtained directly 
from  an expansion to harm onic order o f the lattice xy-model:

where y\y is the nearest-neighbor m atrix equal to one if 1 and 1' are nearest neigh
bors on the lattice and zero otherwise. The continuum  limit o f this H am iltonian 
produces Eq. (6.1.14) with p's =  zJa 2~d/(2d). There is, in general, a real dis
tinction between the therm odynam ic stiffness ps and the local stiffness p's. p 's is 
simply an interaction param eter o f the system. ps, on the o ther hand, necessarily 
includes the effects o f fluctuations th a t in general reduce rigidity. In this chapter, 
we will no t be too careful about the distinction between the two rigidities and will 
in fact use the same symbol for both. We will, however, return to  this question in 
C hapters 9 and 10.

The above considerations imply th a t fluctuations in 9 in the low tem perature 
limit are controlled by t f e\ with p's =  ps a constant. This allows us to  calculate 
the average order param eter,

(It is understood th a t does not include the spatially uniform  S(q =  0).) t f e\ 
is harm onic in 9, and we can use the properties o f G aussian functional integrals 
derived in Sec. 5.3 to  evaluate

where A is the wave num ber cutoff. e~2W is called the Debye-Waller factor.  In 
the classical systems we are considering here, it measures the degree to which the 
order param eter is depressed by therm al fluctuations from  its zero tem perature 
m axim um  value.

N ote th a t W  —* oo as d —* 2. Thus (sx ) is zero and there is no long-range order 
in two dimensions, even a t low tem peratures when its m agnitude so has achieved a 
well defined value. This is the phenom enon o f fluctuation destruction o f  long-range 
order. The absence o f long-range order in two-dimensional systems with a con
tinuous symmetry is often referred to as the M ermin-W agner-Berezinskii theorem

t f  =  - J  ^  c°s(9i -  9r) 
<1,1' >

*  - z N J  +  i j ^ n i ' ( 9 i - 9 i 0 2 +  O [ ( 9 , - ^ ) 4], (6.1.16)

(cos 9) =  e w

(6.1.17)

where

(6.1.18)

T A d ~ 2
(6.1.19)

2 ps(d — 2) ’
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(M erm in and W agner 1966; M erm in 1968; Berezinskii 1970, 1971). The lower 
critical dim ension for this system is dL — 2. Physically, a very long wavelength 
ro tation  o f the direction o f (s) costs very little energy. Therm al excitation o f these 
long wavelength modes changes the direction o f the m agnetization in space and 
time. Thus, even though the m agnitude o f  the m agnetization is locally saturated, 
spatial and time averages can greatly reduce the total m agnetization from  the 
value when all spins are aligned. The im portance o f these long wavelength, low q 
fluctuations is reduced in higher dimensions because o f the phase space weighting 
by qd~ ldq.

5 Long-range order, quasi-long-range order, and disorder

The spin correlation function is easily calculated again using the properties o f 
G aussian integrals discussed in Sec. 5.3:

G '(x,0) =  (s(x) · s(0)) =  so(cos[9(x) — 9(0)])

where

g(x)
-  TI

52 R e ( e . ( 9 ( x ) - 9 ( ° ) ) )
=  s20 e-*W

’

Γ ddq 1 - e * *
(2 n)d psq2

(d-2)p, X  — *  0 0 (d >  2)

2^ ln(A|x|) X —* 0 0 ( d =  2)

X  —*■ 0 0 ( d =  1)

(6.1.20)

(6.1.21)

Here, A =  Ae^, where A is the high wave num ber cutoff (see Sec. 5.2) and y is a 
constant to  be evaluated below. It is clear from  Eqs. (6.1.19) and (6.1.21) th a t d =  2

-2 W const.is a special dimension. For d > 2, g(x) -*  const, and G'(x, 0) —*■ s^e 
as x -*  oo in agreem ent with the condition for the existence o f long-range order 
(LRO) discussed in C hapter 3 [see Eq. (3.5.8)]. For d =  1, g(x) grows linearly 
with |x|, and

G'(x) =  s20 e ^ T/2̂  (6.1.22)

decays exponentially with distance. Thus there is no long-range order for any 
T  > 0 in one dimension. The disordered param agnetic phase persists all o f the 
way down to T  =  0. The Fourier transform  o f Eq. (6.1.22),

T / 2 p s
G(q) =  sg

q2 +  ( T / 2 p s ) 2
(6.1.23)

is a Lorentzian with a width th a t goes to zero with T.
In  exactly two dimensions, g(x) can be w ritten as ( T /2 n p s)I(\x\ where

/(Ixl)
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-  fJo
1 -  J 0(<z|x|)

where Jo(u) is the Bessel function o f order 0. The large |x| behavior o f this 
integral can be obtained by letting u =  q\x\ and breaking the integral into parts: 

γΙ ί _  MM j.. MW

dq, (6.1.24)

Jo U Jl u Jx
J * * d u

where

y

=  lnA |x | + y +  0  ((A |x |) 3/2 )  , (6.1.25)

=  r J- ^ d u *  -0 .116 . (6.1.26)
Jo u Jl U

(This constant depends on cutoff. For a square lattice, it is y +  jln8 , where 
y =  0 .5772... is the Euler-M ascheroni constant.) g(x) diverges logarithmically 
with x, and

G '(x,0) =  sg (A |x |H  (6.1.27)

decays algebraically to zero with an exponent

η =  — (6. 1. 28)
(2 nps)

depending on the tem perature. Systems with power-law decay o f order-param eter 
correlation functions are said to have quasi-long-range order (QLRO). Thus, 
provided T / ps is neither zero nor infinite, the spin correlation function G'(x) of 
the xy-model in two dimensions exhibits the same power-law dependence on x as 
it would at a critical point in higher dimensions. In  Fourier space,

G(q) ~  |ς Γ (2-"> (6.1.29)

again has the same form  as a correlation function at a critical point. N ote that 
G(q =  0) and thus the uniform  susceptibility is infinite for all η < 2 .  W hen T  =  0, 
g(x) =  0 and G'(x) is a constant independent o f x so that, as expected, there is 
long-range order in the two-dimensional classical xy-model a t zero tem perature. 
If  ps -*  0, T / ps -*  oo, and G'(x) will tend to  zero at large |x| m ore rapidly 
than  algebraically. Thus, there is a transition from  Q LRO  to disorder when 
ps -*  0. In  a pure harm onic model, there is Q LR O  at all tem peratures. Vortex 
excitations, which we will study in C hapter 9, reduce ps and lead to a QLRO- 
disorder transition. This ra ther unique transition is called the Kosterlitz-Thouless 
transition (1973).

O n occasion, the precise form  o f fluctuations in the lattice model is o f interest. 
In this case, W  and g(Ri) are identical to  Eqs. (6.1.19) and (6.1.21) with psq2 
replaced by *e(q), where

d
e(q) =  2 J ^ [ l - c o s ( q a , · ) ]  (6.1.30)

;=i
on a hypercubic lattice, where a,· are the nearest-neighbor vectors o f the lattice. 
M ore generally, if the exchange J\y  extends to  further than  nearest neighbors,
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I Ohmic m edium  
w ith conductiv ity  Σ I

Fig. 6.1.4. If a current /  is injected into an infinite ohmic medium at point 0 
and extracted at point y, there will be a voltage difference V = RyI  between 
0 and y. The resistance Ry is proportional to the angle correlation function 
g(y) [Eq. (6.2.22)] of an xy-model. The relation V  ~  /  is analogous to Θ ~  h 
in a spin system.

e(q) =  [J(0) — J(q)]. Long wavelength fluctuations with qa <C 1 are identical in 
lattice and  continuum  models, and the dom inant singularities in g(x) at large |x| 
are the same in both  models. The precise value o f  W  for d >  2 will, however, 
differ in the two models.

We close this section with the observation th a t there is a close analogy between 
the variable θ and the voltage V  in an infinite conducting medium. In the absence 
o f external current sources or fields, the voltage V  satisfies Laplace’s equation, as 
does θ in the absence o f perturbing fields. The electric current density J  in such 
a m edium  is equal to ΣΕ, where Σ  is the m acroscopic electrical conductivity and 
E =  - V F  is the electric field. W hen there are external current sources, we have

If  a current I  is inserted at the origin and extracted at y (Fig. 6.1.4),

g(y) is the same function tha t appears in the spin-spin correlation [Eq. (6.1.21)] 
function. In  two dimensions, it is logarithm ically divergent at large y. In 
dimensions greater than  2, it tends to a constant as y —* oo. This is the well 
know n result tha t the resistance to infinity is infinite for d =  2 and finite for

6  Resistance o f  a conducting medium

- τ χ 2ν  =  v  j . (6.1.31)

V  · J  =  /  [<5(x) — <5(x — y)].

The resistance between the origin and y is, therefore, 
_  K (0 ) -K (y )

(6.1.32)

(6.1.33)
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d > 2. The infinite resistance to infinity and the destruction o f  long-range order 
in two dimensions are, thus, intim ately related.

As in the xy-model just discussed, the rotational symmetry o f spin space is 
broken in the ferrom agnetic phase o f n-vector models by an order param eter 
th a t picks out a particular average spin direction specified by s =  |s|n, where 
n is a unit «-com ponent vector. Similarly, rotational symmetry is broken in 
the antiferrom agnetic state o f an n-vector model with staggered m agnetization 
N  =  |N|n. Since all directions o f n are energetically equivalent, the free energy 
should be proportional to (V n)2. In addition, because spin and spatial coordinates 
ro tate under separate groups, the free energy m ust be invariant with respect to 
independent ro tations o f n and position x (or equivalently V ). Thus, there is an 
elastic free energy,

with a single elastic constant for the n-vector model. The constant ps (often 
denoted by A  in the m agnetism  literature) is again the spin wave stiffness. The unit 
vector n, unlike φ  in the xy-model, is a constrained variable, and Fei is necessarily 
anharm onic when expressed in term s o f the n — 1 independent variables in n. For 
example, for n =  3, one can choose nx and ny to be independent variables; then, 
nz =  +(1 —n2 —n2)1/2, and the (V n z)2 term  in Eq. (6.2.1) is anharm onic in nx and 
ny. For small nx and ny, Fei is effectively harm onic, and the correlation functions 
nx(q)|2 and In>;(q )|2 are identical to <^(q)|2 in the xy-model. The existence o f these 

non-linearities leads to  a crucial difference between the xy- and n-vector models 
in two dimensions. The coupling between long-wavelength fluctuations actually 
depresses the effective spin wave stiffness to  zero for all T  > 0 in two-dimensional 
n-vector models with n >  2, and there is no phase in these models with QLRO. 
We will see how this comes about at the end o f this chapter (Sec. 6.7).

R otational symmetry is also broken in nem atic liquid crystals. In  this case, 
n specifies the principal axis o f  a symmetric traceless tensor order param eter 
(Sec. 4.5). N em atic liquid crystals differ from  the ferrom agnetic phase o f n-vector 
models in th a t ro tations o f spatial coordinates and the order param eter are 
produced by the same rotation  operator. Thus, there is no longer a requirem ent 
th a t the elastic free energy as a function o f  n be invariant under independent 
ro tations o f n and V . The difference between this and the m agnetic system is

6.2 o n symmetry and nematic liquid crystals

1  n-vector elastic energy

(6.2.1)

2 The Frank f r e e  energy o f  nematic liquid crystals
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Θ — x

X

Fig. 6.2.1. Whereas the arrow at the origin is directed along the z-axis, the 
three neighboring arrows are identically tilted with a component along —x 
and make an angle θ with respect to the x-axis. In a magnetic system with 
an s · s interaction between neighboring spins, the interaction energy of the 
spin at the origin with each of the spins along the χ-, y- and z-axes is the 
same. However, the more complex interactions of rod-like molecules can give 
very different energies for (1) tilting a rod toward another (splay), (2) 
rotating so that the rod ends separate top and bottom (twist) or (3) taking 
colinear rods and changing their angle (bend).

illustrated in Fig. 6.2.1. The stiffness for the nem atic becomes a fourth  rank 
tensor:

Κ φ ΐ  is a tensor tha t will in general depend on the local director n(x). This free 
energy m ust be invariant under uniform  rotations o f the whole sample and under 
the symmetry operations n —* —n and x —* —x. In  addition, n is a unit vector so 
tha t is zero. These considerations imply th a t Κ ψ ι  has three independent
com ponents, K \ ,  K 2 and K 3 . The distortions whose energy is m easured by the 
three elastic constants are shown in Fig. 6.2.2. They are (1) splay, with nonzero
V  · n, (2) twist, with nonzero η · (V  x n), and (3) bend, with nonzero η χ  (V  x n). 
The elastic energy for the nematic phase, called the F rank  free energy (Frank

in three dimensions.
Since n is unitless, the elastic constants K \,  K 2 and (like ps) have units o f 

energy/length and are o f order k ^ T m l a ,  where TNI is the isotropic-to-nem atic 
transition tem perature and a is a typical m olecular length. TNI is o f order 400 K 
and a is o f  order 2θΑ. Thus we estimate Kj ~  1.4 χ  10-16 x 400/(20 χ  10-8 ) 
~  3 χ  10-7 dynes.

If  molecules are chiral, as they are in a cholesteric liquid crystal, the F rank  free 
energy m ust be supplem ented by an additional term,

(6.2.2)

1958), is

i  f  /x { iC ,( V  · n)2 +  X 2[n ■ (V  χ  η)]2 +  X 3[n χ  (V  x  n)]2}(6.2.3)
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(c)

Fig. 6.2.2. Schematic representations of the (a) splay, (b) bend, and (c) twist 
distortions of a nematic liquid crystal.

F ch = - hj  d*xn ’ (V  x  n)> (6 ·2·4 )

favoring m olecular twist. The m agnitude o f potential h depends on the degree of
m olecular chirality. I t is easy to  see th a t Fn +  Fch is minimized with a director,

nc(x) =  (0, sin/cox, cos/cox), (6.2.5)

where ko =  h / K 2 because nc · (V  x nc) =  ko.

3 Cells with non-uniform  n

The m inim um  energy state o f the F rank  free energy is clearly one with a uniform 
n. B oundary conditions or external fields can, however, lead (as in the case o f the 
xy-model) to non-uniform  n. Consider the simple geom etry shown in Fig. 6.2.3a. 
The surface at z =  0 is prepared so th a t n is rigidly fixed to  lie along the x-axis, 
and the surface a t z =  L is fixed so th a t n m akes an angle θ0 relative to  the 
x-axis. Then n =  [cos0(z), sin0(z), 0], where Θ depends only on the coordinate z. 
The distortion induced by the boundary conditions is one o f twist. Thus

where A  is the area. This equation is easily solved for Θ for the boundary 
conditions o f Fig. 6.2.3a, yielding



6.2 0„ symmetry and nematic liquid crystals 301

L

L

(a) (b)
X

Fig. 6.2.3. Cell with boundary conditions leading (a) to twist and (b) to bend.

θ =  θο(Z/L) , Fn/ A  =  I K 2 L - le 20 . (6.2.7)

O ther boundary  conditions can lead to  distortions such as shown in Fig. 6.2.3b. 
(M ost o f the useful properties o f liquid crystals come from  the ability to fix the 
orientation o f the molecules at a boundary by surface treatm ent o f  the container 
walls.)

As discussed in Sec. 4.5, an external m agnetic field H (or an electric field E) can 
align molecules if the susceptibility (or dielectric constant) is anisotropic (χα φ  0 
or ea φ  0). In the presence o f H, the total free energy is

This equation implies the existence o f a magnetic coherence length ξπ  m easuring 
the distance over which n can vary in the presence o f an aligning field. I t is 
obtained by com paring the F rank  free energy with the aligning energy

where K  is one o f the elastic constants. χα is o f  order 10-7 c.g.s. so that 
ζΗ ~  [3 x 10-7 /(10 -7 x 108)]1/2 ~  2 μτα in a field o f  10 kG. The physical 
significance o f ξπ  becomes apparent in the simple example shown in Fig. 6.2.4. 
A  surface at z =  0 rigidly fixes n to  lie along the x-axis. A  field H  =  Hey tends to 
align n along the y-axis far from  the surface. Thus at z =  0, n =  ex, and for z large, 
n =  ey. This can be m ade m ore precise by minimizing Ft-  Since the distortion 
induced by the external field is one o f twist, we have n =  [cos0(z), sin0(z),O] and

F j

(6.2.8)

\ κ ξ -Η 2 =  \ χ αΗ 2 =* ξΗ =  [Κ/{χαΗ 2 ) γ ' 2 , (6.2.9)

/ A = ^ J d z  - X a H 2 sin2 0 (6.2.10)
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Fig. 6.2.4. The Frank director in the vicinity of an anchoring wall in the 
presence of an external magnetic field. The wall aligns the director along the 
z-direction, and the magnetic field is in the >>-direction. The director reaches 
alignment with the field at a distance of order the coherence length c_n from 
the wall.

M inim ization leads to the Euler-Lagrange equation 

This equation can easily be reduced to quadratures with

f» ( s )  = - s i - 2 9 +  C '

=  cos 2 6  +  C, (6.2.12)

where C =  C' — 1. The boundary conditions on Θ are θ =  π /2  and άθ/d z  =  0 
at z —► oo. Thus the constant C  is zero. Since Θ —*■ π /2  as z —*■ oo, we introduce 
β  =  π /2  — 0, which tends to  zero as z —► oo. Then, since β  decreases with 
increasing z, we choose the negative sign in the solution to Eq. (6.2.12):

4 ^  =  , In (tan /? /2 ) =
sin/? ξΗ K '  ξΗ
β(ζ)  =  2 tan -1 e~z^ H. (6.2.13)

This shows clearly tha t β  is o f the order o f its large z value o f  zero when z is a 
few times ξπ·

4 The Freedericksz transition

The com petition between the elastic and field terms o f  the free energy provides a 
m ethod o f m easuring the elastic constants. Consider a cell o f height L in which n 
is anchored at the top and bottom  surfaces so th a t the equilibrium configuration 
is one with a spatially uniform  director n. If  ξη L  (small field), the field
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Fig. 6.2.5. (a) Twist cell with H  < Hc with the director aligned parallel to the 
cell boundary, (b) Same cell as in (a) but with H  > Hc so that there is 
alignment of the director along H in the center of the cell, (c) A cell with 
molecules aligned perpendicular to the cell walls and with H  < Hc. (d) Same 
as (c) but with H > Hc

will be unable to  overcome the effect o f surface pinning and the equilibrium 
configuration will continue to  be uniform. O n the other hand, if ξπ  <  L, it is 
clear th a t n will align along H  in the center o f the cell, as shown in Fig. 6.2.5. We 
therefore expect that, a t a critical field determ ined by

=  c =  c o n s t.,

H CL  =  ( K / x a)l/2c =  co n st., (6.2.14)

there will be a transition, called the Freedericksz transition, from  a state with n 
spatially uniform  to one in which n begins to  align along the field, as shown in 
Fig. 6.2.5. N ote tha t Eq. (6.2.14) says that, for a given m aterial, the product H CL  
will be a constant. I f  an electric rather than  a m agnetic field were applied, there 
would be a critical voltage Vc =  ECL  independent o f L.

We can easily evaluate the constant c appearing in Eq. (6.2.14) when the 
external field induces a twist as shown in Fig. 6.2.5b. The equation determ ining 
Θ is still Eq. (6.2.12). The boundary conditions are, however, Θ =  0 a t z =  0 and 
z =  L, and dO/dz =  0 at z =  L /2 .  By symmetry, 6(L /2  — z) =  6(L /2  +  z). A t 
z =  L /2 , Θ reaches a value, θο, to be determined. Because άθ/d z  =  0 when θ =  θο 
a t z =  L /2 , the constant C  in Eq. (6.2.12) is — cos2 #o· The equation for θ(ζ) is 
thus
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M z )

JO

άθ
[cos2 θ(ζ) — COS2 0O]1/2 

θο is determ ined by setting z =  L /2  and 9 ( L /2) =  6 q in this equation. We now 
have two possible solutions to the original Euler-Lagrange equation [Eq. (6.2.11)]: 
either 6  =  0 and n is spatially uniform, or θ(ζ) satisfies Eq. (6.2.15) provided a 
nonzero solution for θο exists. For H  < H c, only the solution Θ = 0 exists. For 
H  > H c, the second solution exists with θ0 approaching zero as H  —*■ H c. To 
determ ine H c and  the dependence o f θ0 on H  for small H  — H c, we expand the 
cosine functions in Eq. (6.2.15) for small θ < θο and 0q. Then,

L
2 ^ /Jo

ίJo
π
2

άθ
[ 0 2 _ 0 2 _ ( f l 4 _ 0 4 ) / 3 ] l / 2

άθ
[02 _ 0 2 ]l/2  

1 +  +  0 (θ ο)

1  +  -^(θ20 +  θ2)

(6.2.16)

ForThus, a solution with nonzero θο exists for L / 2ξΗ >  π /2 , i.e„ ξΗ ) 1  =  π.
Η  < Hc, there is no response to  the applied field. For H  > Hc,

1/2

(.H - H c ). (6.2.17)θ 20 =
4L la_
n \ K 2/

We leave it as an exercise to  show th a t when the solution with nonzero θο exists, it 
has lower free energy than  the solution with Θ =  0. A  similar but m athem atically 
m ore challenging problem  is the cell shown in Fig. 6.2.5c and d where the surface 
alignm ent is director perpendicular to  the boundary and the applied field is 
parallel to  the boundary.

5 The twisted nematic display

Liquid crystal display devices are a practical and very widespread (over 500 
million display cells are sold every year) application o f the ideas ju st discussed. 
The simplest and m ost com m only used device in watches, com puter terminals, 
etc., is the twisted nem atic cell shown in Fig. 6.2.6. The top  and bottom  plates of 
the cell in the xy-plane are located at z =  0 and z =  L, with L o f  order 10 μτα. 
The surfaces are treated so th a t molecules at the top plate are twisted by an angle 
π /2  relative to  those at the bottom  plate. This corresponds exactly to the pure 
twist configuration discussed in Eqs. (6.2.6) and (6.2.7) with θ0 =  π /2 . A  norm al 
electric field (parallel to the z-axis) is created when the two plates are connected 
to  a voltage source. The molecules in the cell have positive dielectric anisotropy 
so th a t the electric field will tend to ro tate the director out o f the xy-plane. Just 
as in the example considered above, there will be a critical voltage above which 
the zero field twisted state becomes unstable to one with a z-com ponent o f the
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-polarizer

Fig. 6.2.6. The twisted nematic display device with top and bottom plates in 
the xy-plane and separated by a distance L ~  10 μηι. The cell is placed 
between crossed polarizers allowing transmission of light polarized parallel 
to the plane of the paper at the top plate and perpendicular to the plane of 
the paper at the bottom plate, (a) The cell is below the threshold voltage. 
The surfaces are treated so that the director undergoes a uniform rotation of 
π /2  from the bottom plate to the top plate so that light is transmitted, (b) 
Molecular orientation above threshold. The director in the center is parallel 
to the z-axis so that the unrotated light is blocked by the polarizers.

director. This voltage can be calculated in a m anner exactly analogous to  th a t o f 
the last example. It is

Vc =  2π3/2 K l + l- ( K 3 - K 2) +  ^ K 2
1/2

e~112. (6.2.18)

The m olecular arrangem ent for V > Vc is depicted in Fig. 6.2.6b. The instability 
o f the twisted state provides the switching m echanism  for the display device. For 
typical m aterials, ea is o f order 10, and Vc is o f order one volt. This is a low 
voltage th a t can easily be produced by long-lived batteries.

The optical properties o f this device are in fact quite com plicated because 
the dielectric constant o f the twisted nem atic is spatially inhom ogeneous. The 
qualitative explanation o f w hat happens is, however, clear. In the low voltage 
state, the pitch (4L) o f the twisted nem atic configuration is m uch greater than 
the wavelength o f visible light, and the direction o f polarization o f light in the 
cell will adiabatically follow the director. A  linear polarizer is placed above the 
top plate such th a t only light with electric polarization parallel (or perpendicular) 
to  the top  plate enters the cell. The polarization follows the director (even after 
reflection) inside the cell so tha t light im pinging on the top plate after a round 
trip  in the cell will have a direction o f polarization parallel to the axis o f the 
polarizer and will be able to  leave the cell. W hen the field is turned on, m ost of



306 6 Generalized elasticity

DO

Fig. 6.2.7. The _L- and ί-axes perpendicular to no- δη± is the component of 
(5n normal to no in the plane containing n0 and q. δη, is the component of (5n 
along the axis normal to no and q.

the molecules are norm al to  the plates and are unable to change the direction 
o f polarization, so light is blocked from  leaving the cell by the polarizer. Thus, 
when the voltage is off, the cell reflects am bient light and appears shiny; when 
the voltage is on, the cell “captures” light and appears dark.

6  Fluctuations and light scattering

In the absence o f external fields or boundary conditions, n(x) =  no is uniform  in 
the equilibrium  state. F luctuations in which n(x) =  no +  <5n(x) occur and have 
an energy determ ined by the F rank  free energy. To order (£n)2, the fluctuation 
energy is diagonalized by setting £n(q) =  [<5n±(q), (5n,(q)], where (5n lies in the 
plane perpendicular to n0, with δη±  its com ponent in the plane containing q and 
n0 and δη, its com ponent norm al to  th a t plane (Fig. 6.2.7).

In this coordinate system,

F =  ^ E ^  +  ^ i i i  +  z ^ l ^ q ) ! 2
q

+ J v  Σ ^ 2 +  +  X a H 2)\dnt(q)\2, (6.2.19)
q

where is the com ponent o f q along no and q± is the com ponent perpendicular 
to no. This implies

T V
(l<5n±(q)l ) = K n 2 + K {q l  +  XaH 2 '

T V
(l<H(q)l > = K i .  zj2' (6·2·20)K 3ql +  K 2q i  +  XaH2 

These fluctuations scatter light strongly and lead to  a high turbidity o f the nem atic 
phase. This can be seen by noting th a t the dielectric tensor has a p art proportional
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2 , (6-2.22)

to the nem atic order param eter Q,j: e,j =  e0£y +  eaQij· L ight scatters from  
fluctuations in etj,

I ( q ) ~ \ e ,i deij(q)eJ \2 , (6.2.21)

where ej and e j  are the electric polarization directions o f the incident and 
transm itted  light, respectively. The dom inant contributions to  Sey  come from  
fluctuations in the director, Sey  ~  eaS[no,Snj +  (/ <-*· j)]. Thus,

/ ( q) ~  (e1  ■ n0)2(|£n(q) · e r |2) +  (er  · n0)2(|£n(q) · eJ |2)

+ 2 (eI ■ no)(er  · no V  · (^n(q)^n(-q)) · e r  
T  

K q
where in the last form ula we have suppressed tensor indices. Scattering from  
a nem atic liquid crystal, as described by Eq. (6.2.22), should be com pared with 
the scattering from  an isotropic fluid. L ight scattering results from  fluctua
tions in the dielectric constant or the index o f refraction on the length scale 
o f the wavelength o f light ~  1 μτα. For isotropic fluids, these fluctuations 
arise only from  density changes or local compressions. Com pressional energy 
costs are similar in both  isotropic and anisotropic systems because compression 
does no t excite any soft m ode at low q associated with a broken symmetry. 
In liquid crystals, fluctuations in the dielectric constant are dom inated by the 
fluctuations in the orientation o f anisotropic molecules. The restoring force 
for long wavelength orientation changes goes to zero as q —*■ 0. Thus an 
orientational fluctuation o f  wavelength 1 μτα is therm ally excited m uch m ore 
readily than  a density fluctuation o f the same wavelength. In  an isotropic 
fluid, we can express I  in term s o f the unitless variable δρ/ρο,  where po 
is the average density. (Here we use p  ra ther than  n for the num ber den
sity to  avoid confusion with the director n.) We have from  Eq. (4.4.14) 
J(q) ~  p~2 Spp(q) =  ρ~2 Τ (δρ /δμ )[  1 + {q £ )2]~{. Except near the critical point, 
dp/ δ μ  ~  a~3 T ~ l, where a is the interparticle spacing. In  addition, for op ti
cal wavelengths, qξ < 1 except near the critical point. Thus the ratio  o f 
scattering intensity from  a typical nem atic to th a t o f a typical fluid is o f 
order

In  T m  / K q 2 1
7---- ~ -------- 3-----~  7— \2 · (6.2.23)Iiso a3 (qa) 2

W ith a ~  5 — 2θΑ and q =  2 π /λ ,  with λ  the wavelength o f light, this predicts tha t 
the scattering from  a nem atic is o f  order 103 to  106 times larger than  from  an 
isotropic fluid. N em atic liquid crystals are in fact very turbid, indicating a strong 
scattering o f light.

Scattering o f polarized light from  single crystal nematics provides one o f  the 
m ost precise ways o f m easuring the elastic constants. For example, in the 
geometry shown in Fig. 6.2.8, the scattering intensity is proportional to |^«((q)|2 
and provides a measure o f K 2 and K^.
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Fig. 6.2.8. A scattering geometry for measuring K 2 and K). The polarization 
of the incident light is parallel to the director n; the scattering vector q lies in 
the plane of the director and the incident beam; and the polarization of the 
scattered light is perpendicular to the n — q plane.

6.3 Smectic liquid crystals

Ideal smectic-/! liquid crystals have liquid-like correlations in two dimensions and 
a solid-like periodic m odulation o f the density along the th ird  direction. They 
can, therefore, be thought o f as stacks o f parallel planes separated by a distance 
d, as shown in Fig. 6.3.1a. In the idealized picture o f the smectic phase presented 
in C hapter 2, these planes represent the boundaries between successive layers of 
molecules, as shown in Fig. 6.3.1b. In the lam ellar phase o f microemulsions, they 
could represent the center o f bilayers separating layers o f either water o r oil, as 
shown in Figs. 2.7.14 and 2.7.16. M ore generally, the planes can be defined via 
the phase o f the mass-density wave. The m olecular density can be expanded in a 
Fourier series (see Sec. 2.7) with period d:

p{x) =  p 0 +  5 3 [ (ψ η)β,'",0'χ +  c.c.]
n

~  Po +  [(wi)e'qo'x +  c.c.], (6.3.1)

where qo =  (2n/d)no =  (2n/d)ez. As discussed in Chapter 2, the higher harm onics 
o f the density m odulation ((ψ„)) are no t experimentally visible in a wide class 
o f smectics. They are, however, visible in some lyotropic systems, (ψ ι) is 
the dom inant order param eter th a t distinguishes the smectic-/! phase from  the 
nem atic phase. I t is a complex num ber with an am plitude and a phase

(V i) =  \(Wi)\e'iqoU· (6.3.2)

The planes in Fig. 6.3.1a can be interpreted as the planes o f constant phase of 
the mass-density wave at wave num ber q0 :

φ =  q0 · x — qou =  2πη  , n =  0, +1, +2,., (6.3.3)
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Fig. 6.3.1. (a) Parallel planes of a layered structure, (b) Planes interpreted as 
separating successive planes of molecules.

W hen u is independent o f x, Eq. (6.3.3) defines the set o f uniformly spaced planes 
z — u =  nd perpendicular to  the z-axis. A  spatially uniform  increm ent o f u from  
zero to  u corresponds to  a uniform  translation  o f the coordinate system through 
—u. Alternatively, it corresponds to a uniform  translation, x® —► x® +  uez, o f all 
the molecules o f the smectic a distance u along the z-axis:

('Ψ») =  ~  / d ' x e - ^ E ^ x - x » ) )
^  a

=  -  5 > _i"q°'X”> -  (v»)e~inqoU· (6-3.4)
a

Thus, a uniform  translation by uez decreases the phase φ„ o f the order param eter 
(xpn) by nq0u:

φ „ = φ °η -  nq0u , (6.3.5)

where is the phase when u =  0. It is always possible to  choose the origin of 
the coordinate system so tha t (ψ ι) is real when u =  0. The phases φ® will in 
general no t be zero. They will, however, be fixed at some energetically preferred 
value in any equilibrium  state.

1 The elastic f r e e  energy

Since the free energy F  o f the system is invariant with respect to  uniform  
translations, one could argue, in analogy with the xy-model o f Sec. 6.1, tha t 
F  should be proportional to (V u)2 for long wavelength distortions o f u. The 
symmetry o f smectics is, however, m ore com plicated than  th a t o f the xy-model, 
and the above argum ent is no t totally correct. The layering o f the smectic breaks 
rotational as well as translational symmetry, and any spatial distortion o f u tha t
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(a) (b)

Fig. 6.3.2. (a) Bend distortion of the director leading to a large deviation of 
the layer spacing from its preferred value of d. (b) Splay distortion of the 
director at constant layer spacing.

corresponds to a rigid ro tation o f the layers m ust have zero energy. The simplest 
way to  discuss the ro tation o f the layers is to introduce the unit norm al to  the 
layers defined in Eq. (6.3.3) via the relation

N  =  ^  ~  (—Vxu, - V yu, 1) +  0 [(V u )2]. (6.3.6)

In  the smectic-/! phase, molecules align norm al to  the layers, and in equilibrium 
N  is identical to  the F rank  director n introduced in the previous section. The 
constrain t tha t n be norm al to the layers implies tha t twist and bend distortions 
o f n are energetically m ore costly com pared to  splay distortions because they 
cannot be produced at constant layer spacing, as shown in Fig. 6.3.2. For uniform 
layers norm al to the z-axis, n =  no =  ez. I f  the planes are ro tated  rigidly through 
an angle δΩ  about an axis in the xy-plane, n —► no +  δΩ  x  no =  (δηχ,δ η γ, 1). 
Thus from  Eq. (6.3.6), a uniform  ro tation  o f N  leads to a constant value for 
V ±u - (Vxu, Vyu, 0).

An alternative way to obtain this result is to  determ ine the function u(x) which 
will describe a uniform  ro tation  o f the planes through δΩ.  U nder such a rotation, 
qo -*· qi) =  qo +  δ Ω  x qo, and

p(x) =  p 0 +  J 2 [(wn)einq'°'x +  c.c.]
n

= Po +  Y^[{Wn)einqBXe - inq°uW +  c.c.]. (6.3.7)
n

Thus, if

qou =  (qo -  q'o) ’x =  ~ ( δΩ  x q0) ■ x , (6.3.8)
V ±u =  - q ό ι(δΩ  x q0) =  -<5n , (6.3.9)

then the original density is transform ed into tha t with ro tated  layers.
Since uniform  rotations do no t affect the free energy, there cannot be any 

(V xu)2 term  in Fei. The leading term  in Fe] involving only V ±  and u is therefore
(V2 u)2. Since V2 u =  —V ±  ■ δη =  V  ■ n, V ±  u is associated with splay distortions
o f the director. The elastic energy for a smectic is, therefore,
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Fig. 6.3.3. (a) Smectic with equilibrium layer spacing, (b) A translated 
smectic with the same energy as that in (a), (c) A rotated smectic with the 
same energy as that in (a), (d) A smectic with compressed layers with an 
energy greater than that in (a).

Fel =  ^  J <i3x[£(V„u)2 + X !(V iu )2]. (6.3.10)

This energy was derived independently in the 1930s by L. Landau and Peierls 
before either knew th a t a smectic existed. In general, there could be term s in Fei 
proportional to (V2u)(V2 u) or (V2u)2. They are negligible com pared to the (V |u)2 
term  and will be neglected in w hat follows. K i is the splay elastic constant o f 
the F rank  free energy. The radius o f  curvature o f  a bent layer (Fig. 6.3.2a) is 
R  =  (V2u)-1 . Thus, the splay term  (V2 u)2 is, apart from  term s involving (V2u)2 
tha t have been ignored, equal to  R~2. B  measures the energy cost associated with 
compressing or stretching the layers such th a t their average spacing is no longer 
the preferred value d (see Fig. 6.3.3).

The free energy in Eq. (6.3.10) can be generalized to  d dimensions by allowing 
V _ l  to  be a derivative in the (d — l)-dim ensional space perpendicular to  n o -  This 
generalization provides the correct description for a two-dimensional smectic.

Before examining the consequences o f Eq. (6.3.10), we will derive it in yet an
other way tha t treats the phase variable u and the F rank  director simultaneously.
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If  the layers and the molecules are rotated  rigidly together, there is no free energy 
cost. There will, however, be an energy cost if the molecules are rotated  away 
from  their preferred local orientation norm al to  the layers. Thus, there should 
be a term  in F  tha t is zero when N  =  n and when they are ro tated  together. To 
lowest order in deviations from  the uniform  layered state, an energy proportional 
to  (<5N — (5n)2 =  ('V_lu +  <5n)2 satisfies these requirements. The free energy for the 
smectic phase should, therefore, be

Fej is minimized when c>n =  —V ± u  and K i(V  · n)2 =  X i(V ^ u )2, and Eq. (6.3.11) 
reduces to  Eq. (6.3.10) when the (V2u)(V2 u) and (V2u)2 terms are ignored. This 
form  o f the smectic free energy shows tha t the expected (Vj_u)2 term  is absent 
because the director is able to  reduce the energy by aligning along N. D istortions 
o f  n th a t can be described by (5n =  —Vj_u are splay distortions. As can be seen in 
Fig. 6.3.2b, director splay distortions are equivalent to  layer bending and represent 
low-energy excitations from  an ideal layered state. I t is impossible, on the other 
hand, to create either twist or bend distortions while m aintaining constant layer 
spacing. These represent high energy excitations from  the ideal layered state 
and are said to be “expelled” by the smectic phase. The director in a twist or 
bend configuration is perpendicular to  V ± ,  and Eq. (6.3.11) predicts a volume 
energy cost o f D(6 n ) 2 for such configurations, in agreem ent with the geometric 
argum ent. There are two new lengths, λ 2 =  (K 2 / D ) 1 ^2 and A3 =  (K 3/Z))1' 2, 
describing respectively the penetration depths o f twist and bend into the smectic 
phase.

Both translational and rotational degrees o f freedom  appear in Eq. (6.3.11). 
The low-energy rotational distortions £n are determ ined completely by Vj_u. 
Thus, even though both  rotational and translational symmetry are broken in the 
smectic-/! phase, long-wavelength elastic distortions are described entirely by the 
translational elastic variable u.

We can now investigate the effects o f fluctuations in the phase variable u on 
the m agnitude o f  the smectic order param eters (ψ„) =  \{xpn)\eî iqanu. As in the 
xy-model, we can decouple the phase and am plitude fluctuations so th a tf

f  Strictly speaking, we should distinguish here between the phase of (ψη) and the fluctuating phase 
of ψ„, just as in the xy-model we distinguished between the angle Θ describing (s) and the angle 9

2 Fluctuations

(Ψη)  =  l ( v n) l ( e - iqoU) e ^

(6.3.12)

describing s.
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where
dq\\dd~ lq±

(u2(x)) =  J  -
(2n)d B q j + K i q i

f  dq^qj 2 dq± T  
d 1J  (2 n)d B q j + K i q {

___ K j- . iT  [ bU2a f ^ ' 2 y (l ~ 3]/2 dy±/ α λ/Μ A /\

dy\\ /  
■ b 1/2a  J o4 n B W K t m  J - b ' » *  Jo νϊ +  ή  ’

where K j  is the (/-dimensional solid angle divided by (2n)d introduced in 
Eq. (5.3.4). (u2(x)) is finite for 2 +  (d — 3 )/2  > 2 .  A t d =  3, however, (u2(x)), 
like (</>2(x)) for the xy-model in d =  2, becomes infinite because o f infrared 
singularities in the integral a t small argum ent. The lower critical dimension, dc, 
is three. This m eans tha t (ψ„) is zero and there is no long-range order in a three- 
dim ensional layered system at any finite tem perature. As in the two-dimensional 
xy-model, this implies power-law decay o f correlation functions (see Problem 6.9 
for m ore details): '

(ψ«(χ)ψή(°)> =  l(v«)l2e“ "2g(x) =  G„(x),

1 2/r / χ ,mi2\ 2-r f  d^  1 “  ^  *
g(x) =  ^ ο ( Μ χ ) - “ (°)]2) = voT  f ;(2π)3 B q \ + K

_ _ ^ 7 _  f ln x „ , if x± =  0;
8 π (Χ ιβ ) '/2 \ ln x j_ , if x« =  0.

Thus

where

G„(x) ~  |  " *  2 lfX ± ° ; (6.3.15)
\  |x± r 2" ''s  if x„ =  0,

*  =  ,6 ·3·16» 
The power law form  o f spatial correlations implies tha t the X-ray structure factor 
will have a power law rather than  a delta function singularity a t q =  qon:

I (q) ~  G„(q +  nq0) +  G„(q -  nq0)

C (a S ^  ~  i f  «II =  0;G ,(q -n q o )  ~  | 9_4+2Λ% .f 9 i _ 0 (6.3.17)

This behavior has been observed in both  therm otropic smectics (Als-Nielsen et al. 
1980) and in lyotropic lam ellar phases (Safinya et al. 1986). The X-ray scattering 
da ta  on lam ellar smectics are shown in Fig. 6.3.4. The elastic constants in the
lam ellar phases are entropy dom inated, and as a result t]C(T )  is independent o f
tem perature (see Sec. 10.5). N ote tha t G„(q||,0) is divergent for η2 ηα < 2 bu t only 
has a cusp singularity for η2 ηα > 2. Thus the m axim um  intensity o f quasi-Bragg 
peaks decreases rapidly with n, and, if ηα is large, enough, no t even the first peak 
will have a divergent m axim um  intensity. In  m ost therm otropic smectics, only
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(q -  G) (1000 A " 1)

Fig. 6.3.4. X-ray structure factors for SDS-pentanol-water lamellar smectic, 
(a) G(<7 n) =  I(q\\)/I(nq0) for n =  1 and n = 2. (b) G{q\\) for n =  1 for different 
concentrations x of water. [C.R. Safinya, D. Roux, G.S. Smith, S.K. Sinha, P. 
Dimon, N.A. Clark, and A.M. Belloq, Phys. Rev. Lett. 57, 2718 (1986); see 
also D. Roux and C.R. Safinya, J. Phys. (Paris) 49, 307 (1988).]

the first peak is clearly visible, at least partially as a result o f a small value for B  
and thus a large η. Lyotropic smectics are m ore incompressible, B  is larger, and 
m ore peaks are visible. Fig. 6.3.4a shows I(q)  for the peaks at q0 and 2q0 in a 
lyotropic smectic. The second peak has only a cusp singularity. In therm otropic 
systems, B, and thus ηα, can be strongly tem perature dependent, especially near 
the nematic-to-smectic-^4 transition.

3 Nonlinearities

The preceding analysis treated  Fei as a harm onic function o f u in which there are 
no terms o f  order (δ Ω ) 2 when the system is ro tated  through an angle (5Ω. F  should, 
however, rem ain unchanged under ro tations through an arbitrary  angle. Under 
ro tations through an angle Θ about the y-axis, qo goes to qo =  qo(cos 0ez—sin 6 ex). 
Then, from  Eq. (6.3.9),
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d+6d

(a) (b)

Fig. 6.3.5. Buckling instability of a smectic, (a) Equilibrium configuration 
and (b) stretched configuration showing undulations.

=  qo [(1 — cos0)z — sinflx],

V|| u =  Vzu =  l —COS0,

V_l u =  Vxu =  — sinfl. (6.3.18)

The com bination Vzu —(V u)2/ 2 is independent o f  Θ since 1—cosfl— [(1— cos0)2 +
sin2 0] /2  =  0. Thus, ro tational invariance o f F  through arbitrary angles can be
guaranteed by replacing Vzu by Vzu — (V u)2/2 :

Ί 2 Ί
Fe 1 =  X /  u X  < B V „ u -  i ( V u ) 2 +  X !(V iu )2 ^ . (6.3.19)

The non-linear term s in F  have im portant consequences. They lead, for example, 
to a buckling instability in a stretched smectic and to  fluctuations tha t renormalize 
(G rinstein and Pelcovits 1981) the elastic constants B  and K  i respectively to  zero 
and infinity in a three-dim ensional system. A  discussion o f the la tter effect is 
beyond the scope o f this course. The form er is easily understood by the following 
example. A  smectic is in equilibrium  between two glass plates, as shown in 
Fig. 6.3.5a. The top  plate is moved upw ard relative to  the bottom  plate, creating 
a positive Vju. If  Vju is large enough, the system can clearly reduce its energy by 
creating a non-zero Vj_u, i.e., by creating undulations o f the layers, as shown in 
Fig. 6.3.5b.

4 The  nematic-to-smectic-A  transition

As we have discussed in this chapter, and previously in C hapter 2, the order 
param eter distinguishing the smectic-/! phase from  the nem atic phase is the com 
plex mass density wave am plitude ψ ι =  ψ. Following the rules for constructing 
Landau free energies discussed in Chapters 3 and 5, one would naively expect 
th a t the appropriate continuum  free energy to  describe this transition could be 
constructed from  com binations such as \ip\2 or | V tp |2, invariant under changes in 
the phase o f ψ. It is im portant, however, to  rem em ber tha t ro tations o f the direc
tor cause the equilibrium  phase o f  ip to have a part, described by Eq. (6.3.9), equal 
to  — qo^n · x. Thus, the covariant derivative, ( V i  +  iqoSn)xp, ra ther than  V ±tp,
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is invariant under rigid ro tations o f  the whole system. The rotationally invari
an t Landau-G inzburg free energy (de Gennes 1972) for the nematic-to-smectic-Λ 
transition is, therefore,

F =  FV + F a (6.3.20)

with

Fy, =  I d  X r\xp\2 +  C|||V„v;|2 +  c± | (V ± +  iq0 dn)\p\2 +  ^g |tp |4

(6.3.21)

where Fn is the F rank  free energy for the director [Eq. (6.2.3)]. In mean-field 
theory, |ψ| =  (—r / u ) [/ 2  when r <  0, and this free energy reduces to  Eq. (6.3.11) 
with B  =  C[|qfoIvl2 and D =  c± qQ\xp\2. In the nem atic phase, the director is an 
elastic variable with power-law correlations. F luctuations in the director either 
cause the nem atic-to-sm ectic-Λ transition  to be first order or to  be in a universality 
class different from  th a t o f the x_y-model (H alperin et al. 1974).

6.4 Elasticity of solids: strain and elastic energy

As discussed in Sec. 2.5, atom s or molecules in a perfect three-dimensional 
solid occupy positions in the unit cells o f a periodic lattice, with lattice vectors 
Ri =  k&i +  l2 a2 +  where h, l2 and h  are integers and ai, a2 and a 3 are 
primitive translation vectors. The density (n(x)) is periodic in three directions with 
a Fourier expansion [Eq. (2.5.13)] with non-vanishing am plitudes at reciprocal 
lattice vectors G  =  mibi +  m2 b2 +  m3b3, where mu m2 and m3 are integers and 
bi, b2 and b3 are the primitive translation vectors o f the reciprocal lattice. A 
crystalline solid can be described either as a periodic array o f atom s or as a 
collection o f planes o f constant phase orthogonal to the vectors G.

1 The strain tensor  

The complex mass density am plitudes have an am plitude and a phase

(»g ) =  I(»g ) I ^ g· (6.4.1)

U niform  translations o f  the sample through u, i.e., x® —► x® +  u for every particle 
a, are described, as in the case o f smectics, by uniform  changes o f the phases:

0 g =  0G — G ■ u. (6.4.2)

Since the energy is invariant with respect to  uniform  translations o f  the sample, 
we expect an elastic energy proportional to  (V,u7)2. As in the case o f smectic 
liquid crystals, arb itrary  gradients o f u cannot appear because the energy is also 
invariant with respect to uniform  rigid rotations. The reciprocal lattice vectors 
transform  according to

G —► G ' =  G  +  δΩ  x G  (6.4.3)
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under an infinitesimal ro tation  through an angle δΩ. This means tha t u’s that 
satisfy

G  u =  ( G - G  ) x

~  —(δΩ  x G) ■ x (6.4.4)

correspond to  rigid rotations. Since Eq. (6.4.4) is valid for every G, it follows 
that, for rigid rotations,

^  =  (δΩ x  x)j =  eij^Q.jXk, (6.4.5)

where ε φ  is the Levi-Cevita symbol tha t is one if ijk  is an even perm utation of 
123, m inus one if ijk  is an odd perm utation o f 123, and zero otherwise. Thus, 
the ro tation  angle is proportional to the anti-symmetric part o f V;u7:

(5Ω* =  ^ e ijk(VtUj - V j U () . (6.4.6)

Since the free energy Fe] m ust be independent o f δΩ,  it m ust be independent o f 
the antisym m etric part ufj =  j(V;u7· — V/u;) o f the tensor V;u7·. In  o ther words, Fe] 
can depend only on the symmetric derivative

My =  ^(ViUj +  VjUi) . (6.4.7)

Uij is the linearized strain tensor. N on-linear contributions to the strain tensor 
will be discussed in Sec. 6.6.

Before considering the form  o f the elastic free energy, it is useful to investigate 
the types o f distortions th a t can be described by My. First consider the case of 
an isotropic infinitesimal volume change δ V. Positive δ V  corresponds to dilation, 
and negative δ V  corresponds to compression. In  either case, the relative change 
in the volume Ωο =  ai ■ (a2 x a.3) o f a primitive cell will be equal to  the relative 
change in the volume o f the crystal: όΩο/Ωο =  δ ν / ν .  Since this distortion is 
isotropic, the relative change o f  the m agnitude o f each primitive lattice vector will 
be the same and equal to e =  6 V /3 V ·  (We ignore for the m om ent vacancies and 
interstitials and assume th a t the num ber o f atom s per unit cell rem ains constant 
under strain.) Because primitive translation vectors o f the reciprocal lattice are 
defined via b; ■ a7 =  2 πδ^, the relative change in the m agnitude o f each b; will be 
—e for small e. Thus, under uniform  com pression or dilation, G  -» G ' =  (1 — e)G. 
Using the first line o f  Eq. (6.4.4), which is valid for every G, we can calculate the 
strain,

1 <^0 S V
“ ii =  3 e =  Ω ^  =  _Κ ’ (6A8)

associated with isotropic com pression or dilation. A  similar analysis shows that

Uxx =  (6.4.9)
^X

if there is a change in the length L x o f the sample along the x-direction. A 
shear distortion is produced by a displacem ent u with V  ■ u =  0 and V  x  u =  0, 
For example, the distortion
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/
(1.1)

(0

^  ( 1,0) (1 -1)

Fig. 6.4.1. The shear distortion of a square described by Eq. (6.4.10). This 
distortion is equivalent to a compression along the (1,— l)-axis and a dilation 
along the (1, l)-axis.

ux =  ey , uy =  ex , uxy =  uyx =  e (6.4.10)

sketched in Fig. 6.4.1 corresponds to a shear in the chosen coordinate system. 
Note, however, th a t this same distortion is equally well described by a dilation 
along the (1, l)-axis and a com pression along the (1 ,— l)-axis.

where / ei(uy) is the elastic free energy density. Because u,y is symmetric and / e] is 
invariant under interchange o f the pairs o f dum m y indices i j  and kl, the elastic 
constant tensor satisfies the symmetry relations

In addition, the entire free energy Fei m ust be invariant under the po in t group 
symmetries o f the crystal (e.g. ro tations through 90° about four-fold axes in 
cubic crystals, reflections about m irror planes, etc.). These symmetries restrict 
considerably the num ber o f  com ponents o f the tensor Κψι-  In  general, the 
num ber o f independent elastic constants increases as the po in t group symmetry 
o f the solid decreases: the m ost isotropic solids have the smallest num ber of 
elastic constants. The highest symmetry three-dim ensional crystalline solid has 
cubic symmetry and three independent elastic constants. The highest symmetry 
two-dim ensional crystalline solid has hexagonal symmetry and has only two 
independent elastic constants. In  two- and three-dim ensional crystals o f lower 
symmetry, there are m ore elastic constants. For example, a two-dimensional

2 The elastic f r e e  energy  

The elastic energy for a solid is quadratic in the symmetrized strains

(6.4.11)

K-ijki — K u i j  — Kjik i  — K ijIk — K ju k  ■ (6.4.12)
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Table 6.4.1. Number o f  elastic constants fo r  crystal systems.

Crystal system No. of elastic constants

Triclinic 21
Monoclinic 13
Orthorhombic 9
Tetragonal 6 or 7
Rhombohedral 6 or 7
Hexagonal 5
Cubic 3

Table 6.4.2. Elastic constants fo r  some common solids in units o f  1012 
dynes/cm2.

Material K n Kl2 K 44

Li 0.148 0.125 0.108
Cu 1.68 1.21 0.75
AI 1.07 0.61 0.28
Fe 2.34 1.36 1.18
NaCl 0.487 0.124 0.126

From N. W. Ashcrof and N. D. Mermin, Solid State Physics 
(Holt, Rinehart, and Winston, New York, 1976), p. 447.

crystal with four- ra ther than  six-fold symmetry, like a three-dim ensional crystal 
with cubic symmetry, has three elastic constants. The num ber o f independent 
elastic constants for three-dim ensional crystals is listed in Table 6.4.1.

The order o f m agnitude o f a typical elastic constant K  appearing in Κ φ ι  can 
be estim ated using dim ensional analysis. Since strain is unitless, K  has units o f 
energy/volum e. The energy scale is set by the binding energy per atom  o f the 
solid. As discussed in C hapter 1, this is typically o f the order o f a few electron 
volts (1.6 x 10-16 erg). The length scale is set by the interparticle spacing, which 
is typically o f the order o f a couple o f  angstroms. Thus we estimate K  to  be of 
order (1.6 χ  10-12/8  χ  10-24) ~  0.2 χ  1012 dynes/cm 2. Elastic constants for some 
com m on m aterials are listed in Tables 6.4.2 and 6.4.3.

3 Isotropic and cubic solids

Real m aterials are often com posed o f m any random ly oriented microcrystals. On 
length scales m uch larger than  the typical size o f a microcrystal, the m aterial is 
rotationally  isotropic. Alternatively, some “solids”, such as glasses, are m icro
scopically isotropic. In  these systems, as well as in two-dimensional hexagonal 
crystals, there are only two independent elastic constants in Κ ψ ι·  Physically, we 
can compress or shear the solid, and the responses are independent o f direction.
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Table 6.4.3. Elastic constants fo r  some common isotropic materials in 
units o f  dynes/cm2.

Material Shear modulus Bulk modulus

Tungsten carbide 2.2 χ 1012 3.2 χ 1012
Steel 0.83 χ 1012 1.5 χ 1012
Gold 0.28 χ 1012 1.7 χ 1012
Pyrex 0.25 χ 1012 0.4 χ 1012
Nylon 0.12 χ 1012 0.59 χ 1012
Rubber ~  107 0.03 χ 1012
Jello ~  104 0.02 χ 1012
Polystyrene foam 1.3 χ 108 2 χ 108
Shaving foam ~  103 ~  106
Ice 0.025 χ 1012 0.073 χ 1012
Water 0 0.02 χ 1012
Air 0 106 (1 atm)

Most values are taken from the AIP Handbook. Values 
for conventionally crystalline materials are for polycrystalline 
samples with small grains.

M athem atically, the only tensor available to construct higher order tensors in 
such systems is the Kronecker delta δη. The only two fourth  rank tensors formed 
from  the K ronecker delta satisfying the symmetry relations Eq. (6.4.12) are SijSjk 
and SjkSji +  δαδ^. Thus we have

K-ijki =  λδηδω +  μ(δikδjι +  0udjk), (6.4.13)

where λ  and μ  are called the Lame coefficients. From  Eq. (6.4.11), we obtain

Fe\ =  J  ddx [ lu 2i +  2^UyUiy (6.4.14)

for a ^-dim ensional isotropic solid or a two-dimensional hexagonal crystal. (The 
Einstein sum m ation convention is understood in this equation so tha t u?; =  unujj.) 
A n alternative representation o f Fe] is often m ore useful, namely u,-7- can be 
decom posed into a scalar and a symmetric traceless tensor,

U ij =  J δί/ Ukk +  ^ U i j  J  Ukk ■ (6.4.15)

The first term  measures volume changes, and the second measures distortions in 
which the volume does no t change (shear). W ith this decomposition,

2"
d x B^kk "Ί" 2μ  ( Uij ^δ ijUkk (6.4.16)

where Β =  λ  +  (2 μ /ά ) is the bulk modulus and μ  is the shear modulus. Therm ody
nam ic stability requires both  B  and μ  to be positive.

In three-dim ensional systems with cubic symmetry, the elastic free energy can 
be written as
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fcubic =  \  J d 3 x[K n (u2xx +  u2yy +  u2zz)

~ ^ ~ K \2 ( U x x U y y  U X X U ZZ M y y M ZZ)

+ 2 K u (u ly +  uxz +  uyz)]. (6.4.17)

Because the elastic tensor K ^ i  is invariant under interchanges o f i and j  and 
o f  k and I, there are only six independent com binations o f i j  and kl. These are 
denoted by 1 =  xx, 2 =  yy, 3 =  zz,  4 =  yz, 5 =  xz,  and 6 =  xy. In  a cubic crystal, 
K n =  K 22 =  Κ χ ,  K \2 =  K \3 =  K 2 3 , and K 4 4  =  X 55 =  K 66. All other com ponents 
o f  Kijki are zero. The free energy o f a cubic solid reduces to tha t o f an isotropic 
solid when K n  =  K 4 4 . Thus, a m easure o f the extent to which a cubic solid 
differs from  an isotropic solid is provided by the ratio  (K \2 — K u ) / K n ,  which 
varies from  about 0.05 to 0.4 for the m aterials listed in Table 6.4.2. The elastic 
energy for a two-dimensional crystal with the point group symmetry o f a square 
has the same form  as Eq. (6.4.17) with uzz =  uxz =  uyz =  0. Finally, the elastic 
free energy o f a uniaxial solid is

^ u n ia x ia l =  ~  J  d3 x[K n (u2xx +  u2yy) +  2 K u uxxuyy +  2 (K U - K u )u2xy

+ K 3 3 uzz +  K ^ { u 2z +  u2xz) +  2 K u (uxx +  uyy)uzz\. (6.4.18)

N ote th a t there is only one elastic constant, K u ,  tha t couples strains in the 
xy-plane to those along the z-axis.

4 Fluctuations

As in previous examples considered in this chapter, m acroscopic elasticity is 
intim ately related to  the fluctuations in the local value o f the phase vector u. 
Using Uij(q) =  (iqtUj +  iqjUi)/2 and the symmetry properties o f K -φ ,  we obtain

^  =  \ j  ( 0 * C* (q M q H iq )  (6-4-19)

for the elastic H am iltonian o f a crystal, where

Cft(q) =  Kjjuqjq, . (6.4.20)

For the d-dimensional isotropic and two-dimensional hexagonal solids, this be
comes

^  = \ f  (CrF P  + + m2uT ' "r] ’ (6A21)
where u; and ur  are the longitudinal and transverse parts o f u defined via

u,{q) =  q ■ u(q) , ur (q) =  u -  qu/(q) (6.4.22)

with q =  q/|q|. Therm odynam ic stability with respect to spatially non-uniform  
distortions requires th a t λ  +  2μ as well as μ  be positive. Note, however, that 
λ +  2μ =  Β +  2(d — \ )μ /ά  > B, with the strict inequality holding for all d > 1. 
Thus, if a system is stable against spatially uniform  volume changes with uy =  
(SV/dV)Sij,  it will also be stable against long wavelength longitudinal distortions.
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As usual, fluctuations in u,(q) are determ ined by the inverse elastic ten so r:

(q) =  ^ (u i(q )u /(-q ))

=  T C i71(q) ~  (6.4.23)

where the m atrix inverse is in the indices i and j.  In  isotropic solids, the 
u-correlation function has a simple form:

G“" ' (<|) =  ( X + W ® 4'·+  ~  m  <6-4 '24)
These equations imply tha t fluctuations in u reduce the intensities o f the Bragg 
peaks a t a reciprocal lattice vector G  according to

/(G )  ~  (nG)(n_G) ~  \{nG)\2 e - 2W (6.4.25)

with

W = ~ \ < ? f  i i J j .  (6.4.26)

As for the xy-model, the Debye-W aller factor e~'2W is nonzero for all d > 2 [see 
(Eq. 6.1.19)]. A t d =  2, W  becomes infinite, implying th a t long-range periodic 
crystalline order cannot exist in dimensions less than  or equal to  two. As in the 
xy-model, there is quasi-long-range periodic order in a two-dimensional “crystal” 
and only short-range order a t any finite tem perature in a one-dimensional crystal. 
The lower critical dim ension for a crystal is 2.

5 M ercury  chain salts -  one-dimensional crystals

It is interesting to treat the case o f an  ideal classical one-dimensional crystal 
exactly, especially since there is a physical system tha t closely approxim ates this 
system. M ercury can be intercalated, as shown in Fig. 6.4.2, into linear channels 
in A sF i, creating a com pound H g3̂ A sF 6 , where <5 ~  0.18 a t 300 K. In  each 
channel, there is a linear chain o f H g atom s th a t interact am ong themselves but 
interact only weakly with H g atom s in o ther channels. Transverse m otion in a 
channel is negligible so tha t only a single coordinate is needed to specify the 
position o f a given H g atom. Finally, the interaction between H g atom s and 
A sF i molecules along a channel does no t lead to a preferred position o f the Hg 
atom s relative to  the A sF i lattice. The interaction is especially weak because 
the finite value o f  δ m eans a non-integral num ber o f H g atom s per unit cell, a 
difference in periodicity between the H g atom s and the A sF6 lattice, and hence an 
incom m ensurate crystal (see Sec. 2.10). Thus, to a very good approxim ation, the 
H am iltonian for the H g atom s is an  independent sum o f channel H am iltonians, 

n2
j e  =  Y ^ -  +  U ,  (6.4.27)

"  2 m

where U is the interaction potential am ong atom s in a given chain. If  only nearest 
neighbor atom s interact,
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Fig. 6.4.2. Crystal structure of Hg3_.,5AsF6. The AsF6 molecules form a 
regular lattice with channels, into which are intercalated chains of mercury 
atoms. The chains lie parallel to two orthogonal directions in the lattice.

(6.4.28)

where U2 is a pair potential. A t low tem peratures, [/2 can be approxim ated by 
an harm onic potential,

where l0 is the preferred separation between atoms. In the continuum  limit, the 
harm onic approxim ation for U reduces to the elastic free energy o f Eq. (6.4.11).

The structure factor for the classical chain with nearest neighbor interactions 
can be calculated exactly as

and σ =  T / K .  These functions have strong Lorentzian-like (not delta-function) 
peaks in the vicinity o f the reciprocal lattice peaks a t q =  2 nn/lo  o f the ideal 
lattice with long range order. As discussed in Sec. 2.8, S(q) describes scattering 
on sheets in reciprocal space because the positions o f atom s in parallel chains are 
uncorrelated. To provide a complete description o f real H g chains, the effects o f 
bo th  further neighbor interactions and quantum  fluctuations m ust be included in 
S(q). These lead to a q-dependent prefactor and the addition o f a q-dependent 
background term  in Eq. (6.4.30). These additional factors vary slowly in the 
vicinity o f  each peak in S(q). Thus, a very good approxim ation for S(q) in

(6.4.29)

S(q)
1 - Z 2

1 +  2 Z 2 — 2 Z  cos qlo 
sinh[a2q2/2]

(harmonic) (6.4.30)
cosh[a2q2/2] — cos qlo

where

f d x e - ? u2(x)
(6.4.31)



324 6 Generalized elasticity

n

Fig. 6.4.3. Experimental structure factor at T  =  300 K for mercury chains in 
Hg3_.,5AsF4 compared to the theoretical predictions of Eq. (6.4.32) (solid 
curve). [R. Spal, C.F. Chen, T. Egami, P.F. Nigrey, and A.J. Heeger, Phys. 
Rev. B 21, 3110 (1980); R. Spal, thesis (University of Pennyslvania, 1980).]

the vicinity o f its nth peak th a t includes bo th  quantum  fluctuations and further 
neighbor interactions is

SfitOz) =  A n —  —  ------— - +  Bnq +  Cn. (6.4.32)
1 +  Z„2 -  2Z„ cos[(q -  Qn)l0]

Fig. (6.4.3) shows the experimentally determ ined S(q) (dots) com pared to  the
theoretical prediction (sm ooth curve) o f Eq. (6.4.32) with coefficients chosen for
each peak.

6  X e n o n  on graphite  -  a two-dimensional crystal

As discussed in Sec. 2.8, rare earth  atom s such as Xe adsorbed on graphite can 
form  solid phases whose lattice param eter is incom m ensurate with tha t o f the 
underlying graphite substrate. Because the two lattices are incom m ensurate, th  c 
is no preferred position (though there is a preferred orientation, see Problem  10.7) 
o f the Xe lattice relative to the graphite lattice, and fluctuations o f the graphite 
lattice can be described by an  elastic H am iltonian th a t is essentially independent 
o f the substrate. (We will reconsider this point in m ore detail in C hapter 10).

Since the Xe lattice is hexagonal, its elasticity is described by the two elastic 
constant H am iltonians o f Eqs. (6.4.14) and (6.4.21). Using Eq. (6.4.24), we can 
calculate

<[Mi(x) -  M,(0)][M;(x) -  M;(0)]) =  Si}~  ln(|x |A ) (6.4.33)
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and
^-iG-[u(x)-u(0)]^ ^  |X | ~ 1 G  > (6.4.34)

where

nc  = (6.4.35)

The X -ray structure factor will have power-law peaks a t the hexagonal lattice 
reciprocal lattice vectors G, which can be calculated using the Fourier expansion 
o f the density,

G

and treating the mass density am plitude | ( « g ) | exp(i^c) bu t no t u ( x )  as constant. 
The result is tha t

in the vicinity o f q =  G. Fig. 6.4.4 shows X -ray scattering data  for Xe on 
graphite for a range o f tem peratures from  100 K  to 160 K. The solid lines in 
these figures a t low tem peratures were obtained by the appropriate average of 
Eq. (6.4.37) over the different directions o f graphite planes in a polycrystalline 
sample convoluted with an  experim ental resolution function. The asym m etry of 
the observed structure factor is a result (W arren 1941) o f mosaic averaging in 
two-dim ensional crystals whose Bragg or quasi-Bragg peaks are actually rods in 
reciprocal space. A t higher tem peratures (above about 152 K), the solid lines are 
powder averaged Lorentzians describing correlations in the fluid ra ther than  the 
solid phase. These experiments perm it ηο to be determ ined in the solid phase 
and the correlation length ξ in the liquid phase. These functions are plotted in 
Fig. 6.4.5.

In  the analysis just presented, it was tacitly assumed th a t the num ber o f particles 
rem ained fixed and tha t the density changes are entirely fixed by the strain via 
Eq. (6.4.8):

δν Sn—  =  — — =  uu . (6.4.38)

This relation may be violated if the average mass in a unit cell changes under 
strain, as it can if there are empty sites (vacancies) in the ideal lattice or atom s 
occupying sites o ther than  ideal lattice sites (interstitials). Consider a periodic 
crystal whose ground state structure has one atom  per unit cell. Let N s be the 
num ber o f lattice sites and let N w be the num ber o f vacancies. The total num ber 
o f atom s in the solid is N  =  N s — N v, and the density n =  N / V  o f atom s is 
related to the volume Ωο =  V / N s o f the unit cell o f the lattice and the vacancy 
density nv =  N s/ V  via

(6.4.36)

S(q) ~  q -  G |-<2- " g> (6.4.37)

7 Vacancies and interstitials
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Fig. 6.4.4. Diffraction curves for Xe on graphite in the vicinity of the (1,0) 
reciprocal lattice vector at different temperatures, (a) 135 K, (b) 151.3 K, (c) 
151.9 K, (d) 151.95 K, (e) 151.15 K. The solid-to-liquid transition 
temperature is about 151.6 K. The circles are data points and the solid lines 
are theoretical fits. Curves (a) and (b) are power-law fits appropriate to the 
solid phase, and curves (c), (d) and (e) are Lorentzian fits appropriate to the 
liquid phase. Data were taken for many more temperatures than shown, and 
there is a very smooth evolution from solid-like to liquid-like diffraction 
patterns. [Adapted from P.A. Heiney, P.W. Stephens, R.J. Birgeneau, P.M. 
Horn, and D.E. Moncton, Phys. Rev. B 28, 6416 (1983).]

n =  Hq 1 — nv. (6.4.39)

Strain leads to changes in the volume o f the unit cell via u„· =  <5Ωο/Ωο [Eq. (6.4.8)] 
w ithout changing the num ber o f vacancies. Thus, changes in density are brought 
abou t by changes in both  strain and vacancy density :
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Fig. 6.4.5. (a) Inverse scattering lengths from Lorentzian fits to the structure 
function. Solid lines are fits to the dislocation mediated melting theory (see 
Chapter 9). Top and bottom panels are the same fits with different scales, (b) 
η = »/g=(i,o) for the solid phase of Xe on graphite. [P. A. Heiney, P. W. 
Stephens, R. J. Birgeneau, P. M. Horn, and D. E. Moncton, Phys. Rev. B 28, 
6416 (1983).]

Ωο δη =  —uu — Ωο <5nv. (6.4.40)

If  there are no vacancies, ηΩo =  1, and this equation reduces to Eq. (6.4.38). In 
m ore com plicated situations, in which there are m any atom s per unit cell, such 
as, for example, the plum ber’s nightm are cubic phase o f lyotropic liquid crystals 
(Fig. 2.7.15), it m ay be difficult to define a vacancy. Nevertheless, the average 
mass in a unit cell can change and lead to a breakdow n o f Eq. (6.4.38). In 
m ost crystalline solids a t low tem perature, the concentration o f vacancies is very 
low (tending exponentially to  zero with tem perature in equilibrium) and does 
no t change significantly in response to  strain, and then Eq. (6.4.38) is a very 
good approxim ation. Furtherm ore, vacancy diffusion is a very slow process (see 
C hapter 7), and it may take geological times for the vacancy density to relax 
to  its equilibrium  value in the presence o f strain. Thus, it is often the case that 
Eq. (6.4.38) is satisfied alm ost exactly over the lifetime o f a laboratory experiment.

The H elm holtz free energy density /  in a solid can be expressed as a function 
o f the average density n =  no +  δη  and the strain Uy. This free energy must, of 
course, transform  like a scalar under rotations. The lowest order scalar coupling 
density changes δη  to the strain is <5nu;„ which for linearized strain is <5nV ■ u.
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Thus, /  can be expanded about a reference density no as
1 ,

/(no  +  δη, uu) =  f 0 +  μ0<5η +  -  Α (δη /η0γ

+  ̂ K UkiuHuki +  DuHt f n / n o ) , (6.4.41)

where μ0 =  d f  /dn\n=no is the chemical potential a t density no and zero strain, 
A  is the inverse isotherm al compressibility a t constant strain, K"-kI is the elastic 
constant tensor a t constant density, and D is given by D =  η$δ2/ /d u u8 n\n=na. 
A t low tem peratures, vacancies and interstitials are suppressed, and <5(ηΩο) =  
<5(1 —ηνΩο) is small. I t is, therefore, useful to  express the free energy in Eq. (6.4.41) 
as a function o f ui}· and <5(ηΩο)/(ηοΩο) =  uu +  (δη/ηο) ra ther than  as a function 
o f  u^  and δη/ηο ■

f  =  fo  + μ ο δ η + ^ Α [ (δ η /η ο )  +  ^ , ] 2

+(D -  Α)ιιΗ[(δη/η0) +  u„] +  (6.4.42)

where

K iJU =  K?jkI +  ( A -  2 D tfi j 6 k, (6.4.43)

is the elastic constant tensor a t constant ηΩo- As the tem perature approaches 
zero, the constant strain inverse compressibility A  diverges as eu /T , where U is 
the energy o f an  interstitial or vacancy and D — A  and Kijki are non-divergent 
(see Problem  6.8). The com ponents o f the elastic constant tensor K tjki will be of 
the order o f the binding energy divided by (lattice spacing)'*.

8  Bond-angle order and rotational and translational elasticity

In our discussion o f the elasticity o f  smectic liquid crystals in Sec. 6.3, we 
considered a free energy describing bo th  layer translations and  director rotations 
[Eq. (6.3.11)]. The elastic free energy for a crystalline solid depends only on 
the translational elastic variable u and then only on its symmetrized spatial 
derivative. A  crystal also breaks rotational symmetry, and one should understand 
why rotational elastic variables do no t appear in its elastic free energy. A  free 
energy, analogous to  Eq. (6.3.11), involving bo th  rotational and translational 
variables, can be derived for a crystal. First imagine a bond-angle ordered state 
in which rotational symmetry is broken in two orthogonal directions. Such a state 
would be created, for example, by the developm ent o f  hexatic bond-angle order 
in the plane perpendicular to  the Frank director o f a nem atic liquid crystal. M ore 
generally, a bond-angle ordered state would be invariant under some set o f point 
group operations such as the symmetry operations o f  a cube or o f an  icosahedron. 
Bond-angle phases invariant under these operations would be called, respectively, 
“cubatics” or “icosahedratics”. Rotations o f  such bond-angle ordered states are 
described by an  angle variable δΩ  (for example <5n =  no x δΩ  in a nematic) with 
an  associated elastic free energy density
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/ ω  = (6.4.44)

A  crystalline solid has bo th  bond-angle and translational order. Translational 
invariance tells us tha t the free energy depends on VjU, and no t on u. R otational 
invariance tells us th a t there is no energy change if bo th  u and bond direction 
ro tate simultaneously. Since, under rotation, <5u, =  e^SQ jX k ,  the com bination 
ViU] — e ^ S Q k  does no t change under a uniform  rotation. Thus, the free energy 
o f a crystalline solid can be written as

M inim ization o f this energy over <5Ω yields <5Ω; =  ey/cV,Ufc(l +  0 (V 2)) and elim
inates the antisym m etric part o f V-,uj from  the free energy. Then Bijkl properly 
symmetrized is the elastic constant tensor K tjki. The energy f n  is proportional to 
(V2u)2 and  is subdom inant com pared with the leading elastic energy.

The free energy density in Eqs. (6.4.41) and (6.4.42) can be calculated using 
the density functional approaches outlined in Sec. 4.7. As discussed there, the 
H elm holtz free energy F  is a functional o f the spatially varying density n(x). In 
a solid, n(x) can be expanded in the Fourier series o f Eq. (4.7.1). The free energy 
density /  then becomes a function o f the average density n, the mass density 
am plitudes nc, and the size and shape o f the periodically repeated unit cell as 
m easured by the prim itive translation  vectors ba o f the reciprocal lattice. In 
equilibrium, a t chemical potential μ0, d f  /Bn =  μ0, d f  /d n G =  0 and d f / d b ai =  0, 
and n =  no, nc, =  nG and ba =  b°. Changes <5ba =  ba — b° are described by lattice 
strains as

as can be seen by differentiating the top part o f Eq. (6.4.4) with respect to  x,. /  can 
now be expanded about the equilibrium  state described above in powers o f VjUj, 
δη  and δ no =  nG — n°G. The invariance o f /  with respect to  rigid ro tations o f the 
vectors ba ensures th a t this expansion will depend only on the symmetric strain 
uij and tha t the leading coupling o f δη  to  the strain will be dnuti. Finally, there 
will be term s o f quadratic and higher order in δ no  and couplings o f δη0  to δη 
and Uij o f  the form n°_G0nGdn, n°_G0nGuu and GiGjn0_G0noUij. The linear coupling 
between dnG and δη  and uy imply th a t changes in the latter two quantities will 
lead to  changes in dnG. This means that, in general, the distribution o f mass 
inside a unit cell will change in response to bo th  changes in density and strain. 
The final free energy density o f Eq. (6.4.41) is the free energy as a function of 
δη  and uy, with 6 nG evaluated a t the equilibrium  or relaxed value o f 6 nG in the 
presence o f δη  and uy.

(6.4.45)

9 Elastic  constants  f r o m  density  fu n c t io n a l  theory

bbxi — byjW[Uj , (6.4.46)
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R + dR

R

Fig. 6.5.1. An undistorted (at left) and a distorted (at right) elastic medium 
showing the initial points R and R +  dR and their images x(R) and 
x(R +  dR) after distortion.

6.5 Lagrangian elasticity

The theory o f elasticity is quite old. I t was essentially fully developed by the 
m iddle o f  the nineteenth century, before there was any definite concept of the 
periodic nature o f ideal solids. The theory views a solid as a continuum  o f mass 
points th a t can be distorted in response to  external stress bu t tha t will return  to 
its initial at-rest configuration when stresses are removed. Each mass po in t in an 
elastic body can be indexed in its unstressed configuration by its position R with 
respect to a coordinate fixed in space, as shown in Fig. 6.5.1. U nder stress, the 
body will distort like a piece o f  rubber, and the mass point th a t was initially a t 
R will be a t a new position,

x(R) =  R +  u(R), (6.5.1)

relative to the fixed coordinate system. N ote here the double m eaning assigned 
to  R : it is bo th  an initial position and a label for a mass po in t tha t does not 
lose its identity under distortion. To be m ore precise, we could have introduced a 
continuous param eter such as time t and specified the position x(R, t) o f the mass 
po in t R as a function o f t with an  initial condition th a t x(R, 0) =  R. The initial 
and  final positions o f two mass points R  and R +  rfR are shown in Fig. 6.5.1.

1  Classical theory o f  elasticity

A n elastic energy is introduced by arguing th a t the ideal separation between 
nearby points is the distance dR =  (rfR · d R ) 1 / 2  o f the rest state. Their separation 
dx =  (dx ■ d x ) 1 / 2  in the distorted state with dx  =  x(R  +  dR) — x(R) will differ 
from  dR  and lead to  an  increase in energy just as stretching or compressing a
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H ooke’s law spring will lead to  an increase in its energy. Therefore, the energy of 
the distorted body should depend on the param eters appearing in (dx ) 2 — (dR)2. 
We now have a choice as to which variables to  choose as the fundam ental ones. 
We can either choose to  express everything in term s o f the mass point index R or 
in term s o f the position o f x in the fixed coordinate system. Because the identity 
of the m ass points does no t change, the relation between x and R in Eq. (6.5.1) 
is unique and  invertible, and either representation is acceptable. The first choice, 
called Lagrangian coordinates, yields

the Lagrangian strain tensor. (This is the tensor with a positive sign for the 
non-linear term  th a t appears in m any text books on elasticity including Landau 
and Lifshitz (1970).) The second choice, called Eulerian coordinates, yields

the Eulerian strain tensor.
The harm onic elastic energy [Eq. (6.4.11)] has the same form when expressed 

either as a function o f the Lagrangian or as a function o f the Eulerian strain. The 
integral appearing in Eq. (6.4.11) is over the mass po in t index R (or equivalently 
over the volume o f the undistorted body) in Lagrangian coordinates and over 
the space occupied by the distorted body in Eulerian coordinates. In  com paring 
the free energies in the two pictures in detail, it is im portant to  rem em ber that 
the relation between the volume elements ddR  and ddx  involves the strain via the 
Jacobian o f the transform ations in Eqs. (6.5.2) and (6.5.4).

Thus, the elastic energy o f the classical Lagrangian theory and tha t presented in 
the preceding section are the same. It rem ains to establish the connection between 
the two definitions o f strain. I f  the positions R of the sites in the unstrained body 
form  an ideal periodic lattice, they satisfy

where m is an  integer. In  the strained lattice, when u is nonzero, the positions x 
o f the lattice sites satisfy

dxt =  dR, +  l ± d R j (6.5.2)

and

(dx ) 2 -  (dR ) 2 =  lu f jdR .dR j, (6.5.3)

with

(6.5.4)

(6.5.5)

and

(dx ) 2 — (dR ) 2 =  2ufjdx\dxj , (6.5.6)

with

(6.5.7)

G x  =  G R  =  2 nm, (6.5.8)
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This equation defines planes o f constant phase in the distorted lattice. Thus,

R =  x —u(x) (6.5.10)

determ ines the positions o f the atom s th a t were a t R  prior to distortion. This 
equation is identical to  Eq. (6.5.5). Note, however, th a t the natural variables 
are the positions x o f the atom s and no t the indexes R. The coordinates of 
the previous sections are, therefore, the Eulerian coordinates. This explains the 
m inus sign in the non-linear strain field for smectic liquid crystals introduced 
in Eq. (6.3.19). Similarly, the non-linear strain field tha t would guarantee total 
rotational invariance o f the solid elastic energy is the Lagrangian strain of 
Eq. (6.5.4).

Having established tha t the classical theory o f elasticity and th a t presented here 
are formally identical, it is necessary to emphasize the totally different philosophies 
used in their respective derivations. The elasticity discussed in Sec. 6.4.1 required 
the existence o f  mass density waves tha t break the translational symmetry of 
space. It applies whenever there is an equilibrium  periodic mass density wave, 
even if there is substantial mass rearrangem ent under strain. The displacement 
variables u and associated strains uy are the generalizations o f the angle variable 
Θ and its gradient V 0 describing the broken rotational symmetry o f the xy-model. 
The classical theory, on the other hand, applies to  any m edium  for which there is 
a unique invertible m ap between mass points in stretched and initial unstretched 
configurations. It views the solid as a continuum  limit o f masses connected by 
fixed springs th a t do no t break under stretching. It therefore provides a correct 
description for materials, like rubber, which are m ade up o f random ly crosslinked 
polymers th a t do no t break under stress. It also provides a good description for 
glasses over time scales short com pared to the often very long times required for 
atom s to rearrange into new low-energy configurations th a t do no t reduce to  the 
initial configuration after removal o f external forces.

G  · (x — u(x)) =  2nm  . (6.5.9)

2 Elastic ity  o f  classical harmonic lattices

As we have discussed m any times, the equilibrium  state o f any system is one which 
minimizes the free energy. In classical systems a t zero tem perature, minimizing 
the free energy is equivalent to minimizing the potential energy. Let U(X i) be the 
potential energy o f a collection o f atom s with positions Xj. This potential can be 
expanded in deviations ui =  Xi — Ri from  a set o f reference sites Ri according to

where dU/ dRy  ξ  dU/duy |o. If  the positions Ri correspond to  equilibrium 
positions, the term  linear in ui in this expression is zero, and to  harm onic order 
we have
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lylyVJi
(6.5.12)

where

(6.5.13)

C<fc(Ri — Rp) obeys certain symmetry relations. Because it is defined as the second 
derivative o f a potential,

If  the equilibrium  lattice is a Bravais lattice with one atom  per unit cell, then

because every Bravais lattice has a center o f inversion. W hen there is m ore than 
one atom  per unit cell, the position vectors Ri and the above relation have to 
be modified to include the additional atoms. The invariance o f the potential 
energy with respect to  uniform  translations and  rotations o f all particles leads to 
additional constraints on C ^ (R i). U does no t change if all particles are displaced 
by u, and

where N  is the num ber o f particles. Since this relation applies for any u,

for every ik, and Qk(q =  0) =  0. This relation allows the harm onic potential 
energy to be rew ritten as

In the continuum  limit, this reduces to  the elastic energy o f Eq. (6.4.11), with

where we used the fact tha t Eq. (6.5.18) m ust be invariant under uniform  rotations 
to  produce the correct symmetrized form for Xy/y·

The harm onic free potential can also be expressed in Fourier transform  vari
ables :

This is identical to  Eq. (6.4.19), except tha t now the integral is over the first 
Brillouin zone, and deviations from  q 2 behavior away from  q =  0 are perm itted.

C«(Ri — Rp) = Qi(Rp — Ri)· (6.5.14)

C*(R,) =  Ctt( -R i)  =  Ch (Ri) (6.5.15)

U(R, +  u) -  U(R,) = Cik(*\)Wk =  0, (6.5.16)

(6.5.17)

(6.5.18)

K i j k l  =  +  R \ , j R \ j C j k ( R \ )

+RijRiji C j/(R |) +  RijRi^Cj^Ri)], (6.5.19)

(6.5.20)
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In  this section, we will discuss forces and the stress tensor in elastically deformable 
solids. We will first consider the stress tensor using the classical Lagrangian 
description. We will then consider regular periodic crystals in the Eulerian picture 
when density as well as size and  shape o f the unit cell can change.

A s we have seen, the variable u describes displacements o f mass points. Thus, 
the field therm odynam ically conjugate to  u is a force. To understand the change 
in energy resulting from  such a force, we need to  be able to  describe forces in 
the interior o f a solid medium. Recall that, in the Lagrangian picture, all mass 
points are indexed by their position R in an  undistorted reference configuration. 
M ass points interior to some volume element Ω enclosed by a surface δΩ  in 
the undistorted solid are m apped when the solid is distorted to  new positions 
x(R) interior to a distorted volume element Ω' enclosed by a surface δΩ'. The 
local connectivity o f neighboring volume elements does no t change under the 
distortion. A ny force F  exerted on mass points in a volume element Ω can be 
expressed as an  integral over Ω o f a force density f :

f  is the force per unit volume o f the undistorted solid and no t per unit volume 
o f the solid after distortion. It differs from  the force per unit volume in space by 
the ratio  (1 +u,·,·) of the distorted to  undistorted volume elements.

As we saw in C hapter 2, forces between atom s or molecules generally have a 
finite microscopic range. Even in metals with mobile charges, the Coulom b force 
is short range because o f screening. Thus, in the absence o f m acroscopic electric 
or m agnetic fields, it is safe to assume th a t interactions between mass points in 
a solid are short range. This means th a t the force F  on the volume element 
Ω can only be transm itted to  it by nearby mass points, i.e., F  is an  internal 
force transm itted to a volume element Ω through the surface δΩ  by mass in 
surrounding volume elements. This implies tha t f  can be expressed as a gradient 
(V; =  δ /dRi)  with respect to  the undistorted positions o f a stress tensor σ;;·:

The volume integral in Eq. (6.6.1) can then be transform ed into an  integral over 
the surface δΩ, and the ith com ponent o f F  becomes

G[j is the stress tensor. I t is the force per unit area o f the undistorted solid in 
direction i exerted by the surrounding m edium  on a volume element across its

1 The Lagrangian  stress tensor

(6.6.1)

f ·  =  Vj°ij ■ (6.6.2)

(6.6.3)



6.6 Elasticity o f  solids: the stress tensor 335

surface oriented in direction j .  I f  the surrounding m edium  exerts a force along 
the outw ard (inward) surface norm al, ση is positive (negative).

The torque τ on a volume element, like the force, m ust be transm itted across 
its surfaces. This requires σ,-j to  be symmetric under interchange o f i and j .  To 
see this, consider the torque on a volume element th a t has been only slightly 
distorted so tha t the actual position x(R) can be replaced by the position R in 
the reference state. Then,

τ,· =  [  d3 R (R x f)j =  [  d3 R(eijkR jV ,akl)
Ja Jn

=  - J  d3 R[eiJkakj ] + J  dS,ejjkR jak,. (6.6.4)

The volume term  is zero only if  ση  is symmetric. The surface term  giving the 
torque transm itted across the boundary by neighboring volume elements can be 
nonzero for symmetric ay.

In equilibrium, the internal force on each volume element m ust be zero. Thus, 
if  there are no volume external forces such as gravity, ν ;·σ,;· m ust be zero, and 
the stress tensor m ust be constant th roughout the body. Furtherm ore, the stress 
tensor m ust be continuous across any external surface o f the solid. Thus, a solid 
in equilibrium  surrounded by an  isotropic fluid a t pressure p will experience an 
isotropic inw ard force per unit area — p, and its stress tensor,

ση =  - ρ δ  i}, (6.6.5)

is negative and isotropic like tha t o f  a fluid. O n the o ther hand, if a bar 
is subjected to  a positive tension with a force per unit area T  exerted across 
opposite surfaces norm al to the z-axis, as shown in Fig. 6.6.1, then

σζζ =  T  (6.6.6)

is positive and all o ther com ponents o f ay  are zero. If  the solid were subjected 
to a com pression —T  along the z-axis, σζζ = —T  would be negative.

W hen there are external volume forces such as gravity, the to tal force on a 
volume element m ust still be zero in mechanical equilibrium. In this case, the 
forces arising from  internal stresses m ust balance the external forces. N ear the 
surface o f the earth, the force per unit volume exerted by gravity on a volume 
element with mass density p is pg, where g is the acceleration o f gravity. The 
equation o f m echanical equilibrium  is thus

V/ffy =  pgi. (6.6.7)

This equation, o f course, applies equally well to an  isotropic fluid where the stress 
tensor is simply —p<5y.

The force density f  measures the internal force exerted on a volume element by 
neighboring volume elements. The woik done by this internal force in displacing 
volume elements by <5u(x) is
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(a) P ressure
<Tfj = pf>ij

pdA

dS =  dAe,

(c) Tension

<*ij =  T6iv6jv

fy  =  -T d A
f y  —  TdA

Fig. 6.6.1. The force exerted on a volume element by its surrounding medium 
is F. The force exerted across an infinitesimal surface element dS is 
f i  = aijdSj. ft  and ση are positive for a force exerted along the outer normal 
to the surface, (a) A solid element under isotropic pressure. Forces on all 
faces are inward, (b) A solid element under shear. Tangential forces on the 
top and bottom faces are in opposite directions, (c) A solid element under 
tension. Normal forces on right and left faces are in opposite directions.
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5 W  =  J d 3R f  ■ <5u =  J d3 RWj aijSui

=  - J  d3 R a ijSuij, (6.6.8)

where we used the fact th a t σί;· is symmetric to  replace V*duj by <5uy. Surface 
term s arising from  the integration by parts have been eliminated by choosing the 
outer surface to  be outside m atter where u is no t defined. The change in free 
energy brought abou t by changes in the strain field is the negative o f the work 
done by internal forces:

dF =  - S d T  - S W  =  - S d T  +  J d 3 R a ijdui]. (6.6.9)

The stress tensor is, therefore, the derivative o f F  with respect to uy a t constant 
tem pera tu re :

(66l0)
where f L is the Lagrangian elastic free energy density.

2 Stress-strain relations

Eq. (6.6.10) provides a relation between the stress and strain in a solid. In isotropic 
three-dim ensional solids, F L is given by Eq. (6.4.16) (with d =  3), and

a i} =  B Suukk +  2μ ( u u -  ~Suukk^  , (6.6.11)

which is easily inverted to  give the strain in term s o f the stress. Trivially,

akk =  3 Bukk, (6.6.12)

from  which we obtain

My =  ^kk(\ j  “I- 2 μ ^ (\ j ^ kk^ ■ (6.6.13)

We can now calculate the strain produced by specified stresses in some simple 
geometries (see Fig. 6.6.1). I f  a solid is subjected to isotropic pressure, then

Mii =  V ·  u =  - |  =  ^ .  (6.6.14)
Β 3B

If  it is subjected to a uniaxial tension T ,  then

“■■ = 5 G W ) T'·
U x x  =  U yy  =  - -  ( —  -  —  ) T.  (6.6.15)

1 /  J _______ 1_

3 \ 2 μ  3B ,
N ote th a t the change in length along the direction o f tension always has the 
same sign as T.  The length in the perpendicular direction may, however, increase 
or decrease depending on the sign o f (2μ)_1 — (3B)~K In any case, the relative 
volume change is V  · u =  Τ /3 B. The dilation along z determines the Young’s 
modulus Y :
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Fig. 6.6.2. The distortion of a small volume element by <5r(x) used in the 
derivation of the Eulerian stress tensor.

T
y  ’TT, y  =

9 Β μ
3 B  -(- μ

and the strain along the norm al direction determ ines Poisson’s ratio  σ:
1 ( 3 Β - 2 μ )

«νν =  — au 7 σ

16.6.161

(6.6.17)
2 (3Β +  μ)

I f  a rod o f m aterial is strained along the z-axis, one expects tha t there will 
be a contraction in the orthogonal direction so th a t the Poisson ratio  should 
be positive. N orm ally this is the case. There is, however, no therm odynam ic 
constraint on the sign o f σ. Stability o f the solid phase requires only B > 0 and 
μ > 0, or 3B  — 2μ > —2μ. I t is, in fact, possible to m ake m aterials with negative 
σ. In  Sec. 10.4, we will investigate two-dimensional polymerized m em branes tha t 
have a negative Poisson ratio. Three-dim ensional m aterials with σ <  0 also exist.

Young’s m odulus and Poisson’s ra tio  can easily be calculated for isotropic 
solids in d dimensions. O f particular interest are their values,

4 Β μ  Β  — μ
Yi = σ 2 (6.6.18)

Β +  μ ’ Β +  μ ’
in two dimensions. We will have occasion to  use these quantities in our discussion 
o f dislocations and dislocation m ediated melting in Chapter 9.

3 The Eulerian stress tensor

In  the Eulerian picture, one considers volumes in real space occupied by m atter 
as opposed to  volumes in a reference material. The force F  on a volume element 
Ωο in space is the integral o f a force per unit volume f :

■ - /Jo»
d3x  f. (6.6.19)

/Ω ο

Again, the interparticle forces are short range, and F  can be expressed as the 
gradient o f a stress tensor. Thus,
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Jsao
(6.6.20)

where the integral is over the surface <3Ωο in the space o f the volume element Ωο· 
To calculate the work done by internal stresses in the Eulerian picture, we imagine 
displacing the boundary  <3Ωο of a small volume element by <5r(x) as shown, in 
Fig. 6.6.2. The work done in this displacem ent is the force exerted across each 
surface element times the displacem ent o f th a t element:

where it is understood th a t x  is on the surface <3Ωο· We can also calculate the 
change in free energy brought about by the displacements <5r(x). In a small 
volume element, we can assume th a t each poin t x  in Ωο undergoes a displacement 
to a new position x  +  <5r(x), so th a t the surface displacem ent is <5r(x) when x  
is on a surface. We require th a t the to tal num ber o f particles in each volume 
element rem ains fixed under these deform ations. The volume element and the 
density then change according to

In  addition, the distance between particles and planes o f constant phase changes 
by <5r(x), implying th a t uy changes according to

where /  is the free energy per unit volume o f space. Com paring Eqs. (6.6.24) and 
(6.6.21), we obtain

Though it is no t immediately apparent, this stress tensor reduces to  the L a
grangian tensor o f Eq. (6.6.10) when vacancies and interstitials are prohibited 
and δ η /η  =  —uu. The Lagrangian energy density f L and the Eulerian den
sity /  differ by a factor o f the ratio  o f the stretched to  unstretched volume 
elements. If  non-linear contributions are ignored, we need no t distinguish be
tween Eulerian and Lagrangian strain and f L =  (1 +  «,·,·)/. Then, to  lowest 
order in the strain, B fL/Bu^ =  fS ij  +  d f/du jj .  Furtherm ore, d f / dui])s„=-„Uii =

(6.6.21)

d3x  —► [1 +  V  · <5r(x)]i/3x  

n —► [1χ+  V  · <5r(x)]- 1 n ~  [1 — V  · <5r(x)]n. (6.6.22)

(6.6.23)

Thus, the change in free energy o f the volume element Ωο is 

SFn0 (6.6.24)

[  [ ν · ^ Γ ( χ ) /  +  Κ ( - η ν · ^ Γ ( χ ) )  +  ^ - ν ^ ·  d3x

(6.6.25)
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d f  /dutj)n — n d f  /dn)UjJSij. This establishes the connection between the Eulerian 
and Lagrangian stress tensors to  lowest order in the strain. They can be shown 
to be equivalent in general.

The first term  in Eq. (6.6.25) is identical to  the form ula [Eq. (3.1.38)] for the 
pressure o f an isotropic fluid. The second term  is the field fry therm odynam ically 
conjugate to  the strain and is no t present in isotropic fluids. In equilibrium,

Ά  -  *

s ) .  =  *
/  U j j

Thus, the stress tensor can change a t constant tem perature in response to  changes 
in bo th  μ  and hy. The two fields are physically different, hy couples to  the
separation between layers in a periodic solid, whereas μ  couples to  changes in
the density. In  norm al situations, the equilibrium  state o f a solid is established 
in the absence o f forces favoring a particular layer spacing. In  this case, fry is 
zero. The equilibrium  stress tensor in the solid is then simply —p<5y, where p 
is the pressure o f its surrounding medium  (e.g. a coexisting liquid or gas phase). 
Changes in a tj are brought about by changes in tem perature, chemical potential, 
and hij'.

Saij =  —(sdT  +  ηάμ)δy +  dhtj . (6.6.27)

This is a generalization to  solids o f Eq. (3.1.40) for fluids. N ote both  Eqs. (6.6.27) 
and (6.6.25) imply tha t isotropic contributions to  σ,;· arise from changes in Τ ,  μ 
and the isotropic p art o f fry, bu t tha t anisotropic contributions to ay  arise only 
from  hij

Eqs. (6.6.26) and (6.4.41) imply th a t δμ  and dhij induce changes in density and 
strain via

c
Kjijkiuki +  =  bhtj,

+  — uu =  δμ . (6.6.28)
«ο no

The relation between stress and strain and density a t constant tem perature is 
thus

δσ,} =  [(D - Α ) ( δ η / η 0) -  Duu]0tj +  K?]klukl

=  ( D -  Α)[(δη/ηο) +  ui;] +  K iJklukl, (6.6.29)

where K fjki is the elastic constant tensor a t constant ηΩo introduced in Eq. (6.4.43). 
In some situations, either hy or δμ  is zero. For example, if  a piece o f iron is 
ben t or stretched in air, there is essentially no change in chemical potential, and 
Α(δη/ηο) =  —Dun. The stress-strain relation then becomes 

δσα =  [K?jkl -  (D2 / A ) 6 ij6 kl\uki

=  K>]klUu, (6.6.30)
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where Kfjkl =  K"jkl—(D2/A)SijSki is the elastic constant tensor a t constant chemical 
potential. Alternatively, one m ight increase the chemical potential w ithout altering 
hjj by increasing the pressure in a fluid surrounding and  coexisting with the 
solid. In  this case, in an  isotropic solid with K"jkl o f  the form  o f Eq. (6.4.13), 
B nuu =  —D(dn/no), and

S d j  =  [ A -  (D2/ B n)\(dn/n0)Sij =  B hukk0ih (6.6.31)

where B n and  B h are, respectively, the bulk m odulus a t constant density and 
constant field h. This relation is som ewhat m ore com plicated for anisotropic 
solids. The inverse compressibility A  is nonzero in the fluid as well as the 
solid phase, whereas bo th  D and B n are zero in the fluid. The constant field 
bulk m odulus B h approaches the liquid inverse compressibility as the solid-liquid 
transition  is approached. Finally, we recall that, in crystalline solids, A  and  D 
diverge exponentially, whereas D — A  approaches a constant as T  —► 0. In this 
case, K?jU =  Κ ψ ι  -  [(A -  2D) -  D1/A ]8 iJ8kl [Eq. (6.6.30)] and K i)kl [Eq. (6.4.43)] 
approaches well-defined values as T  —► 0.

6.7 The nonlinear sigma model

In Sec. 6.3, we noted tha t the elastic free energies o f  the xy-  and n-vector models 
differ in tha t the latter is necessarily anharm onic whereas the form er is not. In 
this section, we will show how these anharm onicities lead to  a renorm alization 
o f  the spin wave stiffness and ultim ately to its disappearance altogether at any 
nonzero tem perature in two dimensions (M igdal 1975; Polykov 1975; Brezin 
and Z inn-Justin 1976; N elson and Pelcovits 1977). Thus, there is no phase 
with quasi-long-range order in a two-dim ensional n-vector model with n >  2 . 
There is, however, long-range order at exactly zero tem perature, and, as we shall 
see, the correlation length and susceptibility, like those o f  the one-dimensional 
Ising model, diverge as e x p ( l /T )  as T  —> 0. O ur approach will be to  derive 
m om entum  shell renorm alization group recursion relations along the lines used 
in our treatm ent o f  the e-expansion in C hapter 5.

Before undertaking a form al derivation and analysis o f  recursion relations, it 
is useful to  consider why anharm onicities renormalize the spin-wave stiffness. 
The spin-wave stiffness is determ ined by the change in free energy in response 
to  boundary conditions imposing an average gradient in the spin direction. In 
the absence o f such twist boundary conditions, there will be therm ally excited 
spin excitations at any nonzero tem perature th a t depress the average local spin 
from  its zero tem perature maximum. W hen the twist boundary  conditions are 
imposed, the distribution o f spin excitations will rearrange so as to  minimize the 
free energy. There are m ore excitations the larger the distance between walls at 
which the boundary conditions are imposed. Thus one expects length dependent 
renorm alizations such as we encountered in our study o f  critical phenom ena. In
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the xy-model w ithout vortices, the system is linear and there is no coupling to 
therm ally excited degrees o f  freedom  and no renorm alization o f  the spin-wave 
stiffness.

To study fluctuations in the n-vector model, we employ a reduced H am iltonian 
with a part whose form  is identical to the free energy o f  Eq. (6.2.1) and a part 
arising from  an external field h,

ϊ ΐ = \ κ  J  ddx(Vin)2 -  (h /T )  · J  ddx n(x) , (6.7.1)

where K  =  ps/ T  and |n(x)|2 =  1. In  w hat follows, we will measure tem perature in 
units set by ps, and set K  =  1 /T , where T  is now the reduced tem perature. In the 
perfectly ordered ground state, n is spatially uniform  and can be param eterized 
as n =  (0,..., 1). Therm al excitations will reduce the com ponent o f  n along the 
direction o f  order. A  useful param eterization o f  n at low tem perature is thus 
η =  (π, σ), where π  is an n — 1 com ponent vector describing excitations transverse 
to the assum ed direction o f  order. I f  h is aligned along the σ -direction with 
m agnitude h, then the partition  function associated with Eq. (6.7.1) is

Z  =  J  9 σ ( χ )  J  9 π ( χ )  <5[σ2(χ) +  |π (χ )|2 -  l ] e " * .  (6.7.2)

The vectors n(x) are initially taken to be on a lattice, bu t we will eventually take 
a continuum  limit in the m anner described in Sec. 5.2. In the ordered phase, we 
may, to a good approxim ation, ignore configurations in which the sign o f  σ(χ) 
changes from  site to site. I f  we assume σ(χ) has the same sign throughout the 
sample, we can perform  the integral over σ(χ) in Eq. (6.7.2). The integral over 
the d function leads to a Jacobian (1 — |π (χ )|2 )- 1 / 2  a t each site o f  the lattice and

J  ̂ σ (χ )  J J  <5(σ2(χ) +  π 2(χ) -  1 ) =  exp j - ^  ^  ln [l -  π 2(χ)] j

(6.7.3)

—► exp ^ p  J Λ ; 1η [1 — π 2(χ)]

where the final form  corresponds to the continuum  limit discussed in Sec. 5.2 
[Eq. (5.2.7) in particular] with p =  N / V  the num ber o f  degrees o f  freedom  per 
unit volume. As in our treatm ent o f  the m om entum  shell renorm alization group 
in Sec. 5.8, we replace the lattice Brillouin zone by a spherical zone with the same 
volume. In this case,

ddq K d A d
(6.7.4)

The partition  trace over all states with a single sign o f  σ(χ) is then
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where

^  J d * x [ (V π )2 +  [ ν ( 1 - π 2) 1/2]2 

+ ^p J  ddx ln ( l—π2)

~  h  / Λ [(νπ )2+(π ·νπ )2

—h f 2 — π 2 — ^ (π  · π )2^  — Τρπ2 .

J d dx  {(V tt)2 +  [V (l — π 2)1/2]2|  -  ψ  J d dx(  1 - π 2) 1/2

(6.7.6)

The final form  o f this equation is a power series expansion in which all term s up 
to order T  have been retained. This can be seen by using simple dimensional 
analysis. Let π  =  y fTn '.  Then π2/Τ =  0(1), π 4/ Τ  =  0 ( T )  and ρπ2 = 0 (T ) .

Eq. (6.7.6) defines a field theory with nonlinear interaction term s th a t can 
be analyzed using a m om entum  shell renorm alization group analogous to  tha t 
discussed in Sec. 5.8. The field π(ς) is decom posed into low and high wave num ber 
parts n > (q) and n <(q), and the integral in the partition  trace over n >(q) is carried 
out. Finally, n <(q) is rescaled via n <(q) =  Cn'(bq). The original H am iltonian in 
Eq. (6.7.1) has 0„ ro tational symmetry broken by an external field h coupling 
linearly to n. This rotational symmetry leads to  specific ratios between term s in 
the power series expanded H am iltonian o f Eq. (6.7.6). For example, the ratio  o f  
the coefficient o f  the (π · V n )2 to the (V n )2 is one, and the ratio  o f  the coefficients 
o f the π 4 and π 2 term s m ultiplying h is 1/4. I f  these ratios were different, the 
H am iltonian would no t have 0„ symmetry. Renorm alized H am iltonians m ust 
retain the 0„ symmetry o f  the original H am iltonian, i.e., m aintain the same ratios 
o f  potentials as the original H am iltonian. This m eans tha t we need only consider 
recursion relations for the two independent potentials K  =  1 / T  and h / T  o f 
the original H am iltonian; rotational invariance will then fix the values o f  other 
potentials in term s o f  these.

We are interested in behavior near zero tem perature, and we will trea t the 
0 ( T )  terms, Τρπ2, (π · V n )2/ T  and ( h /T ) n 4, as perturbations relative to the 
low -tem perature harm onic H am iltonian:

with propagator

The treatm ent o f  the —ρπ2 term  under removal o f  π > requires special considera
tion. Because the coefficient p =  f  is an integral over the entire Brillouin zone, it 

can be decom posed into a >  p art and a <  part: p =  p < +  p > =  f *  +  f ^ ·  Under 
removal o f  π >, the second term  is treated perturbatively in the diagram s shown 
in Fig. 6.7.1, leaving the first term s to be treated in subsequent iterations o f  the 
renorm alization procedure. D iagram s contributing to  K  and (h/ T )  are shown in

(6.7.7)
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> <

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 6.7.1. (a) Diagrammatic representation of the (1/2 Τ)(π ■ V n ) 1 term in 
Jf (n) .  The slashes, which appear on two of the four π  legs, represent the 
spatial derivative V. (b) and (c) Diagrammatic representations of the 
(Λ/8 Γ)π4 and ~(ρ/2 )π2 terms, (d) Diagram for ( l /Γ ). The internal line 
represents the propagator G(q) [Eq. (6.7.8)], and external legs represent 
n <(q). (e)-(h) Diagrams for h /T .  The weight of (d) is l /Γ ,  while those of (e) 
and (f) are, respectively, (1/8)(/ι/Γ) x 2 χ  2(n — 1) and (1/8)(/ι/Γ) x 2 x  22. 
Diagram (g) has weight ( l /Γ )  and contributes ( l /Γ )  f > q2G(q) =
/ > ? 2 ( ? 2 +  ^ ) - 1  =  P> — ( h / T )  J-> G(q) to ( h / T ) .  Diagram (h) contributes 
—p > to ( h / T )  and cancels the p > part of diagram (e). Diagrams (d) and 
diagrams (e)-(h) lead to Eqs. (6.7.9) and (6.7.10) for (1 / Τ ' )  and ( h/ T) ' .

Fig. 6.7.1. As explained in the figure caption, they lead to  the m om entum  shell 
recursion relations

where b is the rescaling factor, the integrals are over the shell b~x <  |q | <  1 for 
A =  1, and ζ is the field renorm alization factor [Eq. (5.8.5)] defined via

This last equation implies π <(χ) =  b~dCn(x/b)  ξ  b~mn (x /b ) ,  in agreem ent with 
Eq. (5.5.4). The argum ents presented in Sec. 5.5 show th a t the scaling o f the field 
( h / T )  is determ ined entirely by the scaling of n(x). Because of the On symmetry

(6.7.10)

(6.7.9)

7T<(q7fc)=£7t'(q')· (6.7.11)
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T  (K) T  (K)

Fig. 6.7.2. (a) The correlation length in K 2N1F 4 showing experimental data 
points and the theoretical curve from Eq. (6.7.19) (solid line), (b) The q =  0 
structure factor with experimental data compared with fhe theoretical curve 
of Eq. (6.7.20). [R.J. Birgeneau, Phys. Rev. B 41, 2514 (1990).]

o f  the H am iltonian [Eq. (6.7.1)] with h =  0, all com ponents o f  h m ust scale in 
the same way. We can therefore determ ine the scaling o f  h by looking at its 
com ponents along π  rather than  along σ. Invariance o f  the external H am iltonian 
under rescaling requires (h / T ) f  ddx n { \ )  =  (h ' / T ') f  Λ 'π '( χ ' ) ,  where x' =  x /b ,  
and hence

h ' / T '  =  Ch/T .  (6.7.12)

Eqs. (6.7.12) and (6.7.10) then lead to

C = y  ) f ~ ) .  (6.7.13)

Using Eq. (6.7.13) in Eq. (6.7.9) and setting b =  exp(—δΐ), we obtain

=  - e T ( l )  +  ^  T 2(l) (6.7.14)

at h =  0  near two dimensions, where e =  (d — 2 ).
This equation can be analyzed in exactly the same way as the M igdal- K adanoff 

recursion relations for the Ising magnet. I f  e > 0 and n — 2 > 0, there is a fixed 
point at

Τ* =  [2π/(η -  2)\e. (6.7.15)

This is the transition tem perature separating the low -tem perature ferrom agnetic
state from  the high-tem perature param agnetic state. For n > 2, this transition
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tem perature is o f  order e and is zero a t d =  2. Thus, the param agnetic phase 
persists down to zero tem perature in the n-vector nonlinear sigma model in two 
dimensions, and there is no phase with quasi-long-range order. W hen n =  2, Eq. 
(6.7.15) is indeterm inate a t d =  2. Thus, degrees o f  freedom  such as vortices or 
am plitude fluctuations other than  the elastic or spin wave degrees of freedom 
described by the nonlinear sigma model are needed to destroy order in the 
xy-model.

Eq. (6.7.14) can be integrated exactly. A t d =  2 and n =  3, the result is

T V ) =  Ί ψ )  _  2 π^’ (6.7.16)

where T(0) =  T  is the actual reduced tem perature. The correlation length in
units o f  the original lattice spacing a (or short distance cutoff) is

-  =  el. (6.7.17)
a

For the choice T ( l ) =  1/2π, this yields

f  : e2nlT -+ e2nPs/T , (6.7.18)
a

where T  =  T(l =  0) is the actual reduced tem perature and where the final 
expression is in real ra ther than  reduced units. Thus, the correlation length 
diverges faster than  any power o f  T  as the zero tem perature critical point is 
approached.

Eq. (6.7.18) describes the dom inant tem perature dependence o f  the correlation 
length near zero tem perature. I t needs to  be corrected by higher order terms 
in the classical renorm alization group recursion relations and by the effects o f 
quantum  fluctuations. These effects have been calculated for antiferrom agnets 
(C hakravarty et al. 1989). In  addition, the spin susceptibility (or the magnetic 
structure function at q =  0) can be calculated. The results are

plnps/T

-  c < r n r 7 2 5 5  (6·7' 19»

s(0) -  (6.7.20)
[1 + { T /2 n p s)Y

where Q  and Cs are constants. The spin stiffness can be calculated as a series in 
1 /S ,  where S  is the sp in :

2 n p s =  2 n J S 2{l +  0.158/2S)2(1 -  0 .552/2S ), (6.7.21)

where J  is the nearest neighbor exchange. The constant Q  is estim ated to  be of 
order 0.5 for S =  1/2 and 0.17 for S =  1.

In the antiferrom agnet K 2N 1F4, there are well-separated planes o f  spins that 
behave as two-dimensional m agnets over a wide range of tem perature. In  addition, 
the lattice anisotropy in this m aterial is very small. Fig. 6.7.2 shows the correlation 
length and q =  0  m agnetic structure factor as determ ined by neutron scattering. 
The fit to  the zero free param eter theoretical predictions o f Eqs. (6.7.19) and
(6.7.20) is rem arkable.
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Problems

6.1 Consider an anisotropic xy-m agnet on a d-dimensional hypercubic lattice 
with H am iltonian

t f  =  —J  Y  Si · Si' — J 2 ^  ez · (Sr>,· x Sr>f+i)
<1,1> r,i

=  - J  Σ  cos(<£i -  φν) -  sin(<£Γιί -  </>r,;+1),
<1,Γ> r,i

where S is a three-dim ensional spin vector and where 1 =  (r, i) is a d- 
dim ensional lattice vector and r a ( d — l)-dim ensional lattice vector. D eter
mine the classical ground state o f  this Ham iltonian. Identify the invariances
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o f the ground state and find the elastic H am iltonian describing low-energy, 
long-wavelength excitations from  this ground state. Discuss the nature o f 
order or lack thereof for d =  1, 2, and 3.

6.2 Fluctuations destroy (7(1) order in infinite two-dimensional systems. This 
m eans th a t the pair-correlation function g(x, x') o f  an infinite two-dimensional 
hexatic should be a hom ogeneous and isotropic function o f  y =  x — x ' and 
th a t the scattering intensity I  (q) should depend only on q =  |q| and no t on 
the angle between q  and some axis. In a finite sample o f  length L,  however, 
the Debye W aller factor e~2W is nonzero. Thus, the scattering intensity from  
a finite region o f  a hexatic illum inated for a finite period o f  time will show 
the same sort o f  angular m odulation  as seen in three-dim ensional hexatics. 
Let ψβp =  (e6,p9) and show tha t

for finite two-dimensional samples. Fig. 6P.1 shows a photographic image 
o f  electrons scattered from  a free-standing hexatic film. The param eters ψβρ 
for this intensity pattern  obey the above scaling relation.

6.3 Calculate the energy associated with the Freedericksz transition to  lowest 
order in 0O and show tha t the transition is continuous.

6.4 Calculate the critical m agnetic field as a function o f  L  for the Freedericksz 
transition in the geom etry shown in Fig. 6.2.5b.

6.5 Derive Eq. (6.2.18) for the critical voltage o f  the twisted nem atic display.
6.6 Determ ine the elastic energy for the hexagonal colum nar liquid crystal phase 

shown in Fig. 2.7.11. Recall tha t this is a phase th a t has crystalline order in 
two dimensions and fluid “order” in one dimension.

6.7 (a) Develop an elastic theory for the low energy, long wavelength distortions
o f the cholesteric state in liquid crystals. (H int - This state, like the 
smectic state, has a layered structure.) W hat are the effects o f  fluctuations 
on the three-dim ensional cholesteric structure? You should provide 
estimates o f  any relevant param eters and lengths.

(b) (For the am bitious) Use the F rank  free energy,

for a cholesteric to  derive the results o f  part (a).
6.8 Determ ine the elastic energy for a negative dielectric anisotropy sm ectic-^ 

liquid crystal in an external electric field norm al to  the equilibrium  director 
n, as shown in Fig. 6P.2. The additional term  in the free energy due to the 
interaction with the electric field is

with ea < 0. Find a suitable generalization o f  this elastic energy to  arbitrary

Ψ 6p =  (ψ β )ρ2
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Fig. 6P.1. Intensity profile for electrons scattered from a finite region of a 
free standing hexatic film. [Ming Cheng, John T. Ho, S.W. Hui, and R. 
Pindak, Phys. Rev. Lett. 61, 550 (1988).]

dim ension and use it to calculate the lower critical dim ension d[, for the 
negative anisotropy smectic in a field.

6.9 This problem  will lead you through a derivation o f  Eqs. (6.3.14) to (6.3.17). 
Assume th a t the integral in Eq. (6.3.14) is over a cylindrical Brillouin zone 
—A|| <  q\ <  A||, 0 <  q± < Α χ .  By introducing the variable y  = Xq2L, show 
that

8 ( x ) = 4 i _ l  « „ * ,
Β λ  An2 J0 JQ q2 +  y 2

where λ =  (K \ / B ) {/2. Next, define R  and an angle a via

X |= R c o s a ,  x \ / l  =  Rsm .a  (6P1)



550 6 Generalized elasticity

tlj

n

A

E

Fig. 6P.2. Negative dielectric anisotropy smectic in an external electric field.

so that

R  =  [χ2 +  ( * ί / Ί 2)]1/2·
Then, by breaking the integral over the rectangular dom ain Γ  =  [0 <  <
Ay, 0 < y <  Λ2 λ] (assume Ay <  A^A) into two parts Γ  =  S |J C ,  as shown 
in Fig. 6P.3, show that

g(x) =  gi(x) +  g2(x),

where

g 2 (x) =
q2T  1 f  1 — Jo ((> '^sina)1/'2)cos(q ||i?cosa)

(B K  i )1/ 2 An2 J c dqwdy-

and

g i(x )  =
i q i r f A*R άη

Jo n

V n + y 2

[1 - F ( a ,v ) ] ,

where
8π { Β Κ ιΥ /2

2 [ π/1
F(α,η) =  — /  d<f>Jo  ̂sin φ  sin a )1/2 cos(>7 cos φ  cos a). 

π Jo
Use these results to show th a t when R  —► co,

where

Also

and

Λ  =  Ai,eDl+D2.

Jo n
[1 - F ( a ,v ) ]

J i n

d 2
π Jc

dq\\dy 

c + y2
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2
Λ ± λ

Fig. 6Ρ.3. Domain of integration Γ and the subdomains S and C for 
Problem 6.9.

Finally, use the above asym ptotic form  for g(x), which reproduces Eq. (6.3.14) 
to  derive Eq. (6.3.17).

6.10 Calculate the elastic constant tensor Κ ψ ι,  the com pression m odulus A, and 
the density-strain m odulus D [Eq. (6.4.41)] for a solid a t its m elting point 
using the phenom enological model for the liquid-solid transition discussed 
in Sec. 4.7. Use only the octagonal vectors generating the reciprocal lattice 
o f the BCC structure. Assume th a t c >  0 and tha t ko is a function o f the 
density n tha t can be expanded around the reference density no according 
to  k0 (n) = k o +  g3n.

6.11 Consider a model o f a low -tem perature cubic solid consisting o f N s unit 
cells with lattice param eter a. Each unit cell can either be unoccupied or 
occupied by a single atom. Let nv(x) equal one if lattice site x is unoccupied 
(i.e., has a vacancy) and equal zero if site x is occupied. The energy as a 
function o f a and nv(x) is

E =  N se(a) +  ^ n v(x)[/(a),
X

where N s is the num ber o f lattice sites and e(a) =  (K /2)[(a — ao)/ao]2 is the 
energy per site o f the lattice w ithout vacancies. Show tha t the free energy 
per unit volume for this model is

f ( T ,  a, η) =  1 [ φ )  +  Ι7 (1 -η Ω ο )
a3
+T(1 —  ηΩο)1η(1 —  ηΩο) +  ΤηΩο ΙηηΩο], 

where Ωο =  α3 is the volume o f a unit cell and n is the particle density. Then 
show tha t

„ Ω ο  =  f l  + β - ( ϋ + μ ) / τ 1
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where μ  is the chemical potential. Finally, show tha t

T % le(V+fl)/T

d2f  3μ
δ(ηΩο)δα α4 '

This implies tha t the coefficient A  in Eq. (6.4.41) diverges whereas (D — A) 
is finite as T  —* 0 if U +  μ  >  0. W hat is the equilibrium lattice param eter 
a(T)  as a function o f tem perature?

6.12 For a cubic crystal, calculate (a) the bulk m odulus and (b) the Poisson ratio 
for stresses along one o f the symmetry axes in term s o f the elastic constants 
K n , K i2 and K 44 [Eq. (6.4.17)].

6.13 (a) Consider a square lattice o f mass points connected by central force
harm onic springs tha t act only between nearest neighbors. The potential

where δ =  ( + 1 , 0 ), (0, + 1 ) are the nearest neighbor sites on a square lat
tice. Calculate the harm onic elasticity m atrix C ^ q )  and elastic constant 
tensor Κ φ ΐ  for this model. W hat is the response o f this model to a shear 
stress?

(b) Now add central force springs connecting next nearest neighbors so that 
there is an additional term,

where 6 2  =  (+ 1 ,+ 1 ) is the potential energy. Calculate C ^ q )  and Κ ψ ι  
for this model. Is the response to a shear stress different from tha t in 
part (a). W hy?

energy is

U =  ^ K ] T [ | X , - X w | - a ] 2,



7
Dynamics: correlation and 
response

M uch o f w hat we observe in nature is either time- or frequency-dependent. In this 
chapter, we will introduce language to  describe time- and frequency-dependent 
phenom ena in condensed m atter systems near therm al equilibrium. We will focus 
on dynam ic correlations and  on linear response to  tim e-dependent external fields 
th a t are described by tim e-dependent generalizations o f correlation functions and 
susceptibilities introduced in Chapters 2 and 3. These functions, whose definitions 
are detailed in Sec. 7.1, contain inform ation about the nature o f dynam ical modes. 
To understand how and why, we will consider linear response in dam ped harm onic 
oscillators in Secs. 7.2 and 7.3, and in systems whose dynamics are controlled 
by diffusion in Sec. 7.4. These examples show tha t complex poles in a complex, 
frequency-dependent response function determ ine the frequency and dam ping of 
system modes. Furtherm ore, the im aginary part o f  this response function is a 
m easure o f the rate o f dissipation o f  energy o f external forces.

A  knowledge o f phenom enological equations o f m otion in the presence of 
external forces is sufficient to  determ ine dynam ical response functions. The 
calculation o f dynam ical correlation functions in dissipative systems requires 
either a detailed treatm ent o f m any degrees o f freedom or some phenom enological 
model for how therm al equilibrium  is approached. In Sec. 7.5, we follow the 
latter approach and introduce Langevin theory, in which therm al equilibrium  is 
m aintained by interactions with random  forces with well prescribed statistical 
properties. Frequency-dependent correlation functions for a diffusing particle and 
a dam ped harm onic oscillator are proportional to  the im aginary part o f a response 
function. This is the classical version o f the very im portan t fluctuation-dissipation 
theorem.

Having discussed correlation and response in simple, phenom enological models, 
we tu rn  in Sec. 7.6 to  a general formal treatm ent o f  response and correlation 
functions. This treatm ent is valid a t all tem peratures for both  classical and 
quantum  systems, and includes a discussion o f  symmetry and sum rules and a 
derivation o f the genefal fluctuation-dissipation theorem. Finally, in Sec. 7.7, 
we will show how inelastic scattering o f neutrons measures dynam ic correlation 
functions.

353
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7.1 Dynamic correlation and response functions

1 Correlation functions

The time dependence o f  both  classical and quantum  m echanical dynam ical vari
ables is governed by equations o f m otion determ ined by a H am iltonian ,ff. A 
quantum  mechanical operator (or field) φι(χ, t) evolves in time in the Heisenberg 
representation according to

We will often be interested in the frequency rather than  time dependence of 
operators, and it is useful to  introduce the tem poral Fourier transform s,

We will frequently study tim e-dependent correlations o f variables such as the 
position χ α(ί) o f particle a or simple functions o f such variables such as the 
density,

Here, both  n(x, i) and χ α(ί) evolve according to  Eq. (7.1.1). Classically, operators 
such as x “(i) evolve according to  N ew ton’s equations.

Tim e-dependent correlation functions can be introduced in strict analogy with 
the static correlations introduced in Secs. 3.5 and 3.6. Thus, we define

where, as for the static case, () signifies an average with respect to  an equilibrium 
ensemble. Because the tim e evolution o f  the fields φί(χ, t) is governed by the 
H am iltonian according to  Eq. (7.1.1), there is no ambiguity in the m eaning of 
these averages: for each value o f t and t', they are evaluated by tracing over 
all points in phase space or all quantum  states weighted by the appropriate 
equilibrium  weight function. W hen t =  t', these correlation functions reduce to 
the static correlation functions discussed in C hapter 3:

Unless otherwise specified, we will consider only H am iltonians th a t are inde
pendent o f  time so th a t all therm odynam ic averages are invariant under time 
translations. This implies th a t (</>,·(χ, i)) =  (</>;(x)) is independent o f  time and that

<pi(x,t) =  βι·*ν η φ ,(χ ,0)β-ιΜνη. (7.1.1)

(7.1.2)

(7.1.3)
a

Οφ,ψ^χ, x ', t ,  t') =  ( φ ^ χ ,ή φ ^ χ ' , ί ' ) ) (7.1.4)

and

% ψ ,(χ ,x', t, t ') =  ((φί(χ, t) -  (φί(χ, t))) (φ]{χ!, t') -  {φ){χ', t'))))

=  ε φ,φί(χ, x ', t, t ') -  (φί(χ, t)) (4>;(x', 0 ) ,  (7.1.5)

^ ,ψ ,( χ ,χ ', ί , ί )  =  C^,^.(x,x'), 

5ψ.ψ;( χ ,χ ', ί , ί )  =  5ψ,ψ,(χ,χ'). (7.1.6)

yjk
高亮
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the correlation functions i') and 5ψ.ψ,(χ,χ', t, t') depend only on the
difference t — t' ra ther than  on t and t' individually. Thus, the correlation function 
o f the tem poral Fourier transform  variables can be w ritten as

(φί(χ,ω)φ](χ',ω ')) =  Οφ,φ^χ,χ',ω) 2πδ(ω +  ω'), (7.1.7)

where

/OO
d(t — ί')β'ω(ί_Γ'^ψ.ψ; (χ, x ', t — t'). (7.1.8)

•00
The correlation function ϋ ψ ^ χ ,  χ, ω) is often called the power spectrum o f </>,·(χ, i). 
Eqs. (7.1.7) and (7.1.8) are generalizations o f the Wiener-Khintchine theorem  re
lating a power spectrum  to the Fourier transform  o f a tim e-dependent correlation 
function. Similarly, we define

/OO
d(t — ί')ειω̂ ~ι')Ξφιφί ( χ ,χ ' , ί  — t'). (7.1.9)

•00
Eq. (7.1.5) then implies

Οφιφί (χ, χ ' ,ω )  =  5ψ ,ψ.(χ,χ',ω) +  (φ ί(χ))(φ](χ '))2πδ(ω ), (7.1.10)

indicating th a t the (0 ,·(χ))(<^/(χ')) contributes only to  the zero-frequency or static
part o f  Cψ.ψ,(χ,χ',ω).

2 R esponse  fun c t io n s

Just as the static susceptibilities χ ψ ^ χ , χ ')  relate changes d{</>,-(x)) in averages of 
fields to  changes in external fields <5/ij(x') conjugate to </>j(x), the dynam ic response 
function χψ.ψ.(χ, χ ', ί, i') relates changes d(</>,-(x, t)) in averages o f tim e-dependent 
fields to  tim e-dependent changes δΙΐ](χ',ί') in external fields:

δ(φι(χ,ί)) =  J  ddx! άίΊφ,ψ̂χ,χ! ,t,t'̂ hj(x! ,t'). (7.1.11)

It is im portan t to  recognize the difference between the tem poral and spatial 
variables in this equation. D isturbances at x ' can lead to changes in (φί(χ, t)) at 
all points x. D isturbances at time t' can lead to  changes in (</>;(x , t)) only for 
times t later than  t', i.e., the response o f (</>,(x, i)) to  hj(x', t') is causal. This means
tha t the response function Χφ,ψ^χ, x', t, t') can be nonzero only for t > t'. I t is very
useful to  incorporate this step-function dependence on time into the definition o f 
the response function by writing

χψ .ψ ,(χ ,χ ',ί,ί') =  2 ίη(ί -  ί')ψφιφ.{χ,χ!,tj), (7.1.12)

where
f 1 if ί >  ί ';  / - 1 n x

=  (  0  i f < < /  (7-U 3 )

is the Heaviside unit step function. The factor o f 2i (i =  V ~ I)  is a t this stage 
arbitrary, but it will m ake com parisons with our later m ore formal developm ent 
m ore straightforw ard. Eq. (7.1.12) can be viewed as a definition o f x'̂ .(x,x',t,t'),
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which is pure im aginary if φι and φj  are both  real. Time translational invariance 
again implies tha t χ(χ, x', t, t') and χφ.ψ (x, x', t, t') depend only on t — t'.

We will now discuss some o f the analytic properties o f the response function 
and its Fourier transform  with respect to  time. In  order to keep no tation  compact, 
we will consider the response o f a single position independent field φ(ί) to  its 
conjugate external field h(t). In  this case, we have

where χ(ί) =  2ίη(ί)χ"(ί). Both (φ(ί)) and h(t) are real so th a t is pure 
imaginary. We will be interested in response as a function o f frequency rather 
than  time. We therefore need to calculate the tem poral Fourier transform  o f χ(ί). 
Because o f the causal step-function prefactor in χ(ί), it is useful to introduce the 
Laplace transform  as a function o f  complex frequency z :

The function χ"(ί) is bounded as t —* oo because a disturbance at time t =  0 will 
only produce a finite change in φ(ί)  a t later times. Thus, because t is positive 
in the above integral, χ(ζ) is analytic in the upper half  z-plane (Imz >  0). The 
function χ"(ί, t') =  ~/"(t — t') is bounded, and we can define its Fourier transform  
with respect to a real frequency variable,

I f  χ"(ί) approaches a constant as t —* oo, then χ"(ω) will have delta-function parts. 
Quite general argum ents to be discussed in Sec. 7.6 show tha t y"(t) =  t).
This, along with the fact th a t y"(t) is pure imaginary, implies tha t χ"(ω) is real 
and odd in ω. Eqs. (7.1.12), (7.1.15) and (7.1.16) imply

for z in the upper half plane. This representation o f χ(ζ) shows clearly tha t it 
only has singularities on the real axis and is, therefore, analytic in the upper half 
plane. The tim e-dependent response function ~/{t) is the inverse Laplace transform  
o f χ(ζ), which in the present case is an integral along a contour in the upper half 
plane:

where c is any real num ber. This result is m ost easily derived using Eq. (7.1.17). 
I f  t >  0, the contour [—oo +  ic, oo +  ic] can be closed in the lower half plane, and 
there is a contribution to the integral at ζ =  ω. I f  t <  0, the contour can be

(7.1.14)

(7.1.15)

(7.1.16)

(7.1.17)

(7.1.18)
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closed in the upper ha lf plane where χ(ζ) is zero. Thus y(t) is zero for t < 0 and 
equal to 2ίχ"(ί) for t >  0 .

The response function χ(ω) relating (δφ(ω)) to dh(oj) can be obtained by using 
the Fourier representation,

»f(t) =  lim Γ p - . e iat— —̂ , (7.1.19)
' w  <?-<>./_*, 2 πί ω — ie y ’

for the step function. F rom  this and Eq. (7.1.14) we obtain

/
oo /*oo

dtei(at /  άί'2ίη(ί -  t ' ) f ( t  -  t')0h(t')

•00 J  — oo

=  χ(ω)δΗ(ω), (7.1.20)

with

χ{ω) =  lim χ{ω +  ie), (7.1.21)
€—►()

where χ(ω  +  ie) is given by Eq. (7.1.17) with ζ =  ω +  ie. Thus the response 
function χ(ω) is the limit as z approaches the real axis o f the function χ(ζ), 
which is analytic in the upper ha lf plane. W hen the frequency o f the external 
perturbation  tends to zero, χ(ω) m ust reduce to the static susceptibility:

£ « £ 2  (, „ 2)
ω—*0 J-oo π ω

This is a sum rule relating an integral over χ"(ω) to  a static quantity, the static 
susceptibility. Because the static quantity is a therm odynam ic derivative, this is 
often called the thermodynamic sum rule. It is one o f a hierarchy o f sum rules 
which we will discuss in m ore detail in Sec. 7.6.

The function χ(ω), unlike its static limit, has a real part and an im aginary part, 
as can be seen using the identity

——  ------- =  --------b ΐπδίω — ω') (7.1.23)
ω — ω — ie ω' — ω

(3? signifies the principal part) in Eqs. (7.1.17) and (7.1.20). The result is

Χ(ω) =  χ '(ω ) +  ίχ"(ω), (7.1.24)

where

ϊ ( ω ) = & Γ —  (7.1.25)
.χ, π ω’ — ω

Since χ"(ω) is a real function, χ'(ω) is also. Thus, χ'(ω) and χ"(ω) are, respectively, 
the real and im aginary parts o f the com plete response function χ(ω). Eq. (7.1.25) 
is a Kramers-Kronig relation between the real and im aginary parts o f χ(ω). There 
is also a com plem entary expression relating χ"(ω) to  — χ'(ω). This is m ost easily 
derived by using the Cauchy representation for χ(ζ):

where the contour Γ  is the semicircle shown in Fig. 7.1.1. This equation follows 
because χ(ζ) is analytic in the upper half plane. As we shall see in Sec. 7.7, χ(ζ)
tends to  zero faster than  1/z, as z —> co in m ost cases o f interest. In  this case, the

yjk
高亮
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Fig. 7.1.1. Contour in the complex plane for the integral in Eq. (7.1.26).

integral in Eq. (7.1.26) reduces to  an integral along a line just above the real axis, 
i.e., from  —co +  ie' to oo +  ie'. Then, setting ζ =  ω  +  ie with e' < e, we obtain

+  *) =  * /  +  irf*. +  *). (7.1.27)
J  2 n i  co — co 2

Using Eqs. (7.1.24) and (7.1.25), we obtain

f  ^ £ * 1 .  ,7.1.28)
J  π ω  — ω

Because χ'(ω) is real and χ"(ω) is imaginary, we could also have obtained this 
result simply by taking the im aginary p art o f Eq. (7.1.27). The real p art of 
Eq. (7.1.27) yields Eq. (7.1.25). Eqs. (7.1.25) and (7.1.28) are the usual Kramers- 
K ronig relations. They require slight modification if χ(ζ) does no t fall off more 
rapidly than  1/z a t infinity. Often it is easier to  m easure χ"{ω) (say by an 
absorption experiment) than  χ'(ω). I f  the m easurem ents o f χ"(ω) are made 
over a sufficiently large frequency range, the real response can be obtained via 
Eq. (7.1.25).

The above analysis o f the response o f a single scalar field applies w ithout 
change to m ore general response functions. Thus, the Laplace transform  of 
Χφ,φ^χ,χ',ί,ί ')  satisfies

, , x Γ° < ίω 4,ψ ,(χ ’χ ,’ω )χ φίφ)( χ , χ , ζ )  =  / —-------— --------- . (7.1.29)
J—od CO Z

Following Eqs. (7.1.21) and (7.1.24), we have

Χφ„φι(χ, x', ω) =  χ'φιφι(χ, x', ω) +  ix"M>j(x, χ ', ω), (7.1.30)

where (χ ,χ ',ω )  is related to χψ .ψ .(χ,χ',ω ) by a K ram ers-K ronig relation 
analogous to  Eq. (7.1.25). In Sec. 7.6, we will show tha t χ'ψ,φ (χ ,χ ',ω )  is real 
provided φι and φ ί have the same sign under time reversal and there are no 
external fields or order param eters tha t break time reversal symmetry. In this 
case, χ'φ.φ,(χ,χ',ω) is the real p art o f and  (χ ,χ ',ω )  the im aginary part o f the 
complex response function χψ,φ (χ ,χ ' ,ω ).  The zero-frequency limit o f Eq. (7.1.30) 
leads to  the therm odynam ic sum rule,

dhj(x') π ω <7···3 1 >
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The spatial Fourier transform  in the zero-wavenum ber limit o f this equation 
gives, as before, the usual static susceptibility.

7.2 The harmonic oscillator

1 The undam ped oscillator

The dynam ical properties o f condensed m atter systems are very often dom inated 
by harm onic oscillator-like modes. These m odes include sound waves in fluids, 
elastic waves and phonons in solids, and spin waves in magnets. Inform ation 
about the frequency and dam ping o f these m odes is contained in both  dynamical 
response and correlation functions. In this section, we will explore in detail 
the response function o f a simple dam ped harm onic oscillator. Its properties 
generalize directly to  any system with well defined m odes a t finite frequency.

The H am iltonian for an undam ped oscillator o f mass m  and spring constant k
is

* = L · + \ kxl· {121)
The equations o f m otion for position x(i) and  m om entum  p(t) are calculated by 
taking their Poisson brackets with the H am iltonian:

i ( dJV dx  d d f  d x \  p

d
P =  { ,  p) =  =  - k x .  (7.2.3)

The m ode structure implied by these equations is obtained by assuming tha t both  
x(i) and p(t) are proportional to e~UM and solving the resulting characteristic 
equation

det
- ΐω  —\ / m  
k —ΐω

—ω2 + k / m  =  0. (7.2.4)

There are two solutions to  this equation:

ω =  + ω 0 =  ± y /k /m .  (7.2.5)

Each o f these solutions corresponds to a mode o f  the harm onic oscillator. N ote 
th a t there is one m ode per degree o f freedom (x and p). The time dependence of 
each degree o f freedom is governed by a first-order differential equation in time. 
Thus, there is one m ode per first-order differential equation in the equations of 
m otion. This property is quite general and will be encountered again in our study 
of hydrodynam ics o f conserved and broken symmetry variables.

The variables x(i) and p(t) have opposite signs under the operation o f  time
reversal (i.e., under change in the sign o f tim e i): x(—i) =  +x(i), whereas
p(—t) =  —p(t). The H am iltonian [Eq. (7.2.1)] and its associated equations of 
m otion [Eqs. (7.2.2) and (7.2.3)] are invariant under time reversal. The equations 
o f m otion relate the time derivative o f a variable with one sign under time reversal
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to the variable with the opposite sign. These relations lead to  the off-diagonal 
term s in the characteristic determ inant and to real and non-zero solutions to  the 
characteristic equation. This property is again quite general: modes a t non-zero 
real frequency invariably arise from  the coupling o f variables with opposite sign 
under tim e reversal via first-order differential equations in time.

We have taken the trouble to  discuss the undam ped oscillator in term s o f  the 
first-order differential equations determ ined by the Poisson bracket relations with 
the H am iltonian to point out features o f  such equations tha t will generalize to 
m ore com plicated dynamical problems. The first-order Poisson bracket relations 
can o f course be converted into the second-order differential equation o f N ew ton’s 
second law by substituting Eq. (7.2.2) into Eq. (7.2.3). The result is

x  +  coqX =  0. (7.2.6)

This equation, like Eqs. (7.2.2) and (7.2.3), is invariant under time reversal and 
predicts m odes with frequencies + ω 0.

2 The dam ped oscillator

To introduce dam ping in an intuitive way, we place the particle o f mass m  into a 
viscous fluid. In constant m otion, it experiences a friction force proportional to 
its velocity at small velocities. This force can be written as

/vis =  -a t) , (7.2.7)

where a is a friction constant with units o f [mass]/[time]. Alternatively, v =  
—( l / a ) / vis, and a - 1  is a mobility. For a sphere o f radius a moving in a fluid with 
shear viscosity η, a is given by Stokes’s law

a =  6 πηα. (7.2.8)

We will discuss the m eaning o f the shear viscosity in the next chapter. The
viscosity η has units o f [energyxtime]/[volum e] (poise) and is o f order natcT
in a fluid with num ber density ng at tem perature T  in which the average time 
between m olecular collisions is xc. For the m om ent, both  a and η can be regarded 
as phenom enological param eters. The viscous force law, Eq. (7.2.7), is strictly 
speaking only valid for a tim e-independent (i.e., zero frequency) velocity. It must 
approach zero, as we shall see in Sec. 7.7, at frequencies greater than  z~ l . For low 
frequencies or for masses with densities m uch larger than  tha t o f the surrounding 
fluid (see Problem 7.6), however, it is a very good approxim ation to  the exact 
force, and we will use it w ithout further apology.

In  the presence o f a viscous force and an external force / ,  N ew ton’s equation 
for a one-dimensional harm onic oscillator becomes

x  +  coqX + γ χ  =  f  /m,  (7.2.9)

where

γ =  a/m . (7.2.10)
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The characteristic decay time y~ ] =  ηι/(6πηα) is o f order m/(anQtcT). If  the 
average interparticle spacing d =  Mg1/3 and the m ean free path  ντ<: =  ( 2 T /m ^ ) l/2·rc, 
where mg is the mass o f a fluid particle, are o f  the same order, then y~ ] ~  
(m/ma)(d/a)xc. Thus, for all bu t the m ost microscopic o f particles, m  mg and
y- 1  >  t c.

The viscous force breaks time-reversal invariance in Eq. (7.2.9). A ny m icro
scopic H am iltonian and its associated equations o f m otion m ust be invariant 
under time reversal. In  the present case, the microscopic H am iltonian is tha t 
describing the harm onic oscillator and all o f the degrees o f freedom o f the fluid 
in which it moves. The viscous force describes the average effect on the harm onic 
oscillator o f interactions with the m any incoherent degrees o f freedom o f the fluid. 
In general, any energy in the harm onic oscillator will tend to  flow irreversibly 
into the m any m odes o f the fluid. This is reflected in the sign o f the viscous force 
which leads to  the decay o f x(t) with time. The irreversible flow o f energy into 
incoherent degrees o f freedom is called dissipation, and / vis is a dissipative force. 
We will return in Sec. 7.5 to  a description o f the harm onic oscillator when it is 
in therm al equilibrium  with the fluid so th a t it receives energy from  as well as 
transm its energy to  the fluid.

The m ode structure o f  the dam ped harm onic oscillator is determ ined by the 
equation

—ω 2 +  cog — iyco =  0 (7.2.11)

with solutions

ω =  +[wq — (y2/ 4 )]1/2 — iy /2  =  + ω ι — iy/2. (7.2.12)

If  Mq >  >’2 /4 , ω ι is real, and solutions for x(i) will oscillate with frequency ωι 
and decay in time with time constant τ  =  2/y.  I f  Mq <  y2/4,  ω ι is imaginary, and 
there will be no oscillatory com ponent to  x(f). In this case, the oscillator is said 
to  be overdamped, with inverse decay times

τ ] 1 =  ψ  [1 +  (1 -  4 ω ^ _2)1/2] “° S /2  y,

^  =  ^ [ l - ( l - 4 c o 2y - 2)1/2] “° S / 2 Co2/y = f c /a .  (7.2.13)

W hen Mq <C >,2 /4 , the fast decay time t f  is m uch shorter than  the slow decay 
time zs. Thus for times long com pared to  τ /, the first m ode can be neglected. This 
corresponds in the original equations o f m otion to  neglecting the inertial term  
mx. The resulting equation o f m otion is

a x  =  —k x  + f .  (7.2.14)

This approxim ate equation o f m otion is often written as
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where Γ  =  a - 1  and t f T =  t f —f x  is the total H am iltonian including t f ext =  —fx .  
It is very useful in describing the dynamics o f systems, such as polym ers in 
solution, dom inated by viscous effects.

3 The response fu n c t io n

x M  =  7T-T = ---------, . 2 . · (7-2.16)* ' ' ' * -- - ' ' 1 " l\“ . -----

The frequency-dependent response o f  x to  an external force is easily calculated 
using Eqs. (7.1.20) and (7.2.9):

χ (ω ) 1 1

/  (ω) m —ω2 +  ω$ — ίω γ '
The denom inator o f  this equation is precisely the characteristic equation [Eq
(7.2.11)] determ ining the m ode structure. Thus, there are poles in χ(ω) at complex 
mode frequencies o f  the oscillator. This result is quite general. A static external 
force /  will lead to  an equilibrium  displacem ent o f  x  =  f / k .  This result is 
correctly described by the zero-frequency limit o f Eq. (7.2.16):

limnx M  =  - ^ T  =  r  =  S  =  X· (7-2.17)ω—o mfflg k o]

A t high frequency, χ(ω) is negative and falls off as ω - 2  with a coefficient that
depends only on the mass:

lim χ(ω) = ----- L  (7.2.18)
ω-*αο mO)

We will reconsider this result in Sec. 7.6.
The im aginary part o f the response function is

1 ωγ
m (ω2 — ω^)2 +  (ωγ)·* »  =  Γ Τ — ΙΪΓ  V —  (7.2.19)

1

2moj\
γ /2  γ /2

(ω — ω ι )2 +  (γ /2 )2 (ω +  ω])2 +  (γ /2 )2
τ _ ο  π ω  2 _ ω 2 ) =  7 t _  ω _  _  + ω ο )]_

m  | ω | 2mcoo
We see from  this tha t χ"(ω) is real and odd in ω, and it has peaks with Lorentzian 
line shapes centered at ω =  (when ω\ is real) with half-w idth at half
m axim um  equal to  γ /2 .  Furtherm ore, when the viscous dam ping is set to  zero,
χ"(ω) has delta-function spikes a t the frequencies +ωο o f the undam ped oscillator.
The real p a rt o f the response function is

* »  =  2 2 2 - ί7·2’20)m  (ω1 — ω$Υ +  ωλγ λ
χ'(ω) is positive for ω < ωο, tending to  1 /fc as ω  —> 0 ; it is negative for ω  >  ωο, 
tending to — l/(mco2) as ω  —> co; and it is zero at exactly ω  =  ωο· and
/ ( ω )  are plotted  in Fig. 7.2.1.

The steady-state time dependence o f x(t)  in the presence o f a force f ( t ) =  
/o  cos ω ί is obtained from  the real p art o f χ(ω )/0ε~’ω1 =  \ χ(ω) \ / 0ε_,(ωί_ψ):

x (t) =  fo  I ΐ(ω )  | cos[Wi -  φ(ω)], (7.2.21)
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Fig. 7.2.1. χ"(ω) and χ'(ω) for a harmonic oscillator when ωι is real.

where

and

1 =  V ---------- 2 \2 _l  2 ~ 2 1 1 / 2  ( 7 ·2 ·2 2 )m [(co —  cOq)2 +  co^y2] 1/2

f(a>)  = __ ωγ
/ ( ω )  Wq

Thus, the am plitude o f x(i) reaches a m axim um  for driving frequencies in the 
vicinity o f the natural frequency ωο o f the oscillator. Furtherm ore, the phase 
shift describing the degree to  which x(t)  lags behind f ( t )  passes through n /2  at 
precisely ωο· | χ(ω)| and φ(ω) are p lo tted  in Fig. 7.2.2.

In the overdam ped case, the im aginary p art o f χ(ω) is peaked at the origin 
rather than  at nonzero frequencies. In  the extreme overdam ped limit at frequencies 
ω τ / «  1 where inertial term s can be ignored,

ΐ(ω )  =  -  V —  =  x V  (7·2·24)m to;, — ιωγ 1 — ιω τ5

and

— = V ·  (7-i2 5 )ω  ω1 +  τ81

Thus, χ"(ω )/ω  is a Lorentzian centered at the origin with w idth τ^ 1 =  Γχ, as 
shown in Fig. 7.2.3. Its integral over ω  trivially satisfies the therm odynam ic sum 
rule, Eq. (7.1.22).

The high frequency behavior o f  χ(ζ) is determ ined by the frequency m om ents 
o f  χ"(ω), as can be seen by expanding the integral representation [Eq. (7.1.17)] in
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ω/ωα

Fig. 7.2.2. The amplitude and phase functions | χ(ω) j and φ(ω) for a 
harmonic oscillator.

ω

Fig. 7.2.3. χ"(ω)/ω in the overdamped limit when τ/ <  τ,

powers o f 1 /z :

Z(z) =
1  f  dco 
z J π 1 ω / ζ

_  1 Γ dco χ"(ω)  1 Γ άω
ζ J π ω  ζ 2  J π

-ω^  + (7.2.26)
ω ζζ J  π ω  

We shall see in Secs. 7.5 and 7.6 th a t χ"(ω) ξ  χ"χ(ω) is related via the fluctuation- 
dissipation theorem  to S(co) ξ  Sxx(oj) m easuring fluctuations in x  via χ " ( ω ) / ω  =  
S ( o j ) / 2 T .  Frequency m om ents o f S(co) are simply equal-time correlation functions 
o f x(i) and its time derivatives, which are all finite:
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This equation says th a t all m om ents o f  χ"(ω)/ω  exist and are finite. The odd n 
m om ents are all zero because χ"(ω) is odd in ω. The first two nonzero m om ents 
o f the phenom enological form  for χ"(ω) in Eq. (7.2.19) are finite. The zeroth 
m om ent is simply χ, as required by the therm odynam ic sum rule. The second 
m om ent is —{x(t)x ( t) ) /T  =  {(x(t))2) / T  =  1/m  because the average kinetic energy 
m(v2) /2  is T /2 .  This agrees with Eq. (7.2.18) and the high-frequency expansion 
Eq. (7.2.27). The higher m om ents o f Eq. (7.2.19) are infinite. The problem  
is tha t the phenom enological dam ping param eter y does no t provide a correct 
description o f  high-frequency behavior. In  order for all m om ents o f χ"(ω )/ω  
to  exist, y m ust be replaced by a function y(z) o f  complex z tha t tends to  zero 
more rapidly than  any power o f z. A n often-used phenom enological form  for y 
is y(z) = y / ( l  — ϊζτ), where τ  is some microscopic collision time. This form  leads 
to a finite fourth m om ent o f  γ"{ω)/ω  but to infinite higher moments.

(7·2·27»

4 Dissipation

In steady state, the external force does work on the oscillator tha t is eventually 
dissipated as heat in the viscous fluid. The rate at which the external force does 
work is

d W
—  = f( t ) x ( t ) ·  (7-2.28)

Since in the steady state, both  f ( t )  and x(i) are periodic functions o f t with period 
Τ  =  2π /ω ,  the average power dissipated is

P =  y JqT dtf( t)x(t)  =  ~ y JqT dtx(t)f(t). (7.2.29)

Using Eq. (7.2.21) for x(t), we obtain 

f 2 f TP =  /  dta) | χ(ω) | coscoi sinfcoi — φ(ω)]
T  Jo

=  ^ “>fo | χ(ω) | sin φ(ω) =  ^ /οω χ"(ω ). (7.2.30)

Thus, we arrive a t the very im portant result th a t the rate o f energy dissipation 
is proportional to  ωχ"{ω). For this reason, χ"(ω) is sometimes referred to as the 
dissipation. N ote tha t χ"(ω) is odd in ω so th a t ωχ"(ω) is even. In therm odynam ic 
equilibrium, the power dissipation m ust be positive, implying th a t ωχ"(ω) m ust 
be positive. The positivity o f  ω χ"(ω ) in the present case is associated with the 
positivity o f  the dissipative coefficient y. Its sign was chosen so th a t the viscous 
force opposes m otion o f the oscillator jn a ss . This sign is consistent with energy 
transfer to the incoherent degrees o f freedom o f the fluid and to positive power 
absorption.
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7.3 Elastic waves and phonons

1 Sound  waves in an elastic continuum

As we discussed in C hapter 6 , an elastic m edium  in the Eulerian picture is the 
continuum  limit o f a collection o f mass points connected by H ooke’s law springs. 
The position o f each poin t in the m edium  relative to  its unstretched position 
is given by the displacem ent variable u(x). The velocity o f each mass point is 
therefore v(x, ί) =  ύ(χ, i), and the kinetic energy o f mass m otion is

K .E . =  -  J  f t p ( x K ( x ) ,  (7.3.1)

where p(x) is the mass density a t x. In  the absence o f dissipation, N ew ton’s 
equation determ ining the time dependence o f the displacem ent o f each mass 
point is

S “ V u + / f ” w · '  (7·3·2'
where σ,-j is the elastic stress tensor o f Eq. (6.6.10) and =  J t e\ +  
with Jfei the elastic H am iltonian o f Eq. (6.4.11) and J t ext =  — f  ddx u(x) · f ext(x) 
the H am iltonian arising from  an external force density f ext. Dissipation can be 
introduced by adding a phenom enological term  to the stress tensor proportional 
to the velocity and thus odd under time reversal. A spatially uniform  velocity 
is equivalent to  a Galilean transform ation to a moving coordinate system, which 
will no t lead to  any dissipation. The dissipative p art o f  the stress tensor is, 
therefore, proportional to the gradient o f the velocity rather than  to the velocity 
itself:

σ ί* =  mjkiVkVi, (7.3.3)

where η ^ ι  is the viscosity tensor o f  the solid (viscosity tensors in fluids and solids 
will be discussed in m ore detail in C hapter 8). In  an isotropic elastic medium, the 
viscosity tensor, like the elastic tensor, has two independent com ponents,

mjki =  CSijdk, +  η (δ * δ ρ  +  δαδβ, -  <̂5,A / )  > (7.3.4)

where ζ is the bulk viscosity and η is the shear viscosity.
The equations o f m otion for the longitudinal and transverse parts o f  u decouple 

in an isotropic medium. In  Fourier space they are

[—ω2ρ +  q2μ  — iωηq2]uτ(q, ω) =  f£xt(q> ω), (7.3.5)

[~ω 2ρ +  q2(X + 2μ) -  ίω(ζ +  2(d -  1 ty /d )q2]uL =  /£ xt(q ,“ X (7 3.6)

where u(q) =  (q/q )uL +  uT and similarly for f ext. These equations yield sound 
modes whose frequencies go to  zero linearly with wave num ber q and whose 
widths (imaginary parts) are o f order q2

■ Ά _2 (ΊΤ,ΊΛ
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Fig. 7.3.1. The imaginary part of the transverse elastic response function 
showing Lorentzian peaks at frequencies proportional to q.

u>L =  ± C l <1 +
2  p { +  ^ , (7.3.8)

where cT =  (μ /ρ )1· 2 is the transverse sound velocity and cl =  [{λ+2μ)/p]1· 2 > ct 
is the longitudinal sound velocity. N ote there are 2(d — 1) transverse and two 
longitudinal modes for each q. This corresponds to one m ode per degree of 
freedom.

The transverse response function is the ratio  o f u T to  f£xt:

ζ Η , ·“ ) =  lp  - a i + („ - ia „)qi , r  <7·3·9 »

This function reduces to  the static susceptibility 1/(μ<ζ2) [Eq. (6.4.24)] when ω =  0. 
The im aginary p art o f the response function is

z ''(q,co) =  l _ -------- Mr,q2 ------ (7.3.10)
p2 (ω 2 -  μ<ι2!ρ )2 +  ^coq2/p ) 2

This function is sketched in Fig. 7.3.1. A similar expression applies for longitudinal
sound waves.

2 A coustic  phonons in a harmonic lattice

The dynam ical properties o f the classical harm onic lattice described in Sec. 6.6 

are easily calculated. The complete H am iltonian for this system, including the 
kinetic energy, is

*  =  Σ  γ -  +  C*(Rl -  R 1' K UI'* > (7·3 ·1
1 m  1,1',> ,k
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where m  is the mass and pi =  miii is the m om entum  o f the particle a t site 1. The 
equations o f m otion for the displacements ui are

miiu =  -  Cjjt(Ri -  Ri< )ui^ +  fu , (7.3.12)
i'*

where fi is an external force acting at site 1. The spatial part o f  this equation can 
be diagonalized by Fourier transform ing. Introducing

ui =  ^ I > iq'R,u(q) (7·3·13)

and a similar expression for the force and Fourier transform ing in time, we have 

mw2Uj(q,w) =  Cjfc(q)uji(q, ω) +  /,(q,co), (7.3.14)

where

Cik(q) =  J 2 e iqR'Cik(Ri)· (7.3.15)
1

Finally, we diagonalize C,*(q):

Qt(q)ejt(q) =  nmj(q)ef(q). (7.3.16)

mcoj(q) (λ =  1 are the d eigenvalues o f C&(q) and ef(q) are the associated 
orthonorm alized eigenvectors satisfying

X X * (q )e j(q )  =  δ*
x

I > H q W ( q )  =  δΧΧ· (7·3·17)
i

We can now write Eq. (7.3.14) in term s o f independent norm al modes

(o2ux(q,a)) =  a)j(q)ux(q,a)) +  fx(q,a))/m,  (7.3.18)

where

ux(q,a>) =  ef*(q)uf(q,co) (7.3.19)

and similarly for fx(q, ω). Eq. (7.3.18) is identical to tha t o f the simple harm onic
oscillator, Eq. (7.2.9). I t implies, therefore, a response function

ux(q, ω) 1 1
Xx(q,oj) = -p------ r =  — ------τ ϊ— 2ΤΤΓ· (7.3.20)

Jx(q, ω) m  [ - ω 2 +  ω | (q)]
This, in turn, implies th a t the response function for a displacem ent at 1 in response 
to a force at Γ is

B < u > >  =  ^  , , ^ π !  ^ (q)1 « iw -  v - w

The spatial Fourier transform  o f the im aginary part o f this response function is

χ"·(q,<») =  Γ77Γό(ω2 ~  (7.3.22)J J m  | ω  |

Thus, y"j(q, ω) provides a direct m easure o f the phonon spectrum. We will see in 
Sec 7.7 how neutron scattering determines this function. In  an anharm onic lattice 
where there are interactions am ong phonons, the plane wave phonon states will
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generally be dam ped, and the δ function in Eq. (7.3.22) should be replaced by a 
Lorentzian.

7 .4  D i f f u s i o n

1 F ick ’s law

Consider particles dissolved or suspended in a fluid. The nature o f  these particles 
is, for the m om ent, arbitrary. They can simply be molecules o f  a species different 
from  those com posing the fluid, or they can be specks o f dust or polystyrene 
spheres with diam eters o f order 0.1 microns. The num ber o f  these particles does 
no t change with time. Thus, their num ber density n(x, t) (represented in term s of 
particle positions by Eq. (7.1.3)) obeys a conservation law:

+  V ' j(x> 0  =  0, (7.4.1)

where

j(x> t) = Σ  va(i)<5(x -  x«(0) (7-4.2)
a

is the particle current, with να(ί) =  χ α(ί) the particle velocity. In  therm al equilib
rium, the particles are distributed uniform ly throughout the fluid, and the therm al 
average (n(x, i)) o f the density is independent o f both  x and t. W hat happens, 
however, if, as a result either o f spontaneous fluctuations or o f an external force, 
there exists at some time a spatially non-uniform  density, as depicted in Fig. 7.4.1? 
If  external forces are turned off, the density m ust eventually tend to  the spatially 
uniform  equilibrium  state. This can only occur as a result o f particle m otion. 
Thus, we expect a spatially non-uniform  density to  give rise to a non-zero cur
rent j. If  the density varies very slowly in space, then the density is nearly in 
equilibrium  at each point in space, and currents should be very small. These 
considerations lead one to expect the current to be proportional to  gradients 
o f the density. The current j m ust transform  like a vector so tha t the simplest 
relation between j and V n  is

j =  - D V n .  (7.4.3)

This equation is know n as Fick’s law. It is a phenom enological relation analogous 
to th a t o f Eq. (7.2.7) relating the viscous force to  the velocity. I t says th a t a 
spatially non-uniform  density will lead to  currents in directions opposite to  the 
direction o f changes in densities, i.e., to currents tending to reestablish spatial 
uniformity o f n(x, i)· The coefficient D is a diffusion constant. I t has units o f 
[length]2 /[time]. The current j is odd under time reversal, whereas n(x, t) and its 
gradient are even. Thus, the two sides o f Eq. (7.4.2) have opposite signs under 
time reversal, and the diffusion constant is a type o f  dissipative coefficient.

W hen Fick’s law for the current is substituted into the conservation law, the 
result is the diffusion equation,
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2 π / \
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Fig. 7.4.1. Spatially modulated distribution of particles. Random motion of 
these particles will restore spatial homogeneity in times that diverge as the 
square of the wavelength of the spatial modulation.

j-t =  DV n. (7.4.4)

The m odes predicted by this equation are again obtained by assuming n(x, t) ~  
e~"M. The resulting m ode frequency is

ω =  —iDq2, (7.4.5)

where q =  2 π /λ  is the wave num ber o f  the spatial m odulation o f the density. This
frequency is purely imaginary, implying, as for the overdam ped oscillator, th a t the 
response o f  n(x, t) to  external forces or non-equilibrium  boundary conditions will 
decay exponentially to  zero in times o f  order D-1 ! 2. There will be no oscillatory 
part to this decay.

2 The  Green fu n c t io n  and dynamic response

The density at position x and time t is related to the density a t position x ' and
time i' via

n(x, t) =  J  ddx'G(x — x \ t  — t')n(x\  i'), (7.4.6)

where G(x, t) is the diffusion G reen function satisfying the boundary condition 

G(x, t =  0) =  <5(x — x'). (7.4.7)

For times t >  0, G(x, i) satisfies the same equation as n(x, t):

DV2G(x , t) =  0. (7.4.8)
d t

The solution to this equation subject to the boundary condition Eq. (7.4.7) can
be obtained via Laplace transform ation in time and Fourier transform ation in
space. The results are

c ( " ' 2 ) - = i F T D P  (7A 9>
and

/ ° ° + f c  d z  i
— e~iztG(q, z) =  e - Dq w, (7.4.10)

•oo+ie 2 ft
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G(x t) =  ί d<lq eiq xG(a i) = _____-_____eHx|2/(40|i|)
U( , ) J (2nY U(q’ ’ (4nD \ t\)d/ 2

This says th a t particle density initially localized at the origin will spread out with 
time, occupying a region with m ean-square radius

<| x |2) =  2dD | 1 1, (7.4.11)

where as usual d is the dim ension o f  space. The diffusion constant, therefore, 
measures the m ean-square displacem ent per unit time interval.

3 The response fu n c t io n

The G reen function allows us to  determ ine the density a t time t if we know 
the density a t some earlier time t'. I t does not, however, give us directly the 
density response function. To obtain  the response function, we create a spatially 
non-uniform  density a t time t < 0 th a t is in equilibrium  with an external chemical 
potential with a small spatially varying part δμ(χ). We then turn  off the external 
chemical potential at time t =  0. For t >  0, the equilibrium  state is again spatially 
uniform, and the decay to  equilibrium is controlled by the G reen function. The 
external H am iltonian creating the spatially varying (n(x, t =  0)) is

3#Pext =  — J  Λ η ( χ ,  0 βίί> (7.4.12)

where e is an infinitesimal. The Fourier transform  o f the change in the density at 
t =  0 brought about by this external H am iltonian is

(<5n(q, t =  0)) =  χ(ς)<5μ(ς), (7.4.13)

where χ(ς) is the static density response function discussed in C hapter 3. The 
density for t >  0 is then determ ined by its Laplace-Fourier transform  satisfying

(5n(q,z)) =  G(q,z)(0n(q,t =  0)) =  *(q)^ q) (7.4.14)
—iz +  Dqz

O ur next step is to determ ine how (<5n(q,z)) is related to  the dynam ic susceptibility 
Xnn(q>z) =  x(q>z)· F rom  the definition o f χ ( χ ,χ ', ί , ί ')  [Eq. (7.1.11)], and the fact 
tha t δμ(χ ,ί)  =  η(—ί)β€ΐδμ(χ), we have

< 5 (n ( q , i ) ) = /  r f i ' f t q . i - i 'K 'M q ) ,  (7.4.15)
J— 00

from  which we obtain

<5(n(q,z)) =  J  dte‘zt J  dt' J  Ĉ2 ix " (q ,c o )e -mi‘- t')eet'δμ̂)
- I

άω x"{q, ω) 
πί (ω — ζ)(ω  — ie) M q )

[  ^ x " ( q ,< w ) -  ------- (5/i(q)
J  πι ζ \ ω  — ζ ω J

r-[*(q>z)-*(q)]<5/i(q)· (7.4.16)
IZ
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This equation and Eq. (7.4.14) then imply 

1
G ( q ,z ) = jz x(q> z) _ j 

x(q)
(7.4.17)

and

x (q, z) =  x (q ) --^ D- .  (7.4.18)

This response function has exactly the same form  as th a t o f the overdam ped 
oscillator [Eq. (7.2.24)] except tha t the inverse decay time Dq2 now depends on 
wave num ber. The im aginary p art o f χ(ς, ω) is

, q )___ ^ ___  (7.4.19)
ω m , a>2 +  (Dq2)2 ( ’

This is a Lorentzian with integrated intensity χ(ς), height y(q)/Dq2, and a width 
th a t goes to  zero as q —> 0, as shown in Fig. 7.4.2.

As in the case o f the harm onic oscillator discussed in the preceding section, 
the high-frequency m om ents o f χ"(ω )/ω  m ust all be finite. As for the harm onic 
oscillator, the dissipative function x"(q,ω ) is related to the correlation function 
S„„(q, ω) via the fluctuation-dissipation theorem, which in the classical limit is 

χ"(ς,ω) Snn(q,co)
ω 2 T

The second m om ent o f χ " (ς ,ω )/ω  is thus

(7.4.20)

2X"(q>w) 1 f d a ) 1 / δ t\ dΓ dco ̂ 2f(q ,a>) _  1 ί  
J  π ω T  J

2ι[ ω  S«(t o>) -  γ ψ

j2(j(q. t) · i(-q . ')> =  7.L r  Σ'κ)V T <1 - · > - / /  y T -
a

=  (7.4.21)
m

where we used (v2) =  T /m ,  where m  is the mass o f  the diffusing particles. This is 
the / -sum  rule, which, as we shall see in Sec. 7.6, is always valid for both  classical 
and quantum  systems.

Only the zeroth m om ent o f Eq. (7.4.19) is finite. In  order to make all moments 
finite and to  reproduce Eq. (7.4.18) a t low frequency, we can introduce a frequency- 
dependent diffusion constant D(z) tha t tends to  zero faster than  any power o f 1/z 
at large z and reduces to  D a t z =  0. D(z) will have an integral representation 
similar to  Eq. (7.1.17) for χ(ζ) (see Problem  7.4). The phenom enological expression 
D(z) =  D /(  1 — ίζτ) produces a finite second m om ent bu t infinite higher moments. 
Following Eq. (7.2.26), the second m om ent o f χ " (ς ,ω )/ω  is the coefficient of 
—1 / z 2 in the high-frequency expansion o f  x(q,z), which for the above form  for 
D(z) is —xD q2/ t .  Identifying this result with the /-su m  rule, we find D = m / m -χ. 
This provides a phenom enological connection between the diffusion constant, the 
susceptibility, and a “microscopic” collision time τ. We will obtain this result in 
a different way shortly.
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χ " Μ / ω

ω
Ο

Fig. 7.4.2. The imaginary part of the diffusive response function over ω 
[Eq. (7.4.19)] at different values of q. The half width at half maximum is 
Dq2, so that a measurement of this quantity as a function of q gives the 
diffusion constant D. The static susceptibility is the area under this curve, or 
alternatively Dq2 times its height.

4 E x terna l  potentials and the Einstein  relation

Fick’s law is appropriate to situations when there is no external potential, such 
as tha t o f a gravitational field. W hen there are external potentials, it m ust be 
modified. To see why, consider, as Einstein did, densities o f diffusing particles 
sufficiently dilute th a t interactions between them  can be neglected. In this case, 
the only forces acting on a given particle are those arising from  external potentials 
and from  collisions with molecules com prising the fluid. We have already argued 
[Eq. (7.2.7)] th a t the effect o f the la tter is to introduce a friction force on a 
particular particle proportional to its velocity. In  steady state, this force m ust 
equal any external forces, implying particles will drift with velocity

where a is the friction constant introduced in Eq. (7.2.7) and U is the external 
potential determ ining the force f ext =  —V U .  This drift gives rise to a drift current 
jd =  n \D, in addition to the diffusion current, about any average flow predicted 
by Fick’s law. The to tal current is, therefore,

In therm odynam ic equilibrium, the total particle current m ust be zero, and the 
density m ust satisfy the Boltzm ann relation

yD =  i f ext =  - - V U  ,
O L O L

(7.4.22)

j tot =  - D V n + j c = - D V n - a  1n V U . (7.4.23)

(7.4.24)
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These two conditions can only be satisfied if 
T  T

D =  — = ------ . (7.4.25)
a 6 πηα

This is the Einstein relation published in his famous 1905 paper on Brownian m o
tion. It is the first o f the fluctuation-dissipation relations expressing an equilibrium 
average

D =  limt-> oo 2  dt

=  l i m ^ | ( [ x ( i ) - x ( 0 ) ] 2) (7.4.26)t->oo 2 d dt
in term s o f a dissipative quantity  a.

The total current can be expressed as a coefficient times a gradient o f a sca lar:

jtot =  - a - 1n V (T ln n  +  17). (7.4.27)

A part from  unim portan t constants, T  In n is ju st the equilibrium  chemical poten
tial μ(η) =  dF /δ η  o f a non-interacting gas o f particles at density n [Eq. (3.3.6)]. 
The external potential U is equivalent to  minus the externally fixed chemical 
potential μεχί(χ) ξ  μ(χ) appearing in J ^ ext [Eq. (7.4.12)]. The total current can, 
therefore, be w ritten as

jtot =  —Γ (η )ν[μ (η ) -  μ6χί(χ)] =  - T ( n ) V [ S F T/δη(χ)], (7.4.28)

where Ft =  F[n(x)] — f  Λ μ εχί(χ)η(χ) and

r (n )  = -  =  —  (7.4.29)
a my

is a density-dependent dissipative coefficient. N ote the appearance o f the “to ta l” 
free energy FT in Eq. (7.4.28). This is similar to  the appearance o f the total 
H am iltonian in Eqs. (7.2.15) and (7.3.2). F t is identical to the function W  
introduced in Eq. (3.4.23). In  equilibrium, the equation o f state,

5F
δ φ Γ )  =  μ6χ,(χ)’ (74 ·3°)

is satisfied, and there is no current. C urrent only flows when the function μ(η) 
differs from  the externally im posed chemical potential μεχί.

W hen n(x, t) differs from  its equilibrium  value neq determ ined by the equation 
o f state, there will be a current, which for small and slowly varying 5n(x,t) =  
n(x, t) — neq is

j =  -Τ(η)ν[{3μ{η)/Βη)δη]

=  - Γ  {ή){δμ/δη)νη .  (7.4.31)

This leads to  an alternative expression for the diffusion constant:

D =  T / χ  =  Γ /(δη /δμ ) .  (7.4.32)

This is exactly the result for D we obtained using the sum and a phenomenological 
frequency-dependent D(z) with the identification y with τ-1 . Though Eq. (7.4.27) 
was m otivated by considerations o f a dilute gas o f  diffusing particles, it and 
Eq. (7.4.32) for D are also applicable to denser systems when interactions between
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Fig. 7.4.3. Schematic representation of two trajectories of a Brownian 
particle.

particles become im portant. In  this case, the dissipative coefficient Γ  is no t simply 
a linear function o f n, and the chemical potential μ(η) is tha t appropriate to the 
interacting system.

5 Brownian motion

As ju st discussed, particles do no t interact with each other in the dilute limit. 
In  this case, we can focus on an individual diffusing particle. I t is constantly 
subjected to collisions with the molecules o f  the fluid, and it describes an erratic 
trajectory in space. Such erratic m otion was first reported in 1828 by the botanist 
R obert Brown, who used a microscope to observe particles o f pollen floating on 
the surface o f  water. He found tha t the pollen particles would appear to  jum p 
some distance in a random  direction, then rem ain at rest for a period, then jum p 
again in another direction. H e subsequently observed similar m otion o f very 
fine particles o f a num ber o f substances including minerals and fragments o f the 
Sphinx. He concluded th a t this m otion occurred independently o f the com position 
and origin o f the particle. The explanation o f  the origin o f this phenom enon of 
Brownian m otion is due to Einstein, who apparently was unaware o f  Brown’s 
observations. R andom  m otion consisting o f a sequence o f apparently discrete 
steps is often referred to as a random walk or m ore colorfully as a d runkard’s 
walk (see Sec. 2.12).

The position x(i) o f  the Brownian particle is a random  function o f time. Such a 
random ly fluctuating variable is called a stochastic variable. The series o f values 
o f a random  variable as a function o f time is generally called a stochastic process. 
The conditional probability P(x, t | xo, ίο) th a t the particle is a t position x at time 
i, given th a t it was at position xo at time to, can be expressed as

P (x, 1 1 x0, i0) =  (<5(x -  x(i)))xo,to, (7.4.33)
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where x(i) is the instantaneous position o f the particle moving under the influence 
o f a random  force originating from  collisions with fluid particles. The brackets in 
the above equation signify an average over this random  force, and the condition 
tha t the particle was at position xo at ίο is implemented by the boundary condition 
x(i0) =  Xo-

In  the dilute limit, the probability (<5(x — χ “(ί)))χ",ί0 th a t particle a is a t x a t time 
t, given th a t it was at xg at time ίο, is simply P(x, t | xgio)· The average density 
o f particles at x at time t, given th a t the density was η(χ,ίο) =  Σ α<5(χ — xo) at 
t =  to, is, therefore,

(n(x, ί)) =  Σ (< 5 (χ  -  Χα(0 ))χ5Λ =  Σ  Ρ (χ ’ 1 1 χ ο>ίο^
α α

=  /  ddx 0P(x, 1 1 χο, ίο) Σ  δ (χ ο ~  χ ο)
** α

=  f  ddxoP(x,t\xo ,to)n(xo,to).  (7.4.34)

This equation is identical to Eq. (7.4.6) and allows us to identify P ( x , t  | χο,ίο) 
with the diffusion G reen function in the dilute lim it:

P (x, 1 1 x0, ίο) =  G(x — xo, ί — ίο)· (7.4.35)

The m ean-square displacem ent o f a single Brownian particle, therefore, satisfies 
Eq. (7.4.11) with d =  3 and with the diffusion constant Eq. (7.4.25) appropriate 
to  a non-interacting particle diffusing in a fluid with viscosity η :

((Δχ)2) =  <[χ(ί) -  x0]2> =  6Dt =  ^ i ,  (7.4.36)
πηα

where we have explicitly displayed Boltzm ann’s constant kg. This equation was 
used in one o f the early determ inations o f  The fluid viscosity and radius of
a diffusing particle can be m easured with reasonable accuracy. M easurem ents
o f x(i) by observations under a microscope then yield ((Δχ)2) as a function of 
time. I t is then straightforw ard to  determine fcg from  Eq. (7.4.36). A typical 
fluid such as water has a viscosity o f  order 0.01 poise. Eq. (7.4.36) then predicts 
th a t a particle with a radius o f  order 0 .1  microns will diffuse a distance o f order
1 m icron in 1 second. Thus, diffusion o f a particle o f this size is observable in 
laboratory  t im es.

6 Cooperative diffusion versus self-diffusion

We have considered diffusion o f both  the average density o f particles and of 
an individual particle. These two processes are referred to, respectively, as 
cooperative diffusion and self-diffusion. They are different and are controlled by 
different diffusion constants Dc and Ds tha t become equal only when interactions 
between diffusing particles can be ignored (as they can in the dilute limit discussed 
above). Both constants can be m easured experimentally. As ju st discussed, self
diffusion can be detected in dilute systems by observations under a microscope.
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It can also be observed by m ore sophisticated techniques in which individual 
particles are tagged, either by rendering them  radioactive or by treating them  
with a photochrom ic dye th a t changes from  transparen t to  opaque when exposed 
to ultraviolet light. In the latter case, quantitative m easurem ents can be m ade by 
“ forced Rayleigh” scattering experiments in which a suspension is first irradiated 
with spatially m odulated ultraviolet light. L ight from  a second source is then 
diffracted from  the sample. Its diffracted intensity determines Ds. Self-diffusion 
can also be detected, as we shall see in Sec. 7.8, via incoherent neutron scattering, 
which measures the function

Sseif(x, x', t - t ' )  =  ^ (< 5 (x  -  χ “(ί))<5(χ' -  x“(i')))· (7.4.37)
a

This is a self-correlation function because it involves tem poral and spatial corre
lations o f  a single particle ra ther than  a collection o f particles. It/can  be related 
to the conditional probability o f  Eq. (7.4.33) using

P i - L t l - E Y )  r  1 ] 0 )P , ( x r | x r ) -  (δ(χ, _  x «(t,))} > (7·4 ·38)

where we have indicated the possibly different behavior for different particles by 
the subscript a. For translationally invariant systems with volume V, (<5(x' — 
x“(i')> =  Pa is independent o f a, and from  Eqs. (7.4.38) and (7.4.37)

implying

/OO
dte‘0Jte~D:ql

•00
=  2n—  -y  (7.4.40)

ω 2 +  (Dsq2)2

is a Lorentzian with a width determ ined by the self-diffusion constant Ds.
Cooperative diffusion gives rise to density changes and can be probed by 

inelastic light scattering that, as we shall see at the end o f this chapter, measures 
the density correlation function S„„(q,i) related to ω) via the fluctuation- 
dissipation theorem,

άω /"„(q , ω)
βω  e~mt =  T X( q )e-" '«w  (7.4.41)

Thus both  S„„(q, i) and SSeif(q, 0  show diffusive behavior with characteristic inverse 
decay times tha t increase linearly with q1.

Fig. 7.4.4. shows experim ental d a ta  obtained from  forced Rayleigh scattering 
from  polystyrene spheres in water. The inverse decay time is linear in q2. 
Fig. 7.4.5a shows the exponential decay in time o f the correlation function for 
the intensity o f  scattered light (which is proportional to S2„(q, i) as discussed in 
Problem 7.13) from  polystyrene spheres in m ethanol. The inverse decay time is 
again proportional to q2, as shown in Fig. 7.4.5b.
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( f  ( 106cm ~2)

Fig. 7.4.4. Inverse decay time as a function of q2 for self-diffusion measured 
by forced Rayleigh scattering. [Courtesy of W.D. Dozier.]

7 M a ste r  equation f o r  diffusion on a lattice

Diffusion is no t limited to particles in solution. It often occurs when there are 
processes whose time dependence is controlled by random  processes. Here we 
will consider diffusion on a lattice. We imagine th a t sites 1 on a lattice can be 
occupied by an atom  or some localized excitation. The probability tha t site 1 is 
occupied at time t is P (l, t). As time progresses, the atom  can hop to other sites. 
Let P (\ ,t  +  A t  | Γ, ί) =  /?(!,!', Δί) be the probability tha t the atom  is at site 1 at 
time t +  At, given tha t it was at site Γ at time t. Then the probability tha t the 
atom  is a t site 1 at time t +  A t  is

P  (1, t +  At) =  R d  A t)p  (!'> 0· (7.4.42)
1'

Because /?(1, Γ, Δί) is a probability, it m ust satisfy

Σ * " ·  1',Δί) =  1. (7.4.43)
1

As the time difference At  goes to zero, the probability th a t an atom  initially at
site Γ is at a site different from  1' m ust go to zero. Thus, for small At, we can
write

ϋ (ΙΛ Δ < )- ( Ι " ξ ' · " ' - Ι'Δ' ξ ! ; ! /  (7.4.44)
[ ννι/—ιΔί if 1 φ  Y,

where W|/_i is a transition rate (with units o f  l/[tim e]) from site Γ to 1 defined
to be zero for 1 =  Γ. Eqs. (7.4.42) and (7.4.44) lead to a differential equation for
P (U ):
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t (ms)

q2 (μτα)2

Fig. 7.4.5. (a) Intensity correlation function
F(t) = ((I(q,0)I(q,t))/{I(q))2) -  1 where I(q,t) is the intensity of scattered 
light, and (b) characteristic decay time as a function of q2 for polystyrene 
spheres in methanol. [Courtesy of J. Xue.]

dP(l,t)
dt

=  Σ  w ,^ ,P (Γ, 0  -  ^  P(  1,0. (7.4.45)

This equation has a simple in terpretation: P (l,i)  increases as a result o f hops, 
which occur a t rates wi'_i, from  sites 1' φ  1 to the site 1, and it decreases as a 
result o f hops, which occur at rates wi_i,, from  1 to  sites li φ  1.

There are no restrictions on the hopping rates wi/_i in Eq. (7.4.45). They can 
connect any sites on the lattice, and the rate wi/_i does no t necessarily have to 
equal wi_i'. A simplified model is one in which there is hopping only between 
nearest neighbor sites on a lattice and in which the rate for hopping from 1 to  Γ 
is equal to  tha t for hopping from  Γ to 1. In this case,

wi'_>i =  =  τ“ 1 , (7.4.46)
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Fig. 7.4.6. τ ‘(q) for a one-dimensional lattice. Its maximum 4/τ is at 
q = ±n/a .

where τ is a hopping time and yy/ is unity if Γ and 1 are nearest neighbor sites on 
the lattice and zero otherwise. The equation governing P(l, i) then becomes

=  7  Σ  w  [p (r ’ *) -  P C’ 01- (7-4.47)

Thus, if the Fourier transform  o f P (l, t =  0) is P(q, t =  0), it will decay to  zero as

P(q, t) =  e~t/x^ P (  q, t =  0) (7.4.48)

with

T-!(q ) =  τ - 1  [y(0 ) -  }’(q)] =  τ- 1  ^ ( 1  -  e'q<5)
δ

a2 i
~  — q f o r q - > 0 ,  (7.4.49)

τ
where δ is a nearest neighbor vector o f  m agnitude a o f the lattice and where the 
num erical coefficient o f  q1 in the last equation is tha t appropriate to a hypercubic 
lattice. Thus, at long wavelengths, P (q, i) decays diffusively [see Eq. (7.4.10)] with 
diffusion constant

D =  α2/τ .  (7.4.50)

This is the form o f D th a t one m ight have predicted simply on the basis of 
dim ensional analysis. The value o f -r(q) a t higher values o f q depends on the 
lattice in question. In  one dimension,

r _ 1(q) =  2τ-1 (1 — cos qa). (7.4.51)

This function is plotted in Fig. 7.4.6.
The decay time τ  can vary widely from  system to system. It is often determ ined 

by processes involving therm al activation over some barrier. In  this case,
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Fig. TAJ. Schematic representation of a resistor network with capacitances 
to ground.

where A E  is the barrier energy. For tem peratures much less than  AE, τ becomes 
very long. In  some situations, it can be so long th a t the probability tha t a hop 
occurs in the time scale o f a laboratory  experim ent can be vanishingly small.

It is interesting to  observe tha t Eq. (7.4.47) is precisely the equation governing 
the voltage in a resistor network consisting o f sites connected by resistances o f 
conductance σ\χ with capacitance to ground C. The equation for the voltage 
V (1, i) a t site 1,

c df o o  =  ^ ^ [v^ t) _  V{1 f)L (7A53)

is determ ined by K irchhoff’s laws. W hen resistors connect only nearest neighbor 
sites, σ ιι  =  σ γ ^ ,  and Eq. (7.4.53) reduces to  Eq. (7.4.47) with τ =  (C /σ ). Resistor 
networks are often used to model diffusive transport problems (see Fig. 7.4.7).

7.5 Langevin theory

1 R a n d o m  fo rces  and thermal equilibrium

The erratic m otion o f a Brownian particle is due to  collisions with molecules in 
the fluid in which it moves. These collisions allow an exchange o f  energy between 
the fluid at tem perature T  and the Brownian particle and for the establishm ent 
o f therm al equilibrium  between the degrees o f freedom o f the particle and those 
o f the fluid. This means tha t the m ean-square o f each com ponent o f the velocity 
o f the Brownian particle averaged over a sufficiently long time m ust have the 
value T / m  predicted by Boltzm ann statistics. This average is m aintained through 
constant collisions.

To understand how therm al equilibrium  can be brought about by random  
forces, let us focus on a particle diffusing in one dimension. Individual molecules 
o f the fluid collide with the diffusing particle in a random  fashion and exert a 
force whose time average is simply the viscous force —av in troduced in Eq. (7.2.7).
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(a)

(b)

Fig. 7.5.1. (a) Schematic representation of the random force ζ(ί) as a 
function of time, (b) ζ(ί) approximated by a series of random impulses.

We can, therefore, break the force exerted on the particle by the fluid into two 
parts: the average viscous force —<xv and a random  force ζ(ί) whose time average 
is zero.

This random  force is well approxim ated by a sequence o f independent impulses 
o f random  sign and m agnitude as shown in Fig. 7.5.1; it is a stochastic process 
whose time average is zero. R ather than  considering averages over time, we 
will consider averages over the ensemble o f possible random  forces and represent 
averages over this ensemble with brackets, () , in the same way tha t we represented 
averages over equilibrium  therm odynam ic ensembles. We will choose the ensemble 
o f random  forces so tha t averages over it are identical to  averages over an 
equilibrium  ensemble. Thus, we have

m )  =  0. (7.5.1)

If  each impulse is considered an independent random  event, then the probability 
distribution for ζ(ί) is independent o f ζ(ί') for t' φ  t. This implies

( ζ ( ή ζ ( 0 )  =  AS(t -  t') (7.5.2)

is local in time. A  is a constant tha t rem ains to be determined. Finally, ζ (ί) in the 
independent impulse approxim ation is the sum o f a large num ber o f independent 
functions. The central limit theorem  then implies th a t the probability distribution 
for ζ(ί) is G aussian with a w idth determ ined by its variance, Eq. (7.5.2):

p [ a m  =
1

■sjlnA
(7.5.3)

R andom  forces such as ζ(ί) give rise to  erratic or noisy behavior o f observables 
and are often referred to  as noise sources, especially in the context o f electrical 
circuits.
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Eqs. (7.5.1) to (7.5.3) provide a sufficiently precise characterization o f the 
stochastic collision force ζ(ί) to allow us to  discuss the establishm ent o f therm al 
equilibrium. The detailed form  o f ζ (ί) is determ ined by the tem poral statistics of 
the molecules o f the fluid. Thus, one expects the approxim ation o f  independent 
random  events to  break down for time differences t — t' less than  a characteristic 
collision time xc o f the fluid. As discussed in Sec. 7.3, however, the characteristic 
time y- 1  for m otion o f the Brownian particle is much larger than  zc, and the 
independent collision approxim ation will be very good for times o f interest.

The power spectrum  o f ζ(ί), or the Fourier transform  o f (ζ(ί)ζ(ί')),

Ι ( ω )  =  CK (fl>) =  A  (7.5.4)

is independent o f ω  in the independent collision approxim ation. A noise source 
with a frequency-independent power spectrum  is called a white noise source.

2 Correlation fu n c t io n s  f o r  diffusion

We will now show how knowledge o f statistics o f the stochastic force allows us to 
calculate correlation functions rather than  response functions (Langevin 1908). 
In the absence o f external forces, the equation o f m otion o f a diffusing particle is

mv +  αν =  ζ(ί). (7.5.5)

The solution to this equation for v(t) has a hom ogeneous part determ ined by 
initial conditions and an inhom ogeneous part proportional to ζ(ί). Since the 
hom ogeneous part, which depends on initial conditions, will decay to  zero in a 
time o f order y-1, the long-time properties o f v(t) will be determ ined entirely 
by the inhom ogeneous part and be independent o f initial conditions. In  Fourier 
space the inhom ogeneous part o f v is simply

ν ( ω )  = ζ(ω) . (7.5.6)
—i com +  a

Using Eqs. (7.1.7) and (7.5.4), we can calculate C vv(oj) by averaging ν ( ω ) ν ( —ω )  

over the random  forces:

Cro(fl>) = . Η ω ] |2 =  2r *  2V (7.5.7)
| —m m  +  <x\1 m1 [ω1 +  y1]

The constant A  characterizing the variance of the random  force is as yet un
specified. We can now use Eq. (7.5.7) to calculate the instantaneous m ean-square 
velocity in term s o f A  and thereby determ ine the value o f A  needed to  ensure 
therm al equilibrium:

W  =  / | C „ W  =  ^ .  (7.5.8,

In therm al equilibrium  (v2) = T /m ,  and we conclude

A =  2 a T  = 2m y T  and (ζ (ί) ί(Ο ) =  2aTS(t  -  i'). (7.5.9)

Thus, the am plitude o f white noise fluctuations is fixed by the requirem ents of
therm al equilibrium.
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Fig. 7.5.2. The velocity correlation function {v(t)v(0)) showing exponential 
decay to zero.

The correlation function Cvv(co) determines Cvv(t, i') =  (v(t)v(t')) as well as the 
instantaneous average (v2). Neglect o f the hom ogeneous term  in the solution 
for ν(ω) is only valid for times long com pared to  y-1 . The Fourier transform  of 
C„„(m) in Eq. (7.5.7) therefore gives the function Cvv(t) =  limT̂ x Cn,(z +  ί, τ):

CVv(t -  t') =  f  ^ V ^ ' - ^ C U w )  =  (7.5.10)
J 2π m

This equation shows th a t v(t) and u(0) become decorrelated for times greater than
y_1, and th a t (u(r)u(O)) is o f order the equal-time therm al average T / m  for times
less than  y_1, as shown in Fig. 7.5.2.

The Fourier transform  χ(ω ) o f  position is ν(ω )/(—ϊω). Thus, we can determine
the position correlation function,

Cxx(a)) =  — — =-, (7.5.11)
moi2(co2 +  y2)

from  Eq. (7.5.7) for Cvv(co). The integral o f Cxx(co) over ω  gives the mean-square 
displacem ent (x 2(t)). This integral is divergent because o f the extra factor o f ω2 in 
the denom inator o f Cxx(co), and we correctly conclude th a t (x2(r)) is infinite. This 
result is analogous to  the result, discussed in C hapter 6 , tha t the mean-square 
o f an elastic variable is infinite below its lower critical dimension. The average 
([x(r) — χ(ί')]2) =  ([Δχ(ί — ί')]2) is, however, finite. Using Eq. (7.5.11), we obtain

([Δχ(ί)]2) =  y g 2 C xx( c o ) [ l - e - fot]

=  —  2 2 V l - e ~ imt)· (7.5.12)
my J  2π \ ω 2 co2 +  y2)

The second term  in this expression is easily evaluated by contour integration; the
first term, which is proportional to |i|, can be obtained from  the second by taking
the limits y —> 0. The result is

ί  1 — \
([Δχ(ί)] ) =  2D I 1 1--------------- , (7.5.13)
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where we used the Einstein relation D = T /m y .  For times t y_1, this equation 
reduces to  the result, Eq. (7.4.11), predicted by the diffusion equation in one 
spatial dimension. A t short times,

([Ax(t)]2) ~  Dyt2 = (v2)t2, (7.5.14)

indicating tha t the Brownian particle moves ballistically in this limit.
The Einstein relation [Eq. (7.4.26)] can be reexpressed in various ways in terms 

o f the velocity correlation function. First we have

([Δχ(ί)]2) =  ^  Q f  d t 'v io ' j  ^  =  jT  d n  j f  dt2Cm{h ~  t2)

pt pti rt Ml
= 2 d h  dt2Cvv(ti -  t2) = 2 / dti /  dzCvv(z)

Jo Jo Jo Jo

= 2 j \ t -  
J 0

z)Cvv(z)dz, (7.5.15)

where the final expression in this equation can be obtained from  the preceding 
line by integrating by parts. F rom  this, we can easily calculate a tim e-dependent 
diffusion constant,

m  =  ^ ( ( Δ χ ( 0 )2),

=  f l dzCvv(z), (7.5.16)
Jo

tha t approaches the diffusion constant,

D = J™  dzCm(z) = {- ϋ υυ(ω =  0), (7.5.17)

in the infinite time limit. The last expression could have been obtained directly 
from  Eqs. (7.5.7), (7.5.9), and the relation D =  T/(my).

3 Short- t im e behavior

In  the above analysis, we argued we could neglect initial conditions if we are 
interested in long-time limits and therm al equilibrium. Initial conditions are, 
however, often o f  interest and can be treated alm ost as easily as the long-time 
limits. The solution to Eq. (7.5.5) for v(t) subject to  the boundary condition that 
v(t =  0 ) =  vo is

v(t) = v0e~y t+  [  d h e ' ^ K i t i ) / m .  (7.5.18)
Jo

The average velocity is then

The velocity correlation function is

(v(t)) = v0e -yt. (7.5.19)
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(v(t)v(t')) =  vie~y(,+n+  f  dh  <5(ii - t 2)
Jo Jo m

vk -  e~*t+i) +  - e- yit- ‘'K (7.5.20)
m J  m

and the variance o f the velocity is

Δ„(ί) =  (M i) -  (t,(i))]2) =  1 ( 1  -  e"2* 1), (7.5.21)

where we used Eq. (7.5.2) for (ζ(ί)ζ(ί')) with A = 2m yT.  These equations show 
th a t the velocity correlation function tends to the therm al equilibrium  result of 
Eq. (7.5.10) for times t a n d /o r  i' m uch greater than  the decay time y_1, regardless 
o f the initial velocity vo. Furtherm ore, if the initial velocity is averaged over an 
equilibrium  M axwell-Boltzmann distribution at tem perature T,  then (v(t)v(t')) 
has its therm al equilibrium  form at all times.

The displacem ent variable x(t) can be obtained from  the velocity by simple 
in teg ration :

x(t)  =  xo +  f  v(ti)dti, (7.5.22)
Jo

where x(t  =  0) =  xo- F rom  this and Eq. (7.5.19), we can calculate the average 
displacem ent as a function o f tim e:

(x(i)) =  x0 +  (t>o/y)(l -  e~n ). (7.5.23)

Similarly, we can calculate correlations in the displacement at different times 
t >  0 and t' >  0 :

(M O  -  *(i')]2> =  ^  Q T  dt ^  . (7.5.24)

Using Eq. (7.5.20) for the velocity correlation function, we obtain 

( [ x ( i ) - x ( i ') ] 2) =  ( vo ~ · ^  1 '  _"Λ

2 T_|-----
ym

(7.5.25)
y

If  bo th  t and t' are much greater than  y-1 , this reduces to  Eq. (7.5.13) independent 
o f vo■ If, on the o ther hand, both  t and t' are m uch less than  y ~ \ ([x(r) — x(t')]) =  
vo(t — 1')2> i-e., the Brownian particle moves ballistically with the specified initial 
velocity. The average o f Eq. (7.5.25) over an equilibrium  ensemble o f initial 
velocities also reduces to  Eq. (7.5.13). The average ([x(i) — xo]2) is obtained from 
Eq. (7.5.25) by setting t' — 0 so th a t x(i') =  x0. Finally, we can calculate the 
variance o f the position,

Δχ(ί) =  ([x(i) -  (x(i)}]2)

=  2 —  

ym ^  ( i - e - " ) 2 (7.5.26)
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N ote th a t Δχ(ί) is no t equal to ([Δχ(ί)]2) in Eq. (7.5.13) because it explicitly retains 
the m em ory th a t initial m otion was ballistic ra ther than  diffusive. The variance, 
([x(i) — x(i') — (x(i) — x(i'))]2) does not, and is in fact identical to  ([Δχ(ί — ί')]2).

The noise ζ(ί) is a G aussian random  variable. Both v(t) and x(t) are linear 
functions o f  ζ(ί). Since linear functions o f G aussian random  variables are also 
G aussian random  variables, the probability distribution functions for v(t) and 
x(t) are G aussian and are completely determ ined by the expectation values and 
variances o f these variables. We leave a formal derivation o f these results to the 
problem s a t the end o f the chapter.

4 Fluctuation-dissipation theorem f o r  the harmonic oscillator

A harm onic oscillator in a viscous fluid, like a free particle in the same fluid, 
will reach therm al equilibrium  as a result o f  collisions with the fluid molecules. 
This m eans th a t the average energy per degree o f  freedom o f the oscillator will 
be T  / 2, or th a t (x2(t)) =  T/(mcoq) and (v2(t)) = T /m .  The equation o f m otion 
for an oscillator in a random  force is Eq. (7.2.9), with /  replaced by ζ(ί). In the 
long-time limit, we need only concern ourselves with the inhom ogeneous solution 
to this equation, which as a function o f frequency is

χ(ω) = χ(ω)ζ(ω) =  ■ -  2 . (7.5.27)
m[—ωΖ +  cog — my]

where χ(ω) is the response function o f Eq. (7.2.16). The nature o f the random  
force C(t) does no t depend on whether our particle is attached to a spring or not. 
The noise correlation function C ^(w ) is thus independent o f  ωο and has the same 
form  as for ωο =  0. F rom  this, and the correlation function for ζ(ί), we obtain

Cxx(co) = 2m yT\X(a>)\2 = :̂ — 2------ * (7.5.28)
m (ω 1 — cog)2 +  co2y2

We leave it as an exercise to  verify tha t (x2) obtained by integrating this function 
over ω  is, in fact, T /(m m q). Then, using Eq. (7.2.19) and the fact th a t (x(t)) =  0 
so tha t Cxx(co) =  5χχ(ω), we obtain the very im portan t result

Ζ"*(ω) =  \ β ω Ξ ΧΧ(ω), (7.5.29)

where β  =  1 /  T. This is the classical fluctuation-dissipation theorem, the complete 
quantum  m echanical version o f which was originally derived by Callen and 
W elton (1952). It relates χ"χ(ω), which, as we saw in Sec. 7.3, is proportional 
to the rate a t which work done by external forces is dissipated as heat, to the 
Fourier transform  o f the m ean-square fluctuation ([x(i) — (x(i))][x(0) — (x(0))]). 
Thus, absorption or response experim ents th a t probe χχχ(ω) contain the same 
inform ation as scattering or related m easurem ents th a t probe 5_«(ω). A lthough 
we derived the fluctuation-dissipation theorem  for a single classical oscillator in 
equilibrium  in a viscous fluid, the theorem  applies to all response and correlation 
functions o f systems in equilibrium. Furtherm ore, it is applicable, as we shall



see in the next section, to situations where the classical approxim ation is not 
applicable.
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5 The Fokker-P lanck and  Smoluchoxvski equations

In  the preceding discussion, we focused on the correlation functions o f  velocity 
and position. The Langevin equations can be used to  derive no t only these 
correlation functions bu t also the equations determ ining the entire probability 
distribution function for these variables. The equation for the velocity probability 
function for a diffusing particle is called the Fokker-Planck equation; its general
ization to displacem ent and other variables is generally called the Smoluchowski 
equation. These equations show how probability distributions decay to Maxwell- 
Boltzm ann distributions describing therm al equilibrium  at long times. They are 
applicable no t only for harm onic H am iltonians bu t also for anharm onic H am il
tonians containing o ther than  quadratic term s in the fundam ental variables. This 
latter result is im portant because it implies th a t Langevin equations provide a 
correct phenom enological description o f dynamics for all arbitrarily  com plicated 
interacting systems as well as for the simple free particles and harm onic oscillator 
we have considered so far.

We will begin our derivation o f the Fokker-Planck equation by rewriting the 
equation o f  m otion in terms o f the m om entum  p to  produce a form th a t will 
m ost easily generalize to  o ther variables:

| = - „  +  C _ - r ^  +  C, ,7.5.30)

where Γ  = a. = ym and

( ζ ( ί ) ζ ( ί ' ) ) = 2 Γ Τ δ ( ί - ί ' ) .  (7.5.31)

This equation is now in a form tha t could in general include anharm onicities in 
the H am iltonian .

We now consider the probability

P (p ,t  | po, i0) =  («5 (p -  P(tj))po,to (7.5.32)

th a t a diffusing particle has m om entum  p a t time i, given tha t it had  m om entum
Po at time ίο· The probability th a t the particle has a m om entum  p a t time t +  At 
is

P(p, t +  A t  | po, ίο) =  J  dp'P(p, t +  A t \ p', t)P (p ,  t | p0, ίο)- (7.5.33)

The conditional probability

P (p ,t  +  A t  | ρ ',ί)  =  (δ ( ρ - ρ ( ί +  Δ ί)))ρν (7.5.34)

can be calculated from  the equation o f m otion for p (i):
c) rt+ A t

P i t  +  Δί) =  p' -  Γ ^ - Δ ί  +  J  d t % { t ' ) .  (7.5.35)
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The average o f the th ird  term  in this equation is zero; its square, however, is 
proportional to At :

/ t+At rt+At

d t i j  Λ 2 (ζ(ίι)ζ (ί2) ) = 2 Γ Γ Δ ί .  (7.5.36)

Terms higher order in f  άίζ(ί) are higher order in At because ζ(ί) is a G aussian 
random  variable and averages o f products o f ζ (t) can be expressed as products o f 
the variance (ζ(ίι)ζ (ί2))· Thus, for example ( ( / Λ ζ(ί))4) ~  ( f d t i d t 2(C(ti)C(t2 )))2 ~  
(At)2. Using this result, we now expand the left hand side o f Eq. (7.5.34) to  first 
order in At :

f) W  f)
(HP -  Pit +  Δ » » , ,  -  [ l +  Δ ίΓ —  +  ύ , , Γ Τ ^  

This result and Eq. (7.5.32) then allow us to  calculate

δ ( ρ - ρ ' ) .  (7.5.37)

δΡ  ^  d —  =  7 T  — 
dt dp

\ _ d t f  d_ 
T  dp ^  dp

(7.5.38)

The left hand  side o f this equation is zero when

P = Peq ~  β- ^ {ρ)ΙΤ, (7.5.39)

i.e., when P  has the equilibrium  form predicted by M axwell-Boltzmann statistics. 
In fact, P  decays in time to  Peq.

The probability distribution for any variable φ  satisfying a linear differential 
equation in time o f the form  o f Eq. (7.5.30) will satisfy Eq. (7.5.38) with p replaced 
by φ. For example, the equation for an overdam ped oscillator Eq. (7.2.15) has 
exactly the same form  o f Eq. (7.5.30). The equation for P(x,t) ,  which is identical 
to  Eq. (7.5.38) with p replaced by x, is the Smoluchowski equation.

The probability distribution [Eq. (7.5.32)] appearing in the Fokker-Planck 
equation [Eq. 7.5.38] is for the m om entum  subject to the boundary condition 
p(t =  0) =  p q . We have calculated bo th  the expectation value (p(t)) = m(v(t)) 
and the variance Δρ(ί) =  m2A v(t) o f the m om entum  subject to this boundary  
condition. The force ζ(ί) is a G aussian random  process governed by the p rob
ability distribution o f Eq. (7.5.3). Since the velocity is linearly proportional to 
C(t), it should also be a G aussian random  process with a G aussian probability 
distribution (i.e., characterized only by its m ean and variance). One can easily 
verify tha t

P (p’ 1 1 Po’ °) =  n  A ^ M / 2 g~(P~ (P(t)>)2/2Ap(t) i7·5·40)(2πΔρ(ί))1/ζ

satisfies the Fokker-Planck equation.
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7.6 Formal properties of response functions

1 Response  to external f ie ld s

In  Sec. 7.1, we defined the dynam ic response function χψ,φ ( χ ,χ ', ί ,  i7) relating 
the deviation δ (</>,·(χ, ί)) o f  the average o f the field φ,(χ, t) from  its equilibrium 
value to  first-order changes in the tim e-dependent external field hj(x',t ')  ther
m odynam ically conjugate to </>y(x', t'). We then showed how this function could 
be calculated from  phenom enological equations o f m otion. We also found that 
the im aginary part o f the frequency-dependent response function for a classical 
harm onic oscillator was related in a simple way to  an equilibrium  correlation 
function [Eq. (7.5.29)]. In this section, we will develop a general formalism 
for describing dynam ic response functions. The im portant result o f this general 
treatm ent is th a t response functions can be expressed in term s o f equilibrium 
expectation values o f com m utators o f operators. F rom  this follow a num ber 
o f general symmetry properties o f response functions and the general quantum  
m echanical fluctuation-dissipation theorem  relating the dissipative p art o f the 
susceptibility to  an equilibrium  correlation function. O ur developm ent will be 
fully quantum -m echanical. Classical results follow simply from  the classical limit 
o f quantum  mechanics.

The H am iltonian o f a system in the presence o f an external field hj(x, t) can be 
expressed as

where t f  is the H am iltonian describing the system when hj is zero, and

expressed in the Schrodinger representation, where the field φ](χ) is independent 
o f time, t f  ext is a perturbation  introduced to  m easure response. There can, of 
course, be term s in t f  linear in φ/(χ)  tha t look like t f ext· We will be interested in 
the lim it hj(x , t) —> 0, and we will assume tha t hj(x, t) is zero for times less than 
some time i0, which we will eventually allow to go to  —oo. Expectation values of 
operators in the presence o f the external field can be expressed as

where ph(t,to) is the tim e-dependent density m atrix for nonzero hj(x,t)  that 
reduces to  the statistical equilibrium  density m atrix peq(h =  0) for times less than 
ίο- The time evolution o f ph(t, ίο) is governed by the Schrodinger equation,

't/p „  _ _i_ 't/pΛ  Γ -  Λ  Τ«Λ ext> (7.6.1)

(7.6.2)
J

(φί(χ, t))h =  Trph(t, ίο)φϊ(χ, i0), (7.6.3)

(7.6.4)

with the boundary condition ph(to, ίο) =  Peq =  p ■ Thus, 

ρΛ( ί,ί0) =  U (t,t0) p U ~ \ t , t 0), (7.6.5)

where
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l h d U j ’t t0> = ( J T  +  MPext)U(t,  t0) (7.6.6)

with U(t0, t 0) =  1 and U (t,tQ)U  '( t,to ) =  1. Because o f the cyclic invariance 
property o f the trace, Eq. (7.6.3) can also be expressed as

(</>i(x, t))h =  TrPh(t, to)φί(\, ίο) =  Tr/j(7_ 1 (i, t0)<f>t(x, t0)U(t, tQ). (7.6.7) 

The final form puts time variation in the field operator, expressed in the Heisen
berg representation, ra ther than  in the density matrix.

In  order to  discuss the time dependence o f φί(χ,ί)  when hj is nonzero, it is 
convenient to  introduce the interaction representation for U(t,to) via

U (t,tQ) = U o(t,to)U \t,t0), (7.6.8)

where U'(to, ίο) =  1 and

= jru0.
at

From  this and Eqs. (7.6.6) and (7.6.8), it follows tha t 
dU'

ih-
dt

= [ U ^ J T ^ U o W  =

(7.6.9)

(7.6.10)

where the superscript on J f'ext indicates th a t it is expressed in the interaction 
representation where time evolution is determ ined by J f  rather than  by the total 
H am iltonian Eq. (7.6.10) can be integrated perturbatively to yield
U'(t, to) as a power series in The result is

U '(t,t0) =
1 +  ih

+  [ i

i h . / '  ^ {t' )dt'

f  t( 0  f  ^ L ( t " ) d t 'd t "  +
Jto Jto

(7.6.11)

where [ ]+ indicates th a t all operators within the brackets are to be ordered from 
right to left according to increasing time t. Defining φ\  (χ, i) to  be the operator 
Φ ΐ(\ , ί )  =  Uq 1̂ ,  ί0)φ;(χ, t0)U0(t, to) in the interaction representation, we can write 

(0i(x, t))* =  T r/j[ //_1 (i, ίο)φΙ(x, t)U'(t, ίο)

Tr p

I f  urn)
Tr ρ φ Ι(χ , ί )  +  Tr p  ( i  f ‘ d t ' ^ x ^ ^ L  t(i')]

1 +  ih
(7.6.12)

where [φ^, Jf'ext] is the com m utator o f φ[ with Jf'ext· The first term  in this 
equation is merely the equilibrium  expectation value (φί(χ, t)) in the absence 
of the external field hj, and the second term  reflects the effects o f the external 
potential to  lowest (i.e., linear) order in hj(x, t). Allowing the initial time ίο to  go
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to —oo, we obtain

δ (φ ί( \ ,ή )  = {φΐ(χ, ί))/* (</>j(x, ί))

=  - J  d t ^  j  Λ ' ([</>,(χ, ή , φ ^ χ ,  t')])hj(x, t')

= J  dt j  ddx ! ljn { t - t ' ) (W i{ x , t ) ^ j { x ! , t ' ) ] )h j{ x ! , t ' ) ,

(7.6.13)

where we have dropped the now superfluous superscript I  and where, as usual, 
( )  signifies an average with respect to  the equilibrium  density m atrix p. The field 
φί(χ, t) is the Heisenberg operator, evolving in time according to  the H am iltonian 
j f .  C om paring Eqs. (7.1.11), (7.1.12), and (7.6.13), we obtain

Χφ:φι(χ, x', t — t') =  η ( ί - ί ' ) ^ ( [ ψ , ( χ , ί ) ,  φ;(χ',ί')]),

Χψιφ)(χ ’ x ' . t - t ' )  =  ^ ([Φ Α * ,ϊ \Φ ί{χ ! , ί ' ) \ ) ,  (7.6.14)

where we have indicated explicit dependence on the time difference t — t'. This 
equation gives us the desired expressions for χφίφ)(χ ,χ ' ,  t — 0  and χΦιΦι(χ, x ' , t  — t') 
in term s o f average values o f products o f operators evaluated in an equilibrium 
ensemble.

In  classical systems, the com m utators in Eq. (7.6.14) become Poisson brackets:

^ ( χ , χ ' , ί - ί ' )  =  -^ ({ < Μ χ >ί)><Μχ '>ί')}} (7.6.15)

_  i ^  /  δφί(χ , ί) δ φ ^ χ \  t') δφί(χ, t) δ φ ] (χ \  ί') \
2  \  dqa(t) θρα(ί') δρα(ί) d<jra( 0  /

where (qa, ρχ) is a complete set o f canonically conjugate coordinates.

2 Sym m etry  properties o f  response fu n c t io n s

There are a num ber o f symmetry properties o f χφ.φ.(χ,χ', t —t') th a t follow directly 
because it is an equilibrium  average o f a com m utator. It m ust be antisymmetric 
under interchange o f all indices:

4ψ,·(χ> χ '. t - i f )  =  - z '< ^ 1(* \ χ, ^ -  0

ΧΦίΦ)(χ ’ χ '.ω )  =  -4 ,ψ ,( χ '> χ > -ω )· (7.6.16)
The fields </>,(x, i) are observables and thus H erm itian operators. Therefore,

Κψ,ψ,ίΧ’ x '^ - t ') ] *  =  ( Ι η ( Ι Φ Μ ,  <Mx'>0 ]>)

=  ^ ( [ ^ ( χ ',Ο ,Φ Κ χ , ί ) ] ) ,  (7.6.17)

and

[ χ ΙΦι(χ, x ', ί -  o r  =  * W x ',  x> -  f)· (7-6.18)
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Or, from  Eq. (7.6.16),

(7.6.19)

Hence, x ' ^ ( x , x ' , t  — t') is pure im aginary and Χφ,φ^χ, x', t —t') is pure real as they 
should be. Finally, using Eq. (7.6.18), we obtain

It follows from  Eqs. (7.6.16) and (7.6.20) th a t if ψ (χ ,χ ',ω )  is even under 
interchange o f (χ, i) and  (x', j) ,  it is real and odd in ω. I f  it is odd under the same 
interchange, it is imaginary and even in ω. The former case is the m ost common, 
bu t the la tter can occur.

T h eb eh av io r o f the fields φι(χ, t) and the density m atrix p  under time reversal 
determ ine further symmetry properties o f Χφ.φ (χ ,χ ', ί, ί'). The time-reversal op
erator Θ is an antiunitary operator. If  |θα) and \6b) are the time-reversed states 
o f | a) and | b), then (6a\6b) = (b\a). Time reversal applied to  an operator φι 
leads to  a new operator φ[ = θ φ ιθ~1. W hen applied to products o f operators, it 
leads to reversal o f  order: —> (</>,</>/)' =  φ̂ -φ',· Fields φ;(\, t) can be classified
according to  their signature βφ. =  + 1  under time reversal:

O perators such as mass and energy density are even (e =  +1), whereas m om entum  
density and m agnetization are odd (e =  —1) under time reversal. The density 
m atrix depends on externally applied fields (such as magnetic fields) and the 
nature o f order in the system. Thus, in the absence o f external fields breaking 
time-reversal symmetry and in states with no order param eter breaking time 
reversal, p  is invariant under Θ. If, however, there are external fields such as a 
m agnetic field or order param eters tha t break time reversal, then p  will change 
under Θ. Let B  represent those external fields and order param eters tha t change 
sign under Θ. A pplication o f the above rules for the time-reversal operator then 
leads to

In a classical system, these results follow from  Eq. (7.6.15) and the fact tha t Poisson 
brackets change sign under time reversal because δ /δ ρ α(ί) —> —d /d p a(—t). W hen 
there is no external field or order param eter breaking time-reversal invariance, 
Eqs. (7.6.16), (7.6.18), and (7.6.22) imply th a t x ^ . ( x , x '  ,ω)  is real, odd in ω, and 
symmetric under interchange o f (x, i) and (x ' , j )  when φ, and φ;  have the same 
sign under time reversal and imaginary, even in ω, and antisym m etric under 
interchange o f (x, i) and ( x \ j )  when they have the opposite sign. Symmetry 
properties o f χ'φ.φ.(χ,χ' ,ω)  follow from

[ ^ ( χ , χ ' , ω ) ] *  =  4 ,Ψ,(χ ,’χ ’ω )· (7.6.20)

φ\(χ, t) =  θφί(χ, ήθ  1 =  εφίφί(χ, - ί ) . (7.6.21)

Χ'>Γ- Γ'>β ) =  -εψ ,εφ ,Τ φ ,φ ,^  Χ'»Γ' “  Γ» - β )

=  εφίφ,ϊφ,φΧ*·, χ, ί -  - Β )
Χψ.ψ/Χ·’ χ ',ω ,Β )  =  - ε ψ . ε φ / φ . φ ^ χ , χ ' , - ω , - Β )  (7.6.22)

=  ^ Ψ ; 4 ;ψ,(χ'>χ>ω,-·Β).
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, , , , „  f °  άω'Χφ,φΑχ,χ',ω'Κω' +  ω)
*  j ^ —  ω , 2 _ ω 2--------- ■ Ρ · « 3 )

For example, when Β =  0, (χ ,χ ',ω )  is real, even in ω, and symmetric under
interchange o f (x, i) and (x', j )  when βφι = ε Φι 

In addition to  the symmetries involving time coordinates, there are also sym
metries involving spatial coordinates. For example, in hom ogeneous, isotropic 
systems, χ"φ.φ/(χ, x', t —t') m ust be a function only o f | x —x' | and its spatial Fourier 
transform  m ust be a function only o f q = | q |. In m ore com plicated crystalline 
systems, po in t and space group symmetries lead to  o ther spatial symmetries for 
4 ψ .( χ ,χ ',ω ) .

3 Dissipation

In  our discussion o f the harm onic oscillator, we found tha t power dissipated was 
proportional to  ωχ"(ω). We will now show th a t this result is more generally 
valid. The rate at which w ork is done on the system can be calculated using 
a generalization o f Eq. (7.2.28). The rate d W / d t  a t which the external field 
hi(\, t) does work on the system is equal to the rate o f change o f the total energy 
o f the system: d E /d t  = (d /d t)T T p ( t) t f τ  = T ip ( t)d J f  τ / dt +  Ti(dp{t)/ dt),Wτ ■ 
In  the Schrodinger representation, the fields </>,(x) are independent o f time, 
and d t f Tld t  = d t f ext/dt. In addition, T r( d p / d t ) t f T = (1/ΐΚ)Ττ[&’τ>ρ]·&'τ = 
(1 /ϊΚ)Ττρ[Μ’τ , Μ ?τ \  =  0. Therefore, the rate at which work is done on the system 
is

^  άάχ {φ ί{ χ , ί ) ) φ ί{χ,ί)
i

= J  ddx((f>i(x,t))ohi(x,t) 
i

— ^ 2  [  ddxddx ' f  [dt’hi(x, ί)2ϊη(ί — ί')
ij ■’ J-™

χ χ Ι Φί(χ, x \  t -  t')hj{x!, i')] +  0(h)). (7.6.24)

Now, consider an external field oscillating at a single frequency ω :

ht(x, t) = Reh,(\)e~i0Jt =  i  [ht( x ) e ' icot +  h-(x)e!a“]. (7.6.25)

Then

=  — ^ 2  J d dxddx'-^^y j  dt'ioj[h'(\)eWJt — h[(x)e~l0Jt]

Χ2ίχ1φ .(χ, x', t -  t ')[h ){x!)e^  +  M x > ~ ’W ] }  (7-6.26)

where the first term  in Eq. (7.6.24) has been dropped because it will disappear on 
averaging over a cycle o f the external potential. U pon perform ing this average,
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dW
we obtain

= ~ΐω J  dt' J  ddxddx '[2 ih -(x )x '^ j ( x , x ' , t - t ' ) h J(x')eico(t '' '

-2 ifc(( x ) ^ ( x ,  X', t -  (7.6.27)

since the term s proportional to > disappear on averaging. Changing
variables to t\ = t — t', we obtain

d W  i —  f  rcc
d t  =  \ωΣ J ά < ί χ ά < ί χ '  Jq Λι[Λ*(χ)Ζφ,φ>(χ.χ'.ίι)Λ7(χ')βίωί|

- ^ ( χ ^ φ / χ , χ ' , ί ι ί Λ ' ί χ ' ) ^  ίωί1]· (7.6.28)

Then interchanging (x, i) and (x, j) , and letting ii —> —ii in the second term  o f 
this expression, and using the symmetry property o f Eq. (7.6.16), we obtain 

j w  i _ r
-Π~ =  2 ω Σ  /  ά<ίχά<ίχ'Κ  (χ )Χφ:φ ,(^  x'> ω )Μ χ ')· (7.6.29)

U J
For systems in therm al equilibrium, power is absorbed from  external sources, and 
d W / d t  m ust be positive definite. Thus, ωχ'φ.φ.(χ,χ',ω) is a positive definite matrix. 
This in tu rn  implies tha t the real part o f the response function χψ,φ ( χ ,χ ',ω )  is
positive for small ω  and negative for large ω  when p  is invariant under time
reversal and βψ. =  :

z W * ,x > )  -ψ,ψι . / - χ  π ω ' - ω

dm' ω ';4 φ .(χ ,χ ',ω ')

π  ω ' 2 — ω 2
Θ> ί

* L

(7.6.30)

00 άω' 1
—α ω 'ΧφίΦ)(Χ’ χ ' > ω ' )  >  0  ω  - »  0 ,

π  ω ' -

The simple harm onic oscillator discussed in Sec. 7.2 dem onstrated a simple 
example o f this behavior.

4 Spectral representations o f  χ ’φ.φ.

It is instructive to  express χ'φ^ ( χ ,χ ',ω )  in term s o f the m atrix elements o f φι(χ,ί)  
with respect to energy eigenstates o f the system. Let |n) be an eigenstate of 
with energy hcon, and assume th a t p  is diagonal in the energy basis with m atrix 
elements (n \ p \ m) = p„Snm. Then we can write

([φί(χ,ί),φ](κ!,  0 )]) =  Ύτρ[ε,*ν η φι(χ, φ  j(x', 0 )]

=  | Φι(χ, 0 ) | m)(m  | φ](χ',0)  | n)
nm

_ e- i ^ - ^ ‘(n | φ ^χ ',Ο ) \ m) ( m\  φ {(χ, 0) | n)]. (7.6.31)
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This then implies

Ζψ,ψ,(χ , χ ',ω )

=  \  I 0<'(x>°) \m ){m \ φ ] ( χ \ 0) | η)<5(ω +  ω„ -  ω„)
n m

- ( η  I φ](χ ',0) I m)(m  | </>;(χ,0 ) | η)<5(ω - ω „  +  ωη )}. (7.6.32) 

If  </>,·(χ, ί) =  φ(ί)  is independent o f x and i, Eq. (7.6.32) reduces in the canonical 
ensemble to

π  __  ρ—βΗω„
/ '( ω )  =  ^ ^ 2 \ (η \ φ  \ m) \2 [δ(ω +  ωη -  ω„,)

n m

—δ(ω — ωη + com)], (7.6.33)

where Ζ  =  e~lst,01n is the partition  function and β  =  1 / T.

Thus, χ'φ,φ. consists o f a series o f delta function spikes with weights determined 
by the equilibrium  density m atrix and the m atrix elements (η \ φ ι( \ ,  0) | m). This 
in tu rn  implies tha t the complex response function has poles along the real axis 
at frequencies +(ω„ — com), corresponding to  the possible excitation frequencies 
o f  the system. Using Eqs. (7.1.29) and (7.6.32), we obtain

, 0 ) | m){m | </>j(x',0) | n) 
ωη - ω η - ζ

(7.6.34)

, / x 1 Γ (η\φί(χΑχψ ,ψ .(χ ,χ ,ζ) =  -----------
nm ^

_  («|<Mx',0)|m)H<Mx>0) I ")
ω„ — com — z

For a finite system, there is a m inim um  excitation energy and thus a minimum 
distance between poles o f χ(ζ), as shown in Fig. 7.6.1. This means th a t χ(ζ) can 
be analytically continued to  the negative half plane directly using Eq. (7.6.34). 
As the characteristic length L o f the system tends to infinity, as it does in most 
systems o f interest in condensed m atter physics, the energy level spacing goes to 
zero as L~2. In  this case, the poles in χ(ζ) push closer and closer together until, 
finally, when L —> oo, the discrete set o f poles becomes a branch cut. χ(ζ) defined 
by the spectral representation o f Eq. (7.1.29) is an analytic function for z in the 
upper half plane or in the lower half plane. However, it reaches different values 
on opposite sides o f the cut:

lim χ(ω +  ϊη) φ  lim χ(ω — ϊη). (7.6.35)
η —>0 η —>0

Each pole in χ(ζ) corresponds to  a delta function in χ"(ω). Thus, in a finite 
system, χ"(ω) will consist o f separated spikes with intensities determ ined by the 
m atrix elements in Eq. (7.6.34) as shown in Fig. 7.6.2a. W hen L —> oo, the spikes 
merge into a continuous curve, as shown in Fig. 7.6.2b, tha t can, for example, 
have the Lorentzian shape discussed in Sec. 7.2. This illustrates how dissipation 
characterized by a finite w idth in χ"(ω) results when L —> oo.
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t Im  z

x  x  x  x  x  x  *  χ  χ  κ x -

(a)

Re z

(b)

Fig. 7.6.1. (a) Pole structure for χ(ζ) for finite systems. There are poles along 
the real axis separated by a minimum distance. χ(ζ) is analytic everywhere in 
the complex z-plane, except at these poles, and is in particular analytic in the 
upper half plane as required by the considerations of Sec. 7.2. (b) Singularity 
structure for an infinite system. The poles merge together to form a branch 
cut separating the upper and lower half planes. χ(ζ) remains analytic in the 
upper half plane.

(a) (b)

Fig. 7.6.2. (a) /"(ω) consisting of a set of discrete delta-function spikes 
corresponding to the pole structure of Fig. 7.6.1a. (b) χ"(ω) when L — ► o o  

(corresponding to the branch cut of Fig. 7.6.1b).

5 The fluctua tion-d iss ipa tion  theorem

In the preceding section, we saw th a t there is a simple relation between the 
dissipation function χ"Χ(ω) and the correlation function Sxx(oj) for the classical 
harm onic oscillator. We will now use the form alism  developed in this section 
to show th a t an obvious generalization o f this result applies to  all systems in 
therm al equilibrium. For simplicity, we will consider only systems described by 
the canonical density matrix,

p =  L · - ^ ,  Z  = Ί τ έ~ 9* .  (7.6.36)

A proof o f the theorem  rests on the observation th a t e~li w is an im aginary time 
translation operator. Thus, we can write

Ύτε~β^ φ ί ( \ ,  t)4>j(x!, t') =  T re~ '̂*e 4>i{x,t)e^ e ~ ^  4>j(x! ,t')

=  Ττφί(χ, t +  ϊ β Η ) ε ~ ^  <t>j{x', t')

= Ύ τ ε ~ ^  (f>j(x', ί')φί(χ, t +  ϊβΗ),

(7.6.37)
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where the last step follows from  the cyclic invariance property o f the trace. We 
can use this result to express the correlation function (χ ,χ ',ω )  in terms of
Ξφ]φι( \ ' , \ , - ω ) :

/OO
άίβ!ωίΞφιΦί( \ ,  χ ', i ,0 )

•00

/OO
d iS ^ ,.(x ', x, - t  -  ίβΡι, 0)elo>t

•00

/OO
άί8ΦίΦ. ( \ ,  χ, t, 0)e~lcot. (7.6.38)

-00
Thus

SM j (x, χ ', ω ) =  εβΗϋ̂ ΦίΦί(χ', χ, - ω ) .  (7.6.39)By definition,

X M j f r  x '>ω ) =  ^  [% ψ,(χ , x'» ω) -  5ψ;ψ,.(χ', χ, -ω ) ]  (7.6.40)

so that

Ζφ,φ/x » x '.ω) =  ^ ( 1  -  ε~βηω)ΞφιΦί(χ ,χ ' ,ω). (7.6.41)

N ote tha t this result reduces to  the classical result χ'φ.φ (χ, χ ', ω) =  ^βωΞφ,φ^χ, χ ',ω) 
when h —* 0 and agrees with the harm onic oscillator result o f the preceding sec
tion.

6 Sum  rules and  m om ent expansions

The representation o f  Χφ^, as the expectation value o f a com m utator allows us 
to  express the high-frequency m om ents o f Χφ^ in term s o f expectation values of 
equilibrium  com m utators. A t high frequency, we can expand in powers o f 1 /z :

. , . f  dm Χφ,φ, ( χ ,χ ',ω )
Ζψ,ψ,.(χ,χ,ζ) =  /  ---------- j-— -—J π  ω  — ζ

1 Γχ  ^ω „ 4 ^ ( Χ ,  x ',M)

“  ζΡ J - 00 π
-ατ

, - ....  ωρ—ΐ
00w 1

=  -  Σ  ^  Κ / (χ> χ ')]ζψ,ψ;(χ . χ '» 0 ), (7.6.42)
Ρ— 1

where we introduced the p th  frequency m om ent o f (χ ,χ ',ω )  defined as

[ω£·(χ, x ') k W ,(x , x ', 0) =  Γ  —  ωΡΧ̂ (Χ ,Χ ,ω ). (7.6.43)
7-00 π ω

These frequency m om ents are defined so th a t the zeroth m om ent is one. They
can be evaluated in term s o f com m utators o f the time derivatives o f the field
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φι(χ,ί). I t follows directly from  Eq. (7.6.14) that
1 /*°° Ar *
-  ([(id/dt)n4>i(x, t), 0 )]) =  /  — ωηχφ.φ. ( χ ,χ ',ω )

 ̂ J—OO ^

=  J  <[[[...[Mx, 0, * 7 » ] ,  * 7 » ]...] , <M x\ t)])· (7 .6 .4 4 )

Thus, the high-frequency m om ents can be obtained from  equal-time com m utators. 
N ote th a t since the left hand  side o f Eq. (7.6.44) is bounded, all m om ents of

(χ ,χ ',ω )  for p >  0 m ust exist, and as a result χ φ.φ.(χ ,χ ',co) m ust die off at
large ω  faster than  any power o f ω.

One particularly im portan t sum rule is the /-su m  rule for the particle density. 
We first note tha t

J  ~ ωχ ή Λ ^ ' ω )  =  j j ([dn(x,t)/dt,n(x',t)])

=  ^ν(([/,·(χ,ί),«(χ\ί)]}> (7.6.45)

where n(x,i) is the density operator and j,(x ,t)  =  £ ]a p“<5(x — x a(t))/m  is the 
current operator. The current-density com m utator is easily calculated to be

J  ~ ω Χηη(χ,χ ',ω )  =  · V'(n(x))<5(x — x'). (7.6.46)

The Fourier transform  o f this is Eq. (7.4.21).

7.7 Inelastic scattering

1 Scattering geom etry  and  partia l cross-sections

In C hapter 2, we found tha t quasi-elastic scattering experiments, X-ray scattering 
experiments in particular, provide a direct measure o f static correlations functions. 
In these experiments, the energy change o f scattered particles is no t monitored. 
In inelastic scattering experiments, the energy change o f scattered particles is 
m onitored, and dynam ic ra ther than  static correlations functions can be measured. 
In this section, we will derive the fundam ental forpiulae relating experimentally 
m easured scattering cross-sections to  dynam ic correlation functions and discuss 
their application in a num ber o f particular cases.

The typical geom etry o f a scattering experim ent is depicted in Fig. 7.7.1. An 
incident beam  o f probe particles with m om entum  p =  fik and energy E  scatters 
off a target and emerges with m om entum  p' =  hk' and energy £ '.  The probe 
particles can be neutrons, electrons, photons, or even ions. The flux o f incident 
probe particles is the particle current

Λ #particles #particles ,
Φ =  — ----------=  --------  x  velocity. (7.7.1)

area x  sec volume
The scattered particles are detected by placing a detector along the direction 
defined by the unit vector Ω  =  k'/fc' specified by the po lar angles (θ, φ)  relative to
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Fig. 7.7.1. Geometry for a typical scattering experiment. An incident beam 
of particles with momentum p =  hk and energy E is scattered by a target 
into a state with momentum p' =  hk' and energy £ '. The scattered particles 
are counted in a detector placed along a radius from the target parallel to 
the unit vector Ω =  k'/k ' with polar angles (Θ, φ) relative to the incident 
direction of the incident beam.

the incident beam, as shown in Fig. 7.7.1. The detector collects all particles within 
a solid angle dQ about Ω  and can be arranged to  count only particles within an 
energy dE' o f E '. The partial differential cross-section is simply the counting rate 
at Ω  per unit solid angle per energy interval norm alized by the incident flux:

d2a _  #neu trons/sec  in dQ a t Ω  between E'  and dE' tn n ^
dildE' =  Φ dQdE' '

N ote th a t σ has units o f area. The differential cross-section specifying the total 
count rate a t Ω,

cfio f  d2(j
τ η = ί άΕΊ ΰ ϊ ·  <7·7·3»

is proportional to the scattering intensity I  (q) discussed in Chapter 2. Finally, the 
total cross-section,

° '° ·= J  iE 'i a ^ k -
determ ines the total scattering rate out o f the incident beam. If  the probe particles 
have an internal degree o f freedom such as spin or polarization, the partial cross- 
section for scattering from  spin (or polarization) s to  spin s' can be defined in an 
obvious way.

2 Fermi golden rule and neutron scattering

The cross-sections defined above are quite general and apply to any scattering
process. They can be related to the properties o f the target via Ferm i’s golden
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rule. For simplicity, we will now restrict our attention to neutron scattering in 
which the probe particle is a spin-1/2 neutron of mass mn. Let | A) be a state 
of the target with energy Εχ,  and let | k,s) = | k) | s) be a plane-wave state of a 
probe particle with momentum hk and spin s. In the absence of external magnetic 
fields, the energy E =  h2k 2/2 m n of the state | k, s) is independent of s. We may 
consider the neutron to be confined to a large volume V  and to have normalized 
wavefunctions,

(x | k) =  - j = e ik \  (7.7.5)

The transition rate from the combined neutron-target state | ksi) = | ks) | A) to 
the final state | k's'A') from the Fermi golden rule is

=  IT  I <ks* I u  I k ' s'A'> I2  δ (Ε + Ε χ - Ε ' ~  Ex'), (7.7.6)n
where U  is the interaction potential between neutron and target. Eq. (7.7.6) 
specifies the transition rate between two particular states of the combined neutron- 
target system. We are really interested in the transition rate W'ts-.kY between 
different neutron plane-wave states. This can be obtained by summing Eq. (7.7.6) 
over all final target states λ' and all initial target states λ  weighted by their 
probability of occurrence ρ χ :

Wks->k's' =  ~jr /  (7.7.7)
h w

If the target is in thermal equilibrium, ρχ =  Z -1 exp(—β Εχ )  in the canonical 
ensemble and Ξ-1 exp[—β (Ε χ  — μΝχ) ]  in the grand canonical ensemble (Νχ  is the 
number of particles in state A).

If at a given time there are N  neutrons in the state | ks), then the number of 
neutrons per second scattered into the final neutron state | k's') is NWte-tVf ·  The 
total number of neutrons scattered into all possible final states with spin s' is the 
incident flux Φ times the total cross-section for scattering from spin state s to 
spin state s', i.e.,

__ r f i y
Φ σίοί |s->s'= N  Σ  ^ b - k v  =  N V  J  12 ΰ γ  W ^ k  s’· (7.7.8)

From Eq. (7.7.1), ΦV / N  is the velocity of the incident beam, which for neutrons
is hk/m„,  and N V / Φ =  V 2 m„/hk.  The integral over k' in Eq. (7.7.8) can be
converted to an integral over E' and Ω using

j3/,/ _  j/2 jj/  jr» _  ^  i h2
Comparing Eqs. (7.7.9) and (7.7.3), we obtain the partial differential cross-section

ά2σ  \  m lk ' V 2 m \ r \ \rW'̂ ks-.k's'· (7.7.10)

d 3 k' =  k'2 dk'dn  =  ~ k ' d E ' d Q . (7.7.9)

d O d E ' J ^  n3k (2π)3 
The factor of V 2  in this expression is a result of the box-normalization of our 
wavefunction. Clearly, the measured cross-section should not depend on the
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size of the box used to define normalized plane-wave states. The transition rate 
defined in Eq. (7.7.6) contains the product of four plane-wave wavefunctions 
and is thus proportional to V~2. Therefore, the factor of V 2 appearing in 
Eq. (7.7.10) can be absorbed into the transition rate by replacing box-normalized 
wavefunctions by the wavefunctions (x | k) =  e'kx. With this definition of 
plane-wave wavefunctions, we obtain

skL ■ ϊ 5  ‘̂ 11 m  1 u 1 kV/> |! H E i  ■ + ί ω ) ·

(7.7.11)

where hco =  E —E' is the energy transferred from the neutron to the target. If the 
incident neutron beam has a probability ps of being in spin state s, and no spin 
information is requested in the detection process, the spin-independent partial 
cross-section becomes

ά2σ k' 2

-  j  ̂  Σ  ™ I I u I k’" >  i2 m.
(7.7.12)

Eqs. (7.7.11) and (7.7.12) are the fundamental equations for the partial differential 
scattering cross-section when probe particle and target interact weakly enough 
that multiple scattering processes can be ignored.

3 The Fermi pseudopotential

To relate the cross-sections just derived to target correlation functions, we need 
an explicit form for the interaction potential U. Neutrons interact with the atomic 
nuclei in the target. The wavelength of thermal neutrons used to probe structures 
at the atomic scale is of order 10-8 cm. The range of nuclear forces on the other 
hand is of the order of a fermi (10-13 cm). Hence the scattering potential of an 
individual atom is pointlike, isotropic and well represented for an atom at the 
origin by

/j p-2
U(x)  =  — b3(x) =  αδ(χ).  (7.7.13)

m„
The factor b is called the scattering length. It depends on the particular nucleus 
and, in particular, is different for different isotopes. If the nucleus has a spin, then 
b should be regarded as an operator depending on the combined spin states of 
the neutron and the nucleus. For simplicity, we will for the moment ignore spin 
degrees of freedom of the nucleus. For the energies of interest to condensed matter 
physics, the scattering from a single nucleus is elastic since nuclear transitions 
involve energies of order MeV whereas thermal neutrons have energies of order 
meV. The matrix elements entering the formulae for the scattering cross-section 
are

(U *  | a(x) | k '4 >  =  δλΝλ, (λΝ \ΧΝ) ( ί \ δ ( χ ) \ Κ )  (7.7.14)
η  y pj
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= δλΝλ'Ν j ddx(k  I x)«5(x)(x I k'> = δχΝχ'Ν’

where | Aw) is a nuclear eigenstate. The differential cross-section for scattering 
from a single nucleus is thus

i k = b1· (7-7·15» 
which as expected is isotropic and has units of area.

In general, the target will contain many atoms consisting of a nucleus and 
electrons, which may be tightly bound to the nucleus or mobile, as in a metal. 
Each nucleus interacts with neutrons with a potential of the form of Eq. (7.7.13). 
The scattering potential for a many atom target is then

[/ =  ^ [ / α( χ - χ α) =  ^ α ^ ( χ - χ α), (7.7.16)
a a

where xa is the position of the nucleus a. Again the scattering length bx =  
(m„/2nh 2 )aa depends on the type of nucleus a. The matrix elements in the Fermi 
transition rates are thus

(ksA | U  | kVA') =  (ksA | ^  αα<5(χ -  χ α) | k's'A)
a

=  f  d 3x,5SS, (k | x) (x | k') (A | ^  aa<5(x -  xa) | A')
^  a

=  S slf  f d 3x e ~ ,q x (X  | y  ααδ ( \  — xg) | A')
·* a

=  Ss, J 2 ^ \ a . e - ^  I A'), (7.7.17)
a

where hq =  7i(k — k') is the momentum transfer from the neutron to the target. 
The operators appearing in the differential cross-section can be converted from 
Schrodinger to Heisenberg time-dependent operators with the aid of the integral 
representation of the energy conserving 3 -function,

δ ( Ε λ -  Ε χ  +  Τιω) =  Γ  eW m -E .+ h o X t- t- )  ( 7  7  lg)
J -oo 2 nh

and with the identity

(A | f  (χα) | χ } β- ^ Λ̂ - Ε̂  =  (A | / ( χ α(ί)) I A'), (7.7.19)

where / ( x “) is any function of the particle coordinate operators xa, including
(5(x — x“), e_,qx“ or the density operator n(x). Eqs. (7.7.17) to (7.7.19) used in the
expression, Eq. (7.7.12), for the partial differential cross-section yield

- σ =  —  V  [  d t e ™ ^
dQ.dE' 2nh k  ^  J

λ,λ' J

ρ ^ λ  I bae - * * U  | A')(A' | | A)
a,o'

(7.7.20)
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The states | λ') form a complete set of target states, and

Σ ΐ ^ ' Ν 1· (7.7.21)
λ'

In addition, the equilibrium expectation value of any target operator 0  is

(0) = Σ ρ λ(λ\0\λ).  (7.7.22)
λ

Thus, Eq. (7.7.20) can be rewritten as

S S S F  =  L ·  /  ■ <7·7·23»
α,α'

This is the fundamental formula for neutron scattering.

4 Coherent and incoherent scattering

The states | A) form a complete set of states for all degrees of freedom of
the target. The degree of freedom specifying the type of isotope of a nucleus
a is, however, dynamically decoupled from the other degrees of freedom such 
as the positions of the nuclei. The average over baba> in Eq. (7.7.23) can be 
decoupled from the average over the positions χα(ί). The thermodynamic average 
in Eq. (7.7.23) can thus be expressed in the form

5 =  ^ Μ Ϊ ( α ; α ' ) ,  (7.7.24)
α,α'

where (α; a') is an average depending only on the coordinates χα(ί) and χα (ί'). 
The probability that a nucleus at position xa is a particular isotope is independent 
of a. In particular, if the target contains JVi nuclei of isotope 1 and JV2 nuclei 
of isotope 2, the probability that a nucleus at xa is isotope 1 (2) is simply JVi/JV 
(N 2 / N ) ,  where JV =  JVi +  JV2. Thus, the scattering bx is statistically independent 
of ba> for α φ  a', implying

b J ^  =  ¥ d ^  +  \b\2 ( l - S mr) (7.7.25)
and

S = \ b \ 2 5 > ; α ' )  +  ψ -  \ b  |2] 5 > ; a > ,  (7.7.26)
α,α' a

where b is the mean and b2 the mean-square scattering length.
The partial differential cross-section in Eq. (7.7.23) can now be expressed as a 

sum of two parts. One, the coherent cross-section, is proportional to | b \2  and the 
other, the incoherent cross-section, is proportional to [b2— \ b |2] : 

d2a  
dQdE'

d2a \  Cmc k' 1
dQdE

and

~  Σ  /  (7.7.27)
«.O' J

) = I  (7.7.28)



Table 7.7.1. Coherent and incoherent scattering amplitudes.
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Element z ffc o h ( 1 0  22cm2) <7mc(10 22cm2)

‘H 1 1.8 80.2
2H 1 5.6 2 . 0

C 6 5.6 0

Al 13 1.5 0

V 23 0 . 0 2 5.0

where

tfc o h  =  4π \ b  |2 ( 7 . 7 . 2 9 )

and

σ -inc =  4π[^2— I I2 ] ( 7 . 7 . 3 0 )

are, respectively, the total coherent and incoherent cross-sections from a single 
atom.

Our derivation of the coherent and incoherent scattering cross-sections followed 
from the existence in the target of different spinless nuclear isotopes with different 
scattering lengths. If the nuclei have spin, then the nuclear spin degrees of freedom, 
which, like the isotope degrees of freedom, are dynamically decoupled from the 
positional degrees of freedom, can contribute significantly to a;nc. The coherent 
and incoherent cross-sections for a number of elements are listed in Table 7 . 7 . 1 .  

The large incoherent scattering in some elements arises from the nuclear spin 
degrees of freedom.

5 Cross -sect ions and  correlat ion  fu n c t i o ns

The coherent and incoherent partial differential cross-sections are proportional, 
respectively, to the density-density correlation function and the self-correlation 
function introduced in Secs. 7.1 and 7.4. The coherent cross-section [Eq. (7.7.27)] 
can be reexpressed as

d 2 <T ^  O’co h  k  ί - ι ί  1 \=  1 — (7.7.31)
d Q d E ' )  coh 4π k 2nh

where

Cra(q,<B) =  j  dteU!>u- ^ C nM t - t ' )  (7.7.32)

=  y  J d 3x  J d 3x ' j J d t e ' 0iit- ^ C m (x, x' ,  t, t').

The function

{n ) - l Cm{i\, t -  t') =  i  (7.7.33)
N

α,α'
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is often called the intermediate function in the neutron scattering literature. Alter
natively, the coherent cross-section can be expressed with the aid of Eq. (7.1.5) 
as

d2a  \  =  k' 1 [i/5nn(qjC0)+ , ( } |2 2 πδ{ω)\.  (7.7.34)
dildE' J coh 4π k 2nh

The differential cross-section obtained by integrating this expression over ω  is 
proportional to the quasi-static scattering intensity of Eq. (2.3.7). Note, however, 
that the term containing the factor | (nq) |2, which provides information about 
long-range spatially periodic order, is proportional to (5(ω) and involves no 
energy change in the scattered neutron. It is totally elastic. Thus, the density 
wave amplitudes (mg) determining the degree of periodic order are measured 
by the elastic part of the dynamic neutron scattering cross-section. Information 
about the target dynamics measured by 5„„(q, ω) is contained in the inelastic 
scattering cross-section.

The incoherent scattering cross-section can be expressed as 
d2a  \  ffjnc k' 1

(7'7'35»
where SseiKq, ω) is the Fourier transform of the individual particle correlation 
function introduced in Sec. 7.4. As we saw in that section, Sseif(q, t) is proportional 
to e~Dsq 1,1 in fluids. Thus, neutron scattering from fluids with an incoherent 
scattering cross-section can measure both the self-diffusion constant Ds and the 
density correlation function.

6 Neutron scattering from crystals

In crystals, we may assume to a very good approximation that atomic nuclei 
fluctuate about lattice sites with instantaneous positions that can be determined 
by the displacement variables ui(i). The density correlation function in this case 
is

C„„(x,x', t, t') =  ( Σ  δ(χ  -  R, -  u,(i))<5(x' -  RP -  M i'))> (7.7.36)
Ν'

and
V C nn(q,t)  =  ^ e-'q-(Ri-RK)(e-iq-«.(')e<q-»K(''))

V
=  ^  e-'q (Ri-R|') [̂ e->q ui(i)eiq u,wi')̂  _  ê-iq-ui(i)^e»q-»K('')̂

U'

+  Σ  e_iq(R,- R'') (e~'qUl'(i)) (7.7.37)
U'

The final term in this equation is independent of time and contributes only to the 
elastic scattering cross-section. If there is only one atom per unit cell,
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<ί_σΛ _  ĉoh y 2  - 2 Wg  (7 7 38)
d V J c oh 4π ̂  qG’ ( ' J8)

where, as usual, G is a reciprocal lattice vector and e~2Wc is the crystalline 
Debye-Waller factor defined in Eqs. (6.4.25) and (6.4.26).

The inelastic part of Eq. (7.7.37) contains information about phonon excitations. 
In a harmonic classical crystal,

(g-iq-w W giq-M i')} =  e -([q-(ui(')-»K(''))]2>/2

=  (7 7.39)

where

G i j & W t - t ' )  =  (u , (U )M l ', r ') )

=  /  <7'7·*»
is the phonon correlation function expressed in terms of the response function 
introduced in Eq. (7.3.21). This result follows from the general properties of 
Gaussian integrals discussed in Sec. 5.3. It also applies to quantum harmonic 
crystals. In an anharmonic crystal, there will be corrections to the above equa
tion appearing as extra terms, involving higher cumulants of the displacement 
operator, in the argument of the exponential.

The exponential in Eq. (7.7.39) can be expanded in powers of Gy. The first
non-trivial term in this expansion gives rise to the one-phonon differential cross-
section,

=  ( 7 ' 7 4 1 )
G

Thus, the one-phonon part of the differential cross-section provides a direct 
measure of the displacement correlation function. As we saw in Sec. 7.3, 
this function consists of delta-function spikes at the phonon frequencies in an 
undamped system and Lorentzians in the presence of dissipation. Thus, neutron 
scattering provides a direct measure of the phonon spectrum of crystals. Higher 
order terms in the expansion of Eq. (7.7.39) in powers of Gtj  contribute to 
the scattering cross-section. These terms, since they involve the excitation of 
many phonons, do not have pronounced peaks as a function of frequency and 
contribute only an incoherent background to the cross-section.

7 Magnetic scattering

Neutrons have a spin that couples to magnetic moments in the target via the 
magnetic dipole interaction. Consider for simplicity targets in which only electron 
spin and not orbital angular momentum contributes to local magnetic moments. 
In this case, the magnetic potential energy describing the interaction between 
probe neutrons and the target is



Um =  γμΝσ Ν ■ H, (7.7.42)
where γ =  1.91 is the neutron magnetic moment, μ/ν is the nuclear magneton, and

Η =  - 2 μ Β ^ V x ( s “ x  V  ι ^ Γ ^ τ )  ’ (7·7·43)

where μΒ is the Bohr magneton, and Sa is the spin of electron a. The scattering
matrix element associated with Um is

(ks | Um | k's') =  - 2 vaW*b(s | a N \ s')
1

408 7 Dynamics: correlation and response

• J  ά3χβ~*-*ΣV  x Sa χ  V -
x — x“

N  ί „/\=  -2 γμ Ν(3 | /  | s') (7.7.44)

• J d 3xd3x'e~i,iXV  x ( m ( x ')  x ^  ,

where

m (x ) =  μ Β ^  S “(5(x — x “) (7.7.45)
a

is the m agnetization operator. W ith the aid o f the identity

___ I___ =  [  d<lq (7 7 46)
I x — x' I J (2n)3 q2 ’ ( ' ’

the m agnetic m atrix element o f Eq. (7.7.44) can be expressed as

/
4 TL

d3xe~iq x p̂- [q x (m (x ) x q )].

(7.7.47)

If  the initial neutron beam  is unpolarized,

Σ  Ps (s | σ ?  | s') (s '! σ ?  \ s) =  Stj. (7.7.48)
s,s'

Using the above results in the expression [Eq. (7.7.12)] for the partial differential 
cross-section, we find

d2a k' f  ml λ 2 (8πγμΝ)2
dQdE' ~  k \ 2 n h 2)  2nh ' {Sii t & W S w j M

+(m,(q)) (m7-(-q))2^(oj)]. (7.7.49)
Thus, the elastic part of the magnetic neutron scattering cross-section provides 
information about long-range magnetic order, and the inelastic part provides 
information about spin excitations.

8 How neutron scattering experiments are actually done

Particularly for neutron scattering, it is important to have information about the 
energy as well as the direction of both the incident and the scattered beams. 
At present, there are two ways of performing these experiments. The tradi-
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Monochromat ic

Fig. 7.7.2. Experimental set-up for dynamic neutron scattering. 
Monochromatic neutrons are selected by Bragg scattering. The energy and 
momentum of incident and scattered neutrons are thus well determined.

tional way is to use a reactor with different moderators to cool the neutrons 
to the thermal wavelengths required for the neutron source and then to use 
Bragg scattering from a crystal to select a narrow energy window from this 
source. The monochromatic beam is directed to the sample, and the scattered 
beam is then reanalyzed by Bragg scattering from another crystal before enter
ing the neutron detector. The experiment is shown schematically in Fig. 7.7.2. 
Note that for a typical experiment in which there is energy resolution of the 
scattered beam, the sample, analyzer and detector must all be moved. In addi
tion, each of the three scatterings before detection greatly attenuates the beam 
current from the reactor. Counting rates are often slow (several counts per 
second).

A more recent technique uses a pulsed neutron source and time-of-flight mea
surements to resolve the energy. Charged particles are accelerated in a particle 
accelerator and then collide with a material that produces neutrons from nuclear 
reactions in a short pulse. The pulse is directed onto the sample and from the 
sample to a neutron detector, where it is recorded as a function of time. As the 
distances from the source to the sample and from the sample to the detector 
are known, the neutron velocity and hence its energy can be measured. Thus, a 
single pulse measurement gives the energy spectrum of scattering at a particular 
angle or wave vector, and the incident beam is not attenuated by the analyzer. A 
schematic of a pulse apparatus is shown in Fig. 7.7.3.

Although it is preferable to use incident wavelengths comparable to the size 
of the structure of interest, it is possible to do low-angle scattering to probe 
structures considerably larger than A. For example, there are now detectors with 
a spatial resolution better than 1 mm which can be located several meters from 
the scattering object. For X-rays or neutrons with wavelengths of lA, it is then 
possible to look at scattered wavelengths of the order of microns.
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Fig. 7.7.3. Experimental set-up for pulsed neutron experiments. The time 
dependence of the neutron intensity /  at the detector provides information 
about the energy distribution of neutrons scattered at a particular angle.

9 Scattering o f  charged particles and photons

The analysis just presented for neutron scattering applies with minor modifica
tion to scattering of any probe particles, including charged particles and photons, 
provided the single-scattering approximation is valid. Charged particles interact 
strongly with matter via the Coulomb interaction, and the single-scattering ap
proximation applies only to fast particles scattered through thin samples. The 
single-scattering approximation for light scattering is, on the other hand, often 
valid.

To determine the differential cross-section for the scattering of particles of 
charge Q and mass M  from particles in the sample of charge Qa, we have only 
to replace the potential in Eq. (7.7.13) by the Coulomb potential whose Fourier 
transform is 4n QQa/ q 2. Introducing the charge density p ( \ )  =  QaS(x — \ a(t)), 
we obtain

ά2σ f  Μ  λ 2 / 4π β λ  2 k' 1 τ, _  , λ
d t l d E > ~ \ 2 nh2 )  \ q 2 )  k 2 nh ppiq,C0)' ( 5 )

If the scattered particles are electrons, Q =  e and M  =  me.
Light scatters from inhomogeneities in the dielectric constant e, which depends 

on the density and, possibly, on other order parameters in the system. In isotropic 
fluids, where the dominant dependence of the dielectric constant is on the particle 
density n, a classical calculation gives

ά2σ / I  d e \ 2  /ω ;\ 4 (e; x k')2 r
d n d ^ f  =  \ 2  t o )  ( v )  (2π)3 (7·7·51)

where e,· is the polarization vector of the incident light, k' =  k'/k' ,  and ojt
and are, respectively, the frequency of the incident and scattered light. In
liquid crystals, the dielectric constant is anisotropic and depends on the nematic 
order parameter Qtj  as well as on the particle density n. The scattering cross
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section measures correlations in Qtj  and depends on the relative direction of the 
polarization vectors of the incident and scattered light and the director n. Inelastic 
light scattering provides an ideal probe of sound waves and thermal diffusion in 
liquids and of director modes in liquid crystals.
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Problem s

7.1 Consider the coupled L R C  electrical circuit shown in Fig. 7P.1.

(a) Calculate the frequency-dependent response function yjj(co) for the 
charge qt on capacitor ί =  1,2 produced by a voltage at source j  =  1,2 
at frequency ω.

(b) Calculate χ'ύ(ω)  and plot it as a function of frequency. Discuss the limit 
R - +  0 .

(c) Calculate 1ΰηω_>ο Xij(co) and xjj(oj) and compare these results
with sum rules that can be calculated independently (you may assume 
R =  0 here).

(d) Calculate the thermal equilibrium charge correlation function Sqiqj(oj).

7.2 Calculate the transverse position-velocity and velocity-velocity response 
functions for the harmonic continuum elastic model of Sec. 7.3. Determine, 
in particular, the low-frequency form of x„„(q,z) and the long-wavelength 
form for χ" (q,a>).
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7.3 Calculate the density-density response function using Eq. (7.4.28) for the 
current and a time-dependent external chemical potential μβχ*(χ, ί).

7.4 If the diffusion constant depends on frequency, then

W q ,z ) - X(q) C(q· ? ^) W U_{z + D(q>z)e2
Express D(q, z) in terms of *(q, z) and then, using the analyticity properties 
of x(q,z), show that D(q,z) is analytic in the upper half plane and can be 
written as

\ f  d c o D '{< i,c o )
D (q ,z)  =  / --------------- ,

J ιπ ω  — ζ
where D'(q, ω) =  D'(q, —ω) is the real part of D(q, ω +  ie).

7.5 Generalize the resistor network equation [Eq. (7.4.47)] to include a current 
I (t) inserted at the origin and a current —I  (i) extracted at site x. Show that 
the complex impedance for current flowing from the origin to x is

Ζ(χ,ω )
- /

ddq 2(1— c o s q x )
(2 n f  —icoC +  σ[ν(0) — y(q)]'

From this, calculate the time-dependent impedance Z(x, t) for t >  0 and 
express your result in the continuum limit in terms of the diffusion Green 
function [Eq. (7.4.10)].

7.6 (a) Show that the equilibrium displacement correlation function for a 
damped harmonic oscillator is

Cxx(i) =  r~~i (coscoit ^ — +  sinα>ιί ] e n/2. 
mcoo \  2 .(0 1 J

Use this function to calculate the velocity-velocity correlation function
Cvv(t) and the velocity-displacement correlation functions Cxc(t) and
Ccx(t)·

(b) Calculate the frequency-dependent correlation functions Cvv(<o), Cxv(oj), 
and Cvx(co). Then use the fluctuation-dissipation theorem to calculate 
XvV(co), χ χν((ο), and Discuss the symmetry properties of these
response functions.

1Π (Memory effects) In our treatment of a Brownian particle in a viscous fluid,
we assumed that the friction force was simply a constant friction coefficient
times the velocity. In general, however, the dissipative force at time t
should depend on the velocity at earlier times, and the dissipative coefficient
y should be a time-dependent memory function y(f) =  2η(ί)ψ(ί).  In the
presence of an external force F(t), the velocity equation then becomes

dv Γ° 1 1

-  =  -  /  y ( t ~  t')v{t’)dt’ +  - F { t )  +  -C(t). 
v t  J—00

(a) Using arguments similar to those used to derive Eq. (7.1.17), show that

y(z) =  j f  dtehty(t) = j dco y'(co)πι ω — z
and that y(a>) =  limf_>o ν(ω +  ie) = y'(oj) +  iy"(co), where the imaginary
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Fig. 7P.1. LRC  circuit for Problem 7.1.

part γ"(ω) is related to the real part y'(co) by a Kramers-Kronig relation. 
Show also that y*(a>) =  y(—ω).

(b) Calculate the mobility μ(ω)  relating the velocity to the external force 
via v(oj) =  μ(ω)Ρ(ω)  in terms of y(oj). What is the complex electrical 
conductivity of a system with a density n, of non-interacting Brownian 
particles, each carrying a charge e?

(c) Show that noise correlations must satisfy

ϋζζ(ω) =  Ι (ω)  =  2 Tmy'(co)

to produce thermal equilibrium. Then show that the velocity correlation 
function is

r  r 2 T  y' {(o) 
w(' ’ m  | — ΐω +  ν(ω)|2 '

You may wish to use the fact that y(a>) is analytic in the upper half
plane to obtain this result.

(d) (difficult) If a particle of radius a and density po moves with a time- 
dependent velocity in a fluid of density p, it will excite viscous shear 
waves in the fluid with frequency ων =  —ΐης2/ ρ  (see the next chapter). 
This leads to a singular memory function

y(co) =  - 2 ΐωρ/ρο +  y [(-ian v)1/2 +  1],

where τν =  pa 2 / η  is the viscous relaxation time (the time for a shear 
wave to diffuse across a particle radius). Show that

Cw (t) =  - ^ F ( t ) ,

where m* =  m[  1 +  p / ( 2 p0)], τ =  (m/m*)yt ,  and

F[T] =  V 3/2 Γ  _____e~U~U2dU_____
LJ π J 0 ( τ - ^ - ΐ Υ  +  σ 2^ 2’

where σ2 =  (m/m*)(yτν) =  (9/2 )p/ [po  +  (p/2)]. This implies that F(τ) —> 
σ τ  ~312/ { 2 φ . )  as τ —> oo. Such algebraic rather than exponential fall-off



414 7 Dynamics: correlation and response

of correlation functions at long times is often referred to as a long-time 
tail. Use the above expression for Cw (t) and Eq. (7.5.16) to show that

D ( i ) ^ D [ l - ( T v/ i ) 1/2]

as t —► g o , where D =  T / m y  is the diffusion constant. Thus, the Einstein 
relation is satisfied even though the approach to this result at long time 
is algebraic rather than exponential. Note that when the density of the 
Brownian particle is much greater than the fluid density, σ  —* 0, m* —* m, 
and F(t)  —> e~yM, and Eq. (7.5.10) is regained.

7.8 (a) Show that the conditional probability function P(v , t \ vo , to )  defined in 
Eq. (7.5.32) satisfies

J  dvP(v ,t \v0,to) =  1 , J  dvF(v)P(v ,t \v0, t 0) =  (F(v(t))).

(b) Show that

P ( v
/ OO

,U («“ "-«■«>
•00

Then use Eq. (7.5.18) and the fact that

exp iX J  f{ t ' ) ( ( t ' )d t '  ^  =  exp —m y T k 2 j  f 2(t')dt'

for any function / (t) to show that

P (v ,t \v0, t 0) =  e-(»-W »)2/ 2A-W
^J2nav(t)

(c) The function

P (x ,  t \x0, v0, t0) =  {δ(χ  -  x( t) ) )xo,„o,Io

is the probability that x =  x(t)  at time t, given that x =  xo and v =  vq at 
time ίο. Using Eqs. (7.5.18) and (7.5.22), show that

x(i) -  (x(i)) =  J  dt' ( l  -  er<‘ ~ ‘̂  ({ t ') /m ,

where (x(i)) is given in Eq. (7.5.23). Then, following the same reasoning 
as in part (a), show that

P(x, i|x0,t>0, i0) =  .. . -L ·
Δχ(ί)

where Δχ(ί) is given in Eq. (7.5.26). Finally, average the probability 
P(x, i|x0,t>0, ίο) over a Maxwell-Boltzmann distribution for vq to obtain

P(x, ί|χ0) =  —  1 =e-(x-xo)2/2([Ax(t)]2)
ν/2π([Δχ(ί)]2)

where ([Δχ(ί)]2) is given by Eq. (7.5.13).
7.9 (Diffusion in an external force field)

(a) Show that the stochastic equation for a three dimensional position x(i)
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Fig. 7P.2. Scattering geometry for Problem 7.13.

for a Brownian particle in an external force F for times long compared 
to 1/y where inertial effects can be ignored is

where Γ =  l /α and η =  ζ / γ  is a vector noise.
(b) Now consider a particle of mass density p  in a fluid of density p 0  in a 

gravitational field g =  gez. Show that the Smoluchowski equation for 
the probability P(x, i) that the particle is at position x at time t satisfies 
the equation

where D =  Τ Γ  =  T /(ym),  c =  g[l — (p /po j i / y ,  and j =  —(D V P +  cP)  
is the current. This defines a directed diffusion problem in which there 
is an average drift along ez.

(c) Show that the solution to this equation in an infinite system subject to 
the boundary condition P(x, 0) =  δ ( \  — xo) is

This shows that there is an average drift in the direction of the applied 
force. As a result, diffusion in an external field is often referred to as 
directed diffusion

(d) (Sedimentation: difficult) A physical container is not infinite, and no 
current can flow through the boundaries of the container. Assume 
P(x, i) =  P ( z , t )  does not depend on x or y  and solve the directed 
diffusion equation for P(z, i) subject to the boundary condition P(z,0) =  
S(z — z0) and j z =  0 at z =  0.

MO Show that the probability P(x,p, t \xo,po, to)  that a particle has position x 
and momentum p  at time t, given that it had position xo and momentum po 
at time ίο, satisfies Kramer’s equation

—  — TF +  η — —Γ ν χ^Γ +  η,

—  =  DW2P  +  c · V P  ξ  —V  · j,
dt
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where J f  =  p2/2 m  +  U (x)  is the Hamiltonian for a particle in an external 
potential U(x). Show that a stationary solution to this equation is P  =
e - ^ T .

7.11 Calculate the high-frequency moments f  (doj/n)oj"-/^x(oj) for n =  1 and 
n =  3 for the quantum anharmonic oscillator with Hamiltonian

7.12 Use the spectral representations for (χ,χ',ω) and (χ,χ',ω) to derive 
the fluctuation-dissipation theorem.

7.13 This problem is about using light scattering to measure the self-diffusion 
constant of non-interacting spherical particles of volume V0  suspended in a 
fluid. The geometry of the scattering process is sketched in Fig. 7P.2. There 
are N  particles at positions ra(i). The incident electric field is

The detector is at position R relative to the average position of the scattering 
particles. The wave vector of the scattered field ky is parallel to R.

(a) Show that the total electric field at the detector is

where a — ao is the difference between the dipolar polarizability of the 
particles and the fluid and Φ is the angle between k/ and the normal to 
k„ as shown in the figure.

(b) Assuming the particles do not interact, show that

The photocurrent in a phototube (the detector) is proportional to the 
electric field intensity I(t)  = | E(i) |2 so that 5//(ω), or its Fourier trans
form Su(t) ,  are directly measurable. Note the advantage of measuring 
Su  rather than See- D q 2  is of order 500 Hz. To measure a frequency 
shift of 500 Hz relative to the frequency 1014 Hz of visible laser light 
is difficult. To measure a 500 Hz shift in frequency relative to zero is, 
however, fairly straightforward.

2m 2

Ej =  Εο6ί(|£''Γ_ωο,).

E(o =  5 > α(ί) =  ^ E 0ei[qr*( , W ] ,
a  a

where t' =  t — R/ c ,  q =  k, — k/, and

E0 =  Ε0(ω0/ c)2(elk/R/  R)(cc — ao)Vo sin®,

(c) Show that the intensity-intensity correlation function satisfies
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Hydrodynamics

Thermodynamics provides a description of the equilibrium states of systems with 
many degrees of freedom. It focuses on a small number of macroscopic degrees of 
freedom, such as internal energy, temperature, number density, or magnetization, 
needed to characterize a homogeneous equilibrium state. In systems with a broken 
continuous symmetry, thermodynamics can be extended to include slowly varying 
elastic degrees of freedom and to provide descriptions of spatially nonuniform 
states produced by boundary conditions or external fields. Since the wavelengths 
of the elastic distortions are long compared to any microscopic length, the 
departure from ideal homogeneous equilibrium is small. In this chapter, we will 
develop equations governing dynamical disturbances in which the departure from 
ideal homogeneous equilibrium of each point in space is small at all times.

8.1 Conserved and broken-symmetry variables

Thermodynamic equilibrium is produced and maintained by collisions between 
particles or elementary excitations that occur at a characteristic time interval 
τ. In classical fluids, τ is of order 10“ 10 to 10“ 14 seconds. In low-temperature 
solids or in quantum liquids, τ can be quite large, diverging as some inverse 
power of the temperature T .  The mean distance λ  between collisions (mean free 
path) of particles or excitations is a characteristic velocity v times τ. In fluids, 
v is determined by the kinetic energy, v ~  ( T / m ) 1/2, where m  is a mass. In 
solids, v is typically a sound velocity. Imagine now a disturbance from the ideal 
equilibrium state that varies periodically in time and space with frequency ω  and 
wave number q. If an <  1 and qX <C 1, the disturbance varies slowly on time 
and length scales set by τ and A, and there will be many equilibrating collisions 
in each of its temporal and spatial cycles. Thus, each point in space is close to 
thermodynamic equilibrium at each instant of time, and one would expect to be 
able to treat such disturbances as perturbations from thermodynamic equilibrium 
even though they vary in time.

Most disturbances in many body systems have characteristic frequencies that 
are of order τ-1 . If excited, they decay rapidly to equilibrium. There are, however, 
certain classes of variables that are guaranteed to have slow temporal variations 
at long wavelengths. These are

417
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(1) densities of conserved variables, and

(2) broken-symmetry elastic variables.

A conserved density such as the number density n obeys a conservation law of 
the form

f + V . j  =  0, (8.1.1)

where j is the particle current. When Fourier transformed, such equations imply 
frequencies ω  that go to zero with wave number q. Indeed, in the preceding 
chapter, we found that the characteristic frequency associated with the conserved 
density of particles suspended in a fluid was —iDq2. In Chapter 6, we saw that 
the free energy is invariant with respect to the spatially uniform displacement of 
broken-symmetry elastic variables such as the angle Θ in the xy-model. Thus, 
spatially uniform changes in elastic variables lead to new equilibrium states that 
are stationary in time. This implies that the frequency associated with zero wave 
number displacements of broken-symmetry elastic variables is zero. Spatially non- 
uniform displacements will, however, have nonzero characteristic frequencies.

Historically, the first system whose long-wavelength, low-frequency dynamics 
was given serious attention was water. The dynamics of water in motion is called 
hydrodynamics.  Today, the term hydrodynamics is used for the long-wavelength, 
low-frequency dynamics of conserved and broken-symmetry variables in any 
system. Thus, for example, spin systems and crystalline solids as well as water 
have a well defined hydrodynamics. They will be the subject of this chapter.

The time dependence of each conserved variable is determined by a current as 
in Eq. (8.1.1). Currents for broken-symmetry variables can, as we shall see, also be 
introduced. For slowly varying disturbances, these currents are local functions of 
the fields thermodynamically conjugate to the hydrodynamical variables. Thus, as 
we saw in Chapter 7, the current for particles suspended in a fluid is proportional 
to the gradient of their chemical potential. The equations relating currents to 
thermodynamic fields are called constitutive relations. The hydrodynamics of a 
given system is determined by its hydrodynamical variables and their currents 
and associated constitutive relations. As we discussed in the preceding chapter, 
fields can be classified according to their sign under time reversal. Currents 
have the opposite sign under time reversal from their associated hydrodynamical 
variables. Coefficients relating a current and a field with the same sign under time 
reversal are nondissipative and are ultimately responsible for propagating modes 
such as sound waves. These nondissipative coefficients can usually be determined 
by straightforward invariance arguments. For example, the time derivative d a /d t  
of the displacement variable u in a crystal in motion at constant velocity v 
must be equal to v. In addition, the momentum density g must be equal to the 
mass density times v. The equation d u /d t  =  v provides a coupling between the 
hydrodynamical variables u and g that does not involve any dissipation since it 
applies to a steady state situation. Relations between a current and a field with
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the opposite sign under time reversal are necessarily irreversible. They imply 
entropy production and are thus dissipative.

Our program for obtaining hydrodynamical equations is the following. First, 
since hydrodynamics is basically a perturbation about thermodynamic equilib
rium, we have to generalize our treatment of thermodynamics and statistical 
mechanics to include all conserved and broken-symmetry variables, including for 
example the momentum in fluids. Secondly, we must identify the time dependence 
induced in hydrodynamical variables of one sign under time reversal by nonzero 
values of variables of the opposite sign, i.e., we must identify reactive couplings. 
Finally, we must derive irreversible dissipative couplings.

The hydrodynamics of water is quite complicated because there are five hy
drodynamical variables arising from the five conservation laws (mass, energy and 
momentum) in a one-component fluid. The imposition of a broken symmetry, 
as in a liquid crystal, leads to even greater complexity. We will, therefore, study 
first the hydrodynamics of a simple model with only two conserved variables 
and a single broken-symmetry variable in the low-temperature, ordered phase. 
This model will introduce all of the ingredients essential to the understanding of 
hydrodynamics, including generalization of thermodynamics to include variables 
describing states of nonzero motion, derivation of reactive and dissipative consti
tutive relations, determination of the linearized mode structure, and calculation 
of response functions. We will then derive and discuss the hydrodynamics of spin 
systems, one- and two-component fluids, liquid crystals, crystalline solids and 
superfluids.

It is possible for variables other than conserved or broken-symmetry variables 
to have characteristic frequencies that are much slower than the inverse collision 
time. For example, decay times of a nonconserved order parameter diverge as a 
second-order phase transition is approached. In Sec. 8.6, we will discuss dynamic 
scaling of correlation functions and characteristic frequencies near second-order 
critical points. This is a natural generalization of the static scaling discussed 
in Chapter 5. We will then discuss stochastic dynamical equations for both 
hydrodynamical and slow critical variables. These are the natural generalizations 
to continuous fields of the Langevin equations discussed in Sec. 7.5.

8.2 A tutorial example -  rigid rotors on a lattice

The hydrodynamics of real physical systems is either quite complicated because of 
the large number of hydrodynamic variables (e.g. fluids, liquid crystals and solids) 
or confusing because of possibly unfamiliar time evolution (e.g. spin systems). 
We will, therefore, study a simple model system that has no known physical 
realization but that will illustrate all of the essential features of hydrodynamics. 
The study of real systems will then be almost straightforward though sometimes 
tedious.
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1 Descr ip t ion  o f  the mode l

The model we will investigate is one with a symmetric rigid rotor or bar at each 
of N  sites 1 on a d-dimensional lattice, as shown in Fig. 8.2.1. Each rotor can 
rotate frictionlessly in the two-dimensional xy-plane. The direction of the rotor 
at site 1 can be specified by the unit vector

V] =  (cos 9], sin 9|), (8.2.1)

where ,9] is the angle of the rotor relative to the x-axis. Neighboring rotors do
not touch, but there is an exchange-like interaction potential favoring parallel
alignment. At high temperature, the rotors are randomly oriented like spins in 
the paramagnetic phase. At low temperature, they align along a common axis like 
the molecules of a nematic liquid crystal, as shown in Fig. 8.2.1b. The ordered 
phase, like the nematic phase of liquid crystals, is characterized by a symmetric, 
traceless tensor order parameter,

(6y(*)) = ( Σ  ( V|iV|j -  \ δί^) s (x ~  R|̂

=  ( N / K ) S ( ^ - ^  ( i , j  =  x , y) ,  (8.2.2)

where V  is the volume and n(x) =  [cos 0(x), sin 0(x)] is the director specifying the 
direction of average alignment at x. The distinction between the microscopic angle 
9] specifying the direction of the local rotor at site 1 and the coarse-grained angle 
0(x) specifying the direction of the director n(x) is identical to that introduced 
in Sec. 6.1 in our discussion of fluctuations in the xy-model. A potential energy 
favoring parallel rotors which is invariant under the inversion operation V] —» —vi 
(9| —* 9] +  π) is

U  [9,] =  -  J  Σ  cos Pi®! -  ^ )] · (8·2·3)

Except for the factor of two in the cosine assuring inversion symmetry, this is 
identical to the classical xy-Hamiltonian of Eq. (6.1.16).

Because the lattice is rigidly fixed and the rotors rotate without friction, the 
rotational angular momentum of the rotors about the z-axis is conserved. Thus, 
there are two, and only two, conserved variables in this system: the energy E  and 
the angular momentum L. The energy density and angular momentum density 
operators (in the sense of Chapter 3), έ(χ, t) and /(χ, i), obey local conservation 
laws,

^ + V - j £ =  0, ^ + ν · τ = 0 ,  (8.2.4)
dt dt

where jc and τ are, respectively, the energy and angular momentum current oper
ators. Ensemble or coarse-grained averages of the above conservation equations 
lead to identical equations relating the averaged densities, ε(χ, t) =  (e(x, t)) and 
/(x, t) =  ( l ( \ , t ) ) ,  to the averaged currents, jc(x, f) =  (jc(x, f)) and τ(χ, ί) =  (τ(χ,ί)).
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^  y  ^ /  f
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(a) (b)

Fig. 8.2.1. (a) Disordered phase of the rigid rotor model. Rigid rotors at 
lattice sites 1 rotate freely about a fixed axis. The direction of the rotors is 
random, (b) Ordered phase of the rigid rotor model. Rotors align along a 
common axis as in a nematic liquid crystal. The order parameter (gy) is 
nonzero.

It is important to remember that ε and τ are even under time reversal whereas I 
and jc are odd under the same operation.

In the ordered phase, the angle 0(x) is an elastic variable with associated free 
energy [Eq. (6.1.1)],

Ή /  ddx p s( v e ) 2 = l- J  ddx p  sv i  νθ =  V 0 . (8.2.5)

If Θ =  0 in the equilibrium state, then n =  (1,0), (Qxx) =  —(Qyy) =  ( N / V ) S / 2 ,  
and (Qxy) =  0. Small changes of Θ produce a non-vanishing (Qxy) =  2(ζ)χχ)δθ.  
Thus, for small deviations from the ground state, Θ =  (Qxy) / ( 2 ( Q XX)). As in a 
nematic liquid crystal, the bars are inversion invariant, and all physical quantities 
must be invariant under the transformation n —> —η. Θ is even under time reversal.

2 The d i sordered phase

In the disordered phase, the only hydrodynamic variables are ε and /. Before 
we can study the hydrodynamics of this system, we must first include the an
gular momentum in its statistical mechanics and thermodynamics. We begin by 
constructing the Lagrangian, from which we can obtain the Hamiltonian that 
controls statistical averages. If each rod has a moment of inertia / ,  then the 
Lagrangian is

(8.2.6)
1

where U  is the potential energy like that of Eq. (8.2.3). From this, we can 
construct the angular momentum of each site,

d<£
Pi =  ^ r  =  « i ,  (8.2.7)
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and the Hamiltonian, 
n2

t f  =  + u - (8·2·8) 
1 21

Since U  depends only on ,9] — ,9]', it is straightforward to verify that the total 
angular momentum,

L  =  Y^Px,  (8.2.9)
1

is independent of time, i.e., it is a conserved quantity. The associated angular 
momentum density is

?(x, i) =  ^  Pi«5(x — Ri). (8.2.10)
1

Since L  is conserved, it is possible to have stationary states (i.e., states that do 
not vary in time) in which (L) =  V  (?) is nonzero. Thus, stationary states are 
characterized by their angular momentum density / =  (?) as well as by their 
energy density ε. If (?(x, i)) is independent of x, then the average angular velocity 
of each rotor is the same, and we can introduce an angular velocity Ω via

/ =  (/) =  /Ω, (8.2.11)

where /  =  N I / V  is the moment of inertia per unit volume. The angular frequency 
Ω(/) is determined completely by the value of the stationary angular momentum 
density. More generally, /  could be a function of / and ε, and Ω(Ζ, ε) would be a 
function o f both I and ε.

Having established that stationary states with a nonzero I are possible, we next 
need to identify ensembles that lead to equilibrium nonzero values of Z. Clearly, 
the canonical ensemble constructed from the Hamiltonian of Eq. (8.2.8) will 
lead to I =  0 because it is a minimum at pi =  0 for every 1 and it is an even 
function of pi. To create an ensemble favoring l φ  0, we need only add a term
—QeL =  —Qe pi to t f .  Rather than adding such a term directly, we will show
how it arises naturally from a Lagrangian expressed in terms of angular velocities 
relative to a coordinate system rotating with angular velocity Ω*. Define the 
relative angle .9'i and its angular velocity an =  ,9[ via

9i =  Ω,,ί +  θ'ι

$ι =  Ω*. +  (o\. (8.2.12)
Then, because ,9i — .9̂  =  ,9'i — ,9V, the Lagrangian as a function of ,9'i is

*  =  \ I  + ω·)2 -  w ·  <8·2·13)
1 1

This Lagrangian differs by a total time derivative from one in which the kinetic 
energy is \ l  ^  ω,2 rather than \ l  ^ (Ω *  +  ωι)2. The equations of motion for 
,9'i predicted by these two Lagrangians are thus identical. Either can be used to 
construct momentum conjugate to ω \ and a Hamiltonian. The Lagrangian of Eq.
(8.2.13) will be more useful to us. The momentum conjugate to ωi is
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SO?
Ρι =  ^ = ί ( α  +  ωΐ) =  ί Σ Λ  (8.2.14)

Thus, the value of the canonical momentum p\ is 191, independent of the value 
of Ω,,. The Hamiltonian associated with the Lagrangian of Eq. (8.2.13) is then

j f T =  Σ  p m  -  f£
1

=  \ Y ^ ( P i / n  +  U m - i l eL  (8.2.15)
1

=  -  Q.eL,

where is the Hamiltonian in the frame with Ω,, =  0 and L  =  =
5̂ 1 /  (Ω,, +  ωι) is the total angular momentum. It is a straightforward exercise to 
verify the Poisson bracket relation, { 3 f , L }  =  0, and that L  is conserved. Note 
that L  is the rest frame angular momentum regardless o f the value of Ω,,. Note 
also that the Ω,, is thermodynamically conjugate to the angular momentum (see 
Chapter 2).

Thermodynamic functions can now be determined via the partition function, 
Ξ(Γ,Ω^) =  τ Γβ-(^-αί-)/Γ =  es-(£-£2eU.»/r

(8.2.16)
-i/[s,]/r=  ± _ {2 n I T ) dN/2 eNIil2' / W  Π /  dQ\e

1

where S  is the entropy and E  =  ( J f )  is the internal energy. From this, the average 
angular momentum in thermal equilibrium is easily found to be

<L>= m = N , a -  ( 8 '1 1 7 )

Thus, in thermal equilibrium, the frequency Ω introduced in Eq. (8.2.11) is equal 
to Ω£. This is really just the statement that when there is an equilibrium angular 
momentum, the average angular velocity of each rotor will be φ ι )  =  Ω =  / / / ,  
and the average angular velocity measured relative to the frame rotating with 
frequency Ω£ =  Ω will be zero, since by Eq. (8.2.12)

(ωι) =  Ω-Ω„ (8.2.18)

In what follows, we will generally measure all angular velocities in the rest frame
so that Q.e will be zero. It is useful, however, to remember that there is the same 
distinction between Ω and Q e that there is between the equilibrium and external 
chemical potential μ  and μβχ* that we encountered in our discussion of diffusion 
in Sec. 7.4.

The thermodynamic potential associated with the partition function of Eq.
(8.2.16) is

\ ¥ ( Τ , Ω )  =  — T  In Ξ (Γ ,Ω ) =  E  — Q {L) -  T S .  (8.2.19)

It satisfies the differential thermodynamic relation
d W  =  - S d T  -  (L )dil. (8.2.20)
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Here, since we are considering only relations valid in thermodynamic equilibrium, 
we have dropped the distinction between Ω and i l e ; they are equal in this case. 
This equation implies a relation (the volume V  is constant),

Tds  =  de — ΩάΙ, (8.2.21)

between intensive densities ε, / and s =  S / V  of extensive quantities. This 
equation is the analog o f Eq. (3.1.39) for isotropic fluids. The entropy density 
s is a thermodynamic potential that is a function of the variables ε and /. The 
variables Ω and T  are also functions of ε and / via the relations

Ω(ε,/) =  - τ | )  , Γ"1(ε,/) =  ^ ^ .  (8.2.22)

We will be principally interested in states near the equilibrium state with / =  0. 
In this case, the entropy density can be expanded in powers of / as

s(e,l) =  s0 ( e ) - ^ L l 2, (8.2.23)

where J-1 =  d€l /dl )e.
The fundamental thermodynamic identity, Eq. (8.2.21), and the continuity

equations (8.2.4) can now be used to tell us how the entropy changes in response
to changes in the conserved hydrodynamical variables:

ds δε dl _  ...
T  — =  Γ - Ω -  =  - ν · ] ε + Ω ν · τ  

d t d t  dt
=  -  v  · (p -  Ωτ) -  τ · νΩ. (8.2.24)

Then, using the identity

V  · Q =  T V  · ( Q / T )  +  Q · (V T /T ), (8.2.25)

we obtain
3s \
-  +  V  · (Q/Γ ) J =  - Q  · ( V T / T )  -  τ · v a  (8.2.26)

where

Q =  j e -  Ωτ (8.2.27)

is the heat current. Integrating Eq. (8.2.26) over a large volume subject to the
boundary condition that the heat current is zero at its outer surface, we obtain
an expression for the total rate o f entropy production,

, d S = f
dt  J

ddx [ - Q  ■ ( V T / T )  -  τ ■ νΩ], (8.2.28)

which must be non-negative.
In reversible, non-dissipative processes, the entropy remains constant, i.e., dS /d t  

is zero. Thus, in the absence o f  dissipation, the currents τ and Q must be zero:

τ =  0; Ο = ί ε - Ω τ = 0 .  (8.2.29)

Since by the second law o f thermodynamics, the entropy always increases when 
constraints are removed from the system, the rate of entropy production must be 
strictly positive when dissipation is allowed. When T  and Ω are spatially uniform,
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the currents are zero. We therefore expect τ and Q to be linearly proportional to 
V T  and VQ. The constitutive relations between these variables must be chosen 
so that d S / d t  is positive. In addition, dissipative currents of one sign under time 
reversal must be proportional to variables of the opposite sign. These constraints 
imply

Q  =  - k V T ,  τ =  —Γ ν Ω , (8.2.30)

with κ  >  0 and Γ >  0 because
A  C Γ

T  —  =  /  ddx [ K { V T ) 2/ T  +  T(VQ)2] >  0. (8.2.31)

κ  and Γ are transport coefficients; κ  is the thermal conductivity. Eqs. (8.2.30) are 
constitutive relations expressing the currents in terms of a spatial derivative of 
the fields T  and Ω conjugate to E  and (L). There is no term relating τ to V T  
because they have the same signs under time reversal (or / and T  have opposite 
signs). Similarly, there is no term coupling Q to νΩ .

The equations for the energy and angular momentum densities linearized about 
the state with zero angular momentum and Ω =  0 are, therefore,

%  -

=  -  v  · τ =  Γ ν2Ω. (8.2.32)

These equations can be closed with the aid of the thermodynamic relations

d& =  J ~ ldl, d T  =  C f lde, (8.2.33)

where C; is the specific heat at constant /. C; and /  are particular realizations of
a susceptibility relating changes of conjugate variables. We now obtain

=  β εν 2ε, ~  =  D,V2/, (8.2.34)

where

D e =  K /C h D t =  Γ / Ϊ  (8.2.35)

are, respectively, the thermal and angular momentum diffusion constants. Thus,
both ε and / relax diffusively. De and D/, like the diffusion constant [Eq. (7.4.32)] 
for particles in a fluid, are the ratio of a transport coefficient Γ to a susceptibility 
χ. This form is quite general. The dissipative parts of the response functions can 
be obtained directly using the methods introduced in Sec. 7.4:

f M ’™) „  D eq2
=  ‘ V  +  i W  (8'2J6)

=  ,  * £  , 8 . 2 . 3 , )

ω ω 2 +  (Diq2)2

From this we see that there is one mode (one peak in a response function) for 
each of the conserved variables ε and /. This result is quite general. There is 
always one mode associated with each conserved variable and, as we shall see 
shortly, with each broken-symmetry variable.
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Eqs. (8.2.34) are the phenomenological diffusive dynamical equations for the 
conserved densities ε and /. Identical equations control the time development of 
the conjugate fields T  and Ω as long as the linear thermodynamic relations of Eqs. 
(8.2.33) hold. Thus, for example, S T / d t  =  DeV 2 T.  This is the equation of thermal 
diffusion. We regard the equations in terms of ε and / as more fundamental than 
those for T  and Ω because the former variables obey microscopic conservation 
laws.

3 The ordered  phas e

The free energy of the ordered phase is completely independent o f the spatially 
uniform angle variable Θ. Gradients of Θ do, however, increase the free energy, 
and v$ =  V 0 must be included as an independent thermodynamic variable. v$ is 
also a broken-symmetry hydrodynamical variable whose characteristic excitation 
frequencies go to zero with wave number q. ε, I and \g are the only hydrodynamic 
variables. All other variables relax to equilibrium values determined by local 
values of ε, / and v$ in microscopic times τ; they do not need to be considered 
at any stage in the derivation o f hydrodynamical equations. It is possible, 
however, to include non-hydrodynamical variables in a non-rigorous way by a 
slight generalization of the methods presented here.

Thermodynamic functions describing the ordered phase must be a function 
either of v$ or its conjugate field he in addition to T  and Ω. The function 
W ' ( T , Q  hg) =  Ε — Ω(£) — T S  — f  ddxhg · vg is a natural function of hg, whereas

W  =  W ' ( T , a , b e )  +  J d dxhe ■ νθ =  E - i l ( L )  -  T S  (8.2.38)

is a natural function of Τ,  Ω and v$ satisfying

d W  =  - S d T  -  LdQ. +  j  ddxhe ■ dve. (8.2.39)

From this follows the fundamental relation

Td s  =  άε — ΩάΙ — h# · dve (8.2.40)
among intensive quantities. The potential W { T can be expanded in a 
power series in v$ for small v$. It must reduce to W(T,Q. )  when v$ is zero. There 
is no linear term in v$ because v$ is zero when he is zero. The coefficient of vj  is 
independent of Ω for small Ω. Thus, for small v$ and Ω, we have

W ( T ,C l , v e) =  W ( T , 0 ) + F el( T , y e). (8.2.41)

The conjugate field he satisfies

h =  -  Τ — λ  =  
m dvm) eJ V d v e i) TSl

=  Psvei. (8.2.42)
The first line of Eq. (8.2.42) is generally valid. The second line is valid only to 
lowest order in vg. Since we will be most interested in modes associated with the
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equilibrium state with vg =  0, the latter form will suffice for our purposes. In this 
case, the entropy density can be expanded about the state with / =  0 and v$ =  0 
as

To treat the dynamical properties of Θ and \g, we define the “current” X  via

We first consider the reactive part of X .  In the ordered phase with nonzero (Q ij) ,  

the director n(x, i) will rotate with the average angular frequency of the rotors. 
Thus, in an ordered stationary state with nonzero angular momentum,

Alternatively, the angle θ' measured with respect to a frame rotating with fre
quency Ω,, will satisfy άθ '/ d t  =  Ω — Ω,,. There is no dissipation in the above 
relation; it will be satisfied so long as there are no external perturbations. Ω is 
the reactive or nondissipative part of the current X .  As we have seen, reactive 
parts of currents always couple the time derivative of one variable to another 
variable with opposite sign under time reversal. The dissipative parts of currents 
couple the time derivative of one variable to other variables with the same sign 
under time reversal. We define the dissipative “current” X '  via

Since Θ is a broken-symmetry hydrodynamic variable, we expect X '  to tend to 
zero with wave number. The equation of motion for \g is

Then the thermodynamic relation [Eq. (8.2.40)] and the conservation laws [Eqs. 
(8.2.4)] for ε and / imply

(8.2.43)

(8.2.44)

(8.2.45)

X  =  -Ω  +  X '. (8.2.46)

(8.2.47)

Τ’— =  —V  · jE +  Ω ν  · τ — hg V  · (Ω — X ') (8.2.48)

so that the entropy production equation becomes

Τ  +  V  · ( Q / T ) ) =  —Q -(V 7 7 T )—(τ+1ΐ0)·νΩ—JTV-lio,(8.2.49)

where

Q  =  f  — Ωτ — heX ' (8.2.50)

is the heat current.
In the absence of dissipation, entropy production is zero,

τ =  - h 0, Q  =  0, X ' =  0, (8.2.51)

and

(8.2.52}
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(8.2.53)

These are the equations determining the modes of the system in the absence of 
dissipation. Note their similarity to Poisson bracket equations [Eq. (7.2.2)] for 
the harmonic oscillator.

We should pause at this point to assess what our formal manipulations have 
told us. We began with a statement that άθ/ d t  is equal to Ω in steady state 
situations when there is a nonzero angular momentum. The requirement that 
there be no entropy production for non-dissipative processes then told us that 
there must be a reactive term in the angular momentum current equal to — h#. 

This term could not have been predicted using arguments with spatially uniform 
fields since he is nonzero only when there is spatial variation of Θ. The end result 
is that the equations for / and Θ, which have opposite signs under time reversal, 
are coupled. This is analogous to the coupling between p  and x in the simple 
harmonic oscillator discussed in Sec. 7.2. A linear relation between the time 
derivative of a variable u with one sign under time reversal and a variable v with 
the opposite sign will invariably lead to a reciprocal linear relation between the 
time derivatives of v and u. Usually, one relation can be obtained using invariance 
arguments (such as those used to obtain the relation between Θ and Ω); the other 
then follows from requirement of zero entropy production. The derived relation 
usually involves more gradients than the fundamental relation following from 
invariance arguments. The time derivative of either of Eqs. (8.2.52) or (8.2.53) 
leads to second-order sound-like equations,

and predict undamped propagating modes with a sound-like dispersion relation

Reactive couplings between variables with opposite sign under time reversal 
usually lead to propagating modes with linear dispersion in q and a velocity 
proportional to the square root of a rigidity divided by some measure of inertia. 
There are cases, as we shall see, however, where these modes can become 
overdamped and be effectively diffusive.

Constitutive relations for the dissipative parts of the currents can be derived 
just as in the disordered state. They are

y is a new dissipative coefficient not present in the disordered phase. It must 
be positive for positive entropy production. The ordered phase is anisotropic, 
and dissipative currents can depend on the direction of spatial variation (V) 
relative to the local director n(x). Thus, the dissipative coefficients κ and Γ of the

(8.2.54)

(8.2.55)

Qi — KijVjT,

τ =  - h 0 +  τ', τ' =  -Γ ,,  ν ,Ώ , 

X '  =  - y V  · h0  =  - y p sW2e.

(8.2.56)
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disordered phase become tensors,
Kij =  κ n,nj +  k±(<5,7 -  η,η,·),

Tij =  Γ i n,nj +  Γ -  η,η,), (8.2.57)

in the ordered phase. X '  and Q have the same sign under time reversal, and in 
general there could be dissipative cross-couplings of the form

I ' ~ V T ,  Q ~  V  · he. (8.2.58)

Other symmetries, however, prevent such couplings. Q is a vector. The only 
possible way to create a vector from V  · h$ would be to use the director n in
nV · he. This is not permitted because all physical quantities must be invariant
under n —> —n.

The complete linearized hydrodynamic mode equations in the ordered phase 
are

-  =  c r ' K t j W j s ,

dR
—  =  Ω +  y p sV 20 =  Γ ι 1 +  y p sV 2e, 
dt
Λ I
— =  psV  · vg +  TijWjQ =  p sW29 +  /  'Γ,-,ν,ν,·/.

(8.2.59)

The energy mode decouples from the others and remains diffusive as it was in 
the disordered phase. Its frequency,

ω =  — ί(Κ|| cos2 θο +  κ±  sin2 θο)C,_ 1q2, (8.2.60)

depends on the direction of q relative to n0, the uniform equilibrium direction of 
n (q · n0 =  q cos θο). The “sound wave” arising from the coupling o f Θ and / is 
now damped:

1

ω = -i(De +  Di)q 2  ±  [4ps7 - Y  -  (De -  D,) 2 qψ 2

where

and

1  9± c q  -  i - D q %

D e =  y p s, D , = I  ‘(Γ,, cos2 0o +  r_L sin2 0o) 

D =  (De +  D t)

(8.2.61)

(8.2.62)

(8.2.63)

(8.2.64)

and where

c =  (ps/ n 1/2

is the “sound velocity”. There are in reality two sound modes at positive and 
negative frequencies. Thus, the ordered phase, which has one more hydrodynam
ical variable than the disordered phase, has one more mode than the disordered 
phase, with a total o f three.

The response functions for Θ and / can be obtained from the equations of 
motion, Eqs. (8.2.59), via the Laplace transform technique we used to obtain the
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diffusive response function in Sec. 7.4. The Laplace transform o f Eqs. (8.2.59) 
yields the matrix equation,

/  0(q,co) \  _  J_ /  - i ( o + D , q 2  Γ 1 \ ( 0 ( q , t  =  0 ) \
\  /(q,co) /  Δ \  — p sq 2  —ίω +  Deq 2  )  \  /(q, ί =  0) / ’

for 0(q,co) and /(q, ω), where

Δ =  (—i<o +  D iq2){—ico +  Deq2) +  p sI ~ lq2

«  — ω 2  +  c2 q 2  — ia>Dq2. (8.2.66)

To calculate response functions from Eq. (8.2.65), we need the matrix generaliza
tion of Eqs. (7.4.14) and (7.4.17),

0«(q>ω) = ^  b(a/i(q,«) -  x̂ (q)hfo(q)ey(q, t = O), (8.2.67)

where θα =  (Θ,Ι) and summation over repeated indices is understood. Both 
'/'βθ{% ω ) and χ",(q,co) are real and odd in ω.  They can, therefore, be obtained by 
taking the real parts of the θ — Θ and / — / components of Eq. (8.2.65) :

X'e'e(q,<a) =  1 (o2 P q 2  -  (ω 2  -  c2 q 2 )P ,q 2

ω p sq 2  (ω 2  — c2 q 2 ) 2  +  (coDq2 ) 2

α & ω )  =  ,8.2.68)
ω  (ω 2 — c2q2)2 +  (Dcoq2)2

Note that the same modes appear in both χ'βθ and χ",. The intensity of χ'βθ is 
much larger, however, because the susceptibility χββ =  (Ps<72)-1 diverges at small 
q. The angular momentum density / and the angle Θ have opposite signs under 
time reversal. Thus, the general symmetry arguments o f Sec. 7.6 require that 
χ'β[(q,co) be imaginary and even in ω  and x'e l(q,co) be imaginary and odd in ω. 
This implies that χ'θ';(q,co) =  — iRe;^(q, ω) or, from Eq. (8.2.65):

(o2P q 2 
' (ω 2  — c2 q 2 ) 2  +  (coDq2 ) 2  

When the dissipation goes to zero, the peaks in become delta functions at the 
“sound” wave frequencies

^  =  - ^  =  - ^ 4  =  - ± 1 ^ [ S ( a > - c q )  +  S(a> +  cq)]. (8.2.70) 
ω Psq I ω p sq 2  i p sq 2  2

The correlation functions,
2  n

s ee(q,(o) =  ι _ β_ βΆωΧθθ( q,o>),
2 ^

S*e(q,t») =  t _  e_ph<11 x j q ,  ω), (8.2.71)

are plotted in Fig. 8.2.2. Note that the intensity of the “sound” peak at negative 
frequency is less than that at positive frequency.

t i l *  (8·2·69)

4 Exc i ta t io ns  f r o m  the c lass ical  ground  s tate

The hydrodynamical equations derived above determine the long wavelength, low
frequency dynamics throughout the ordered phase. Near zero temperature, when
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(a) (b)

Fig. 8.2.2. (a) Sw(q,<u) and (b) S„:(q, oj) for fixed q. Note that the thermal 
factor in See causes the peak at —cq to have a lower intensity for T  >  0 than 
the peak at +cq. Both the diffusive and propagating peaks have widths 
proportional to q2.

there is nearly perfect alignment of all spins, the interaction energy between rotors 
[Eq. (8.2.3)] can be expanded in powers of ,9] — .9̂ . The leading term leads to the 
harmonic Hamiltonian,

Η  =  Σ  Pi / (21) +  J ^  yu ,(9i -  9V)2 -  z J N ,  (8.2.72)
1 1,1'

whose mode structure is easily calculated, (yy/ is the nearest-neighbor matrix 
introduced in Eq. (6.1.16).) The equation of motion for ,9] is

/,91 =  - 4 J ^ ?u,(,9 , - ,9 f ), (8.2.73)
1'

or

ω2(ς,ω) =  (4J//)[y(0) -  y(q)] a  A(2 zJ /d l ) a 2 q2. (8.2.74)

Thus, the elementary excitations from the ground state are propagating waves 
with a linear dispersion. The velocity of these modes is c =  2 ( z J / d l a 2)1· 2. On the 
other hand, the low temperature rigidity [Eq. (6.1.16)] is p s( T  * 0 )  =  4( zJ /d ) a 2~d, 
and 1 = 1  / a d. Thus c =  (ps/ I ) 1̂ 2, in agreement with the hydrodynamical result. 
The hydrodynamical result is, however, valid throughout the ordered phase, even 
when thermal (or quantum) fluctuations depress p s( T )  considerably below its zero 
temperature classical value of 4zJa2~d. In addition, the hydrodynamical equations 
determine the form of the damping (imaginary part of ω) of modes. In a harmonic 
theory, each mode is independent and there is no damping. When anharmonic 
terms are added to the harmonic Hamiltonian, collisions between elementary 
excitations occur, and there can be damping. The dissipative coefficients κ and 
Γ can, therefore, be calculated at low temperatures by considering collisions 
between elementary excitations.
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5 The  Golds tone  theorem

The existence of a new zero-frequency mode in the ordered phase is intimately 
connected with the fact that the conserved angular momentum L  is a generator 
of rotations and that rotational symmetry is broken in the ordered phase. The 
Poisson bracket-commutation relation of vi with L  is

{v,,(i), L} =  L] =  eyvy(t), (8.2.75)

where e,y is the two-dimensional antisymmetric matrix with exy =  1. This equation 
is valid for any time t because L  is a conserved, and thus a time-invariant, quantity. 
The commutator of L  with the xy-component of the order parameter is thus

[<2x>(x, 0» L1 =  'ft[6 xx(x, t) -  Qyy(x, i)] =  2ihQxx(x, t). (8.2.76)
When L  is expressed as the integral over x' of the angular momentum density 
l ( \ ' ,  t'), this equation implies

J  ddx ’x l j x ,  x', t, t') =  i(Qxx( \ ,  t)> (8.2.77)

or

XQxy,i( q =  0, ω) =  2 n i (Q „ ) S ( m ). (8.2.78)
There is no factor of 2h  on the right hand side of Eqs. (8.2.77) and (8.2.78) 
because o f the factor o f 1/2ft in the definition [Eq. (7.6.14)] of /q  ((x,x', t, t’) 
in terms of the commutator of Qxy(x , t )  and l ( \ f,t ') .  Thus, the existence of a 
broken continuous symmetry implies that there is a zero-frequency pole in the 
zero wave number order-parameter generator response function, / Q xyj ( q  =  0,z), 
or, equivalently, that there is a zero-frequency mode at zero wave number. This 
is the content o f the Goldstone theorem  (Nambu 1960; Goldstone 1961). The new 
mode is generally called the Goldstone mode.

The Goldstone theorem, Eq. (8.2.78), strictly speaking applies only at q =  0. In 
the absence of long range forces, however, one can usually argue that the limit 
o f response functions as q —> 0 is equal to their value at q =  0. In this case, 
the Goldstone theorem implies that there is a mode whose frequency goes con
tinuously to zero as the wave number goes to zero. Indeed, our hydrodynamical 
analysis leads to precisely such a mode. If continuity is assumed, then, with the 
replacement δ (Qxy) =  2(ζ)χχ)δθ,  Eq. (8.2.78) can be rewritten as

lim x'g,(q, ω) =  ίπ<5(ω), (8.2.79)
q->0

in agreement with the hydrodynamical predictions of Eq. (8.2.70)

6  K u b o  f o r m u la e

The fluctuation-dissipation theorem provides a correspondence between equilib
rium correlation functions and response functions that lead, for example, to 
relations between the static thermodynamic susceptibility of conserved variables 
and equal time correlation functions [Eqs. (3.4.18) and (3.5.13)]. There are anal



8.2 A  tutorial example -  rigid rotors on a lattice 433

ogous relations, called Kubo  formulae,  between dissipative transport coefficients 
and current correlation functions. To see how such relations can be derived, 
consider the imaginary part of the angular momentum density response function 
[Eq. (8.2.37)]. It is straightforward to show that

Γ =  D ,I  =  lim lim χ",(<1> ω) =  lim lim ^  ̂ -S//(q, ω), (8.2.80)
co—*0q—>0 a)—>0q—>0 Z  C[

where the fluctuation-dissipation theorem [Eq. (7.6.41)] was used to obtain the 
final formula. The conservation law for angular momentum [Eq. (8.2.4)] implies 

co2S;/(q,co) =  <Μ,·5τ,τ.(ς,ω) (8.2.81)

~ q 2  J  ddxddx' J  dtel<ote , ,χ (τ(χ,ί) · τ(χ',0)),
d V

where we used the fact that the disordered state is rotationally isotropic. Com
bining Eqs. (8.2.80) and (8.2.81), we obtain

Γ =  β-
2 d V
)yj*xj ddx' J  dt(x(x,  t) ■ τ(χ',0))

=  \ h  J ^ X J ^ x ' £ , (8·2·82)

where {A, B } + =  A B + B A  is the anticommutator o f A  and B.  Thus, the dissipative 
coefficient Γ is related to the integral over time of the current-current correlation 
function. Similar expressions apply for the thermal conductivity and, indeed, for 
any dissipative coefficient associated with a conserved variable (see Problem 8.3). 
There are also related generalized Kubo formulae for the ordered phase. Often, 
Kubo formulae provide the best way to calculate dissipative coefficients from 
microscopic models.

7 Summ ary

In this section, we have studied the hydrodynamics of a simple model system.
Many o f the concepts and results introduced here apply quite generally to the
hydrodynamics o f all systems. The most important o f these are listed below.

•  Long-wavelength, low-frequency excitations are associated with conservation 
laws and broken symmetry.

•  There is exactly one mode associated with each conservation law and each 
broken symmetry.

•  Currents of hydrodynamical variables contain reactive and dissipative parts. 
The reactive parts of currents couple variables of opposite sign under time 
reversal and lead to propagating modes.

•  In the absence of reactive couplings, the hydrodynamical modes are diffusive.
•  Diffusion constants are the ratio o f a transport coefficient to a susceptibility.
•  The velocities of propagating modes are square roots of the ratio of a reactive 

transport coefficient to a susceptibility.
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•  Dissipative coefficients are related to current correlation functions via Kubo 
formulae.

•  Elementary excitations from the ground state can be described by a harmonic 
Hamiltonian. These excitations are sound-like propagating modes with a 
velocity that agrees with the predictions of the hydrodynamic theory in the 
low-temperature limit.

•  The Goldstone theorem states that there must be a zero-frequency, zero wave 
number mode in systems with a continuous broken symmetry. The new 
hydrodynamic mode in the ordered phase is the continuation of the zero- 
frequency Goldstone mode to nonzero wave number.

8.3 Spin systems

In preceding chapters, we have studied a variety of ordered phases in spin systems, 
including ferromagnetic, antiferromagnetic and modulated phases. Many of these 
phases have broken continuous symmetries and will, therefore, have associated 
hydrodynamic Goldstone modes. In spin systems, these Goldstone modes are 
usually called spin waves.  They will be the subject of this section.

1 Spin dynamics

Before we can discuss spin hydrodynamics, we need to review simple spin dy
namics, which is fundamentally quantum mechanical. The commutation relations 
for distinct spins Sa and Sy? are

[S', =  i h 3 ^ kS l  (8.3.1)

where i, j ,  k are the Cartesian indices x, y, z. These can alternatively be expressed
in terms o f the raising and lowering operators S+ =  S* +  iS% and S~ =  S* — iS£:

[ S + , S j ] = 2 H d afiS z,

[ S + ,S |] = - f i^ S + ,  (8.3.2)

[Sa =  fi(5ay?Sa .
The time development of a Heisenberg spin operator is determined by

f  =  ^ , S a], (8.3.3)

where is the spin-dependent Hamiltonian. If there is no interaction among 
spins, and there is an external magnetic field h£, then the Hamiltonian is

*  =  (8.3.4)
a

In this case, the equation o f motion for each spin reduces to

ψ  =  Sa x  h*. (8.3.5)

yjk
高亮
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If h* =  heez, then is independent of time, and

=  - i h eS+(t),
d t /h

S+(t)  =  S+(  0)e~ih't/h =  e,* ‘t/nS Z(0)e - ,* ‘t/n. (8.3.6)
Thus, an external field simply causes the phase of S+(i) to diminish linearly in 
time.

2 Genera l i zed  He i se nbe rg  mode ls

In order to discuss the dynamics of spin systems, it is useful to consider specific 
model Hamiltonians. The anisotropic Heisenberg Hamiltonian,

t f  =  —2J„ Σ  s i s i> ~  2 J ± Σ  [ S ' S i  +  5 ι>5 ΐ']
<U'> <1,1'>

=  —2J„ Σ  s i s v -  Σ  +  s i+ s v l  (8-3.7)
< U >  < i,f>

is sufficient for our purposes. As usual, Si is the three-component spin operator 
at site Ri on a rf-dimensional lattice. The exchange integrals J\\ and J±  for spin 
directions parallel and perpendicular to the z-axis are, in general, not equal. The 
nature of the ordered phase depends on the signs and relative magnitudes of J u 
and J±.  The following forms are of particular interest.

(1) J| =  J±  =  J  >  0 -  the ferromagnetic Heisenberg model. The low-temperature 
order parameter is the spatially uniform magnetization m. The total spin 
Sr =  Σ ι  Si commutes with the Hamiltonian so that all three components of 
the magnetization are conserved.

(2) J |  =  J±  =  J  <  0 -  the antiferromagnetic Heisenberg model. The order 
parameter is the three-component staggered magnetization N =  (N), where

N(x) =  ]T > ,S „5(x -R ,), (8.3.8)
1

where ηι =  +1 if 1 is a site in sublattice A  and ηι =  —1 if 1 is in sublattice B. 
As in the ferromagnetic case, Sr commutes with t f ,  and all three components 
of the magnetization are conserved.

(3) J± > | Jj| |>  0 -  the planar ferromagnet. The classical energy is minimized 
for parallel alignment of spins in the xy-plane. The order parameter is, thus, 
the two-component magnetization vector m =  (mx,my) or, equivalently, the 
complex field ψ =  mx +  imy. The Hamiltonian is no longer rotationally 
invariant, and only the z-component of the total spin commutes with t f .  
Thus, mz, but not mx or my, is conserved.

(4) J±_ <  —\J\\ |<  0 -  the planar antiferromagnet. The classical energy is minimized 
for antiparallel alignment of spins in the xy-plane. The order parameter is the 
two-component staggered magnetization N =  (Nx, N y), and mz is a conserved 
density.
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(5) |Jj|| > | J±  | -  the ferromagnetic (Jj >  0) or antiferromagnetic {J\\ <  0) Ising 
model. In this case, the broken symmetry is discrete, and conservation laws 
alone determine the hydrodynamics. Again, mz is conserved so that there are 
diffusive energy and mz-modes in both the ordered and disordered phases.

The ordered phases were identified by treating Si as a classical variable and by 
identifying the configurations that minimize When the order parameter does 
not commute with the Hamiltonian (cases (2), (3), (4), and (5)), it is impossible 
simultaneously to diagonalize and the order parameter. The result is that 
there will be quantum fluctuations that will lead to a reduction of the order 
parameter from its classical value even at zero temperature. However, as long as 
these fluctuations do not actually destroy long-range order, the symmetry of the 
quantum ordered state will be the same as that o f the classical ordered state, and 
its hydrodynamics will be correctly determined by the approach described in this 
section.

3 The p l an ar  magn e t

As discussed above, the z-component of the magnetization is conserved and 
satisfies the operator conservation law,

^  +  V  · τ =  0, (8.3.9)
dt

where τ is a spin current operator. As in our preceding example, an identi
cal conservation law applies to the averaged or coarse-grained magnetization 
mz( x , t ) =  (mz) with current τ(χ,ί) =  (τ(χ,ί)). In the disordered paramagnetic 
phase, there are two conserved densities, the energy density, ε, and mz, and, as in 
our rigid rotor example, there are two associated diffusive modes. (mz, like /, is 
odd under time reversal so that there is no cross-dissipative coefficient coupling 
τ to V 7 \)

The ordered phase with ψ =  mx +  imy = | ψ \ e'e φ  0 has xy-symmetry with 
Θ a broken-symmetry hydrodynamic variable. The fundamental thermodynamic 
relation,

Td s  =  de — hdmz — ho · dv$, (8.3.10)
where v# =  V0, is thus identical to that o f the rigid rotor [Eq. (8.2.40)]. The 
entropy can be expanded in powers of mz and v$ as

s =  s0(e) -  J f X ~ lm2z ~  j f P * vl  (8.3.11)

As in our rigid rotor example, we need to determine any reactive couplings 
between vg and the other hydrodynamic variables. To do this, we explore the 
possibility of having stationary or equilibrium states with a constant precession 
rate άθ/ d t  =  —X .  Equilibrium states are determined completely by the conserved 
variables, ε and mz, and v$ if it is nonzero. Assume now that a state is prepared 
with a given ε, mz and v# =  0 for which X  is nonzero when the external magnetic
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field he in the z-direction is zero. Now turn on an external field. The time 
evolution o f ψ  is determined by the total Hamiltonian +  J f ext =  — heS j
[Eq. (8.3.4)] rather than by The operator —heS j  commutes with ^C, and

where V  is the volume and where we have used Eq. (8.3.6). Thus, when he is not 
zero,

In thermodynamic equilibrium, άθ/ d t  must be zero, and X ( e ,m z) =  —he. The 
thermodynamic function that is equal to he in true equilibrium, i.e., in the 
stationary state with the maximum entropy, is h(e,mz) =  — T ( d s /d m z),j,ve= 0 , and 
we conclude that

This relation ensures that ά θ / d t  is zero in true thermodynamic equilibrium. It 
permits, however, stationary states for which h(e,mz) is not equal to he. When 
he =  0, mz is small, and a dissipative part X '  o f the “current” X  is introduced, 
Eq. (8.3.15) becomes

where χ  is the magnetic susceptibility. This equation is often called a Josephson 
relation. Its analog for superfluids, which we will discuss in Sec. 8.5, was first 
derived by Brian Josephson in 1962. It is also the exact analog of Eqs. (8.2.44) 
and (8.2.46) for the rigid rotor. In fact, we have now established a one-to-one 
correspondence between the rigid rotor and the planar magnet: Θ *-> θ, χ  *-> J, 
mz *-> /. The mode structure in the ordered phase o f the planar magnet is thus 
identical to that of the rigid rotor. There is a diffusive energy mode and a 
propagating spin wave mode with frequency ω =  + (p s/ x ) l/2q2 +  iDq2.

In the planar antiferromagnet, the two-dimensional staggered magnetization, 
N x +  iN y =  ψ  = | ψ  | e,e, is a two-component broken-symmetry hydrody
namical variable. The z-component of the magnetization is a conserved vari
able. Arguments identical to those used for the planar ferromagnet imply that 
άθ/ d t  =  h(e,mz) — he in the antiferromagnet. Thus, the hydrodynamical equa
tions and mode structure for the planar ferro- and antiferromagnets are identical. 
Dynamics at ω τ  >  1 will, however, differ in the two cases.

g i(J t— heS^.)t/h __ g iJtt/h g— iheS^t/h (8.3.12)

Therefore,

w (t ,he) y - l  e im / h e - i h eS zTt/h g  +  ̂ e iheS zT t/he -iJirt/h

e - ih' t/hip(t,0), (8.3.13)

(8.3.14)

—  =  h(e,mz) - h e. (8.3.15)

(8.3.16)
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4 The i sot ropic an t i f er romagne t

+  V,tv =  0. (8.3.17)

In an isotropic antiferromagnet, the total vector magnetization is conserved and 
obeys a conservation law, 

dm, 
dt

Thus, there are four conserved densities, ε, mx, my and mz, and four diffusive 
modes in the disordered phase of the isotropic antiferromagnet.

In the ordered phase, the staggered magnetization N =  N0n, with n a unit 
vector, is nonzero. The magnitude, N 0, o f the staggered magnetization is a non- 
hydrodynamical variable and decays to its equilibrium value in times of order 
the collision time τ. For small deviations from the uniform equilibrium state with 
n =  no =  ez, we can set n(x) =  n0 +  (5n with (5n =  (50(x) x no or

<5n »  (Snx,Sny 0) =  ( δ θ ^ - δ θ χ,0).  (8.3.18)

The entropy density for small m and va =  V 0a is
1

s(e, m, va) =  s0(e) -  —

Vx I2 +  | vy I2], (8.3.19)

X\\ 'm l  +  x j i m l + m 2)

_ P ± _  ri .. |2 , I |2ί
2 Τ '

and the fundamental thermodynamic relation is

Tds  =  de — h · d m  — hgx · dvex — hgy · dvgy (8.3.20)
with

K  =  X±lmx, hy =  x 2 lmy, hz =  x j lm2,

=  PsVflx, ]&ey =  PsVey- (8.3.21)

We should note that there is no term in Eq. (8.3.19) coupling the staggered
magnetization N  to m. This is because m alternates in sign from site to site in
the antiferromagnetic phase whereas N  does not. Thus, N  · m is a scalar that
alternates in sign, and its integral over the volume is zero. In addition, terms
coupling va to m are prohibited by inversion symmetry.

The equation for dOa/ d t  follows from exactly the same arguments used for the
planar magnet. An external magnetic field leads to a uniform precession of each
spin Si and thus to a uniform precession of the staggered magnetization defined
in Eq. (8.3.8). Thus, when is zero,

άθ t t
=  Me, m) -  X a =  X l lma -  X'a, a =  x , y ,  (8.3.22)

where ha =  —T d s / d m a. These reactive couplings lead in the usual way to a 
reactive term hea,j in the current τ,·α. The complete linearized hydrodynamic 
equations for an isotropic antiferromagnet are, therefore,

^  =  KV2T  =  C - \ W 2 e,
dt

^  =  r u V ^ r V W ,



^  =  ρ ,ν ^ .  +  Γ χ χ ^ ν 2»!.,

dA  =  x l  l ma + T PsW2ea. (8.3.23)

These equations yield diffusive modes for ε and mz and two sets of propagating
modes with frequencies

ω =  ± ( p s/X±) l/2q +  ί \ (Γ ± χ-± 1 +  T p s)q2 (8.3.24)

for a total of six hydrodynamical modes.
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5 I so t rop ic  f e r r o m a g n e t s

Ferromagnets differ from the systems we have so far considered in that the 
magnetization in the ordered phase is both a conserved and a broken-symmetry 
variable. Since a variable cannot be counted as a hydrodynamical variable twice, 
we expect four modes corresponding to ε, mx, my and mz in both the paramagnetic 
and ferromagnetic phases. In the paramagnetic phase, these modes are diffusive 
as they are in the antiferromagnet.

The fundamental thermodynamic relation for a ferromagnet is

Tds  =  de — h · d m  (8.3.25)

in both the ordered and disordered phases. The equation of state relating h to m 
is, however, different in the two phases. In the disordered phase, h =  χ-1ιη. In the 
ordered phase, m =  Moez in equilibrium. For small deviations from equilibrium,

m =  (Mo +  Smz)ez +  mxex +  myey, (8.3.26)

and

s =  s0(e, M0) -  ^ X j \ S m z ) 2  ~  KVmx)2 +  (V m y)2]. (8.3.27)

The last term in this expression is the usual elastic term in a phase with a broken 
continuous symmetry. For small (5m, the angular deviation from the state with 
m =  M0ez is δθ =  ez x Sm/Mo-  From this, we obtain

h z = x j 1 mz, = - - ^ 2  V2ma, a =  x ,y .  (8.3.28)

Again using arguments identical to those used to obtain the reactive equation for 
άθ/ d t  in the planar model, we obtain

=  —(m x h); — Vjz'ij, (8.3.29)

where τ- is the dissipative part of the spin current. Note the minus sign in the 
reactive part of this equation compared to the positive sign in Eq. (8.3.5) for a spin 
in an external field. If an external field is added, the reactive part of Eq. (8.3.29) 
becomes m x (h * -h ), which agrees with Eq. (8.3.5) when there is no interaction 
among spins (h =  0) and reduces to zero in true thermodynamic equilibrium
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when h =  h£. The reactive part of this equation makes no contribution to the 
entropy production equation, and we have

T  ( I  +  V  ' t )  =  ~ Q  ' -  T‘JVihj· (8·3·30)
Since the spins are presumed not to be coupled to the lattice, spin and space can
be rotated independently, and

T z j =  — Γ|| V j h z ,

τ'α; =  - r ^ j h a =  r ^ V j V V .  (8.3.31)

The complete linearized hydrodynamical equations are, therefore, 

de kC_1V2£,
dt

dmz
dt

r z 7 ‘V2m;

£  -  - i k v lm’ - r ^ v W

d- ir  -  (8JJ2)
These equations yield diffusive energy and mz -modes and a pair of spin wave 
modes with

co =  ± ( p s/MZ) q 2 + i b q 4, (8.3.33)

where D =  Γp s/ M q. Here, we see that the effect o f having m as both a conserved 
and a broken-symmetry hydrodynamic variable is that the spin-wave mode has 
a quadratic dispersion relation rather than the linear dispersion relation we have 
encountered in all previous examples.

8.4 Hydrodynamics of simple fluids

In this section, we will derive the equations governing hydrodynamics in one- 
and two-component fluids and discuss some of their implications. The principal 
feature distinguishing fluids from our previous examples is the existence of mass 
motion and the possibility of relative motion of different parts of the fluid. There 
are conservation laws for mass and momentum in addition to the conservation law 
for energy, leading to a total of five conserved hydrodynamic variables and five 
hydrodynamic modes in a one-component fluid. In multicomponent fluids, there 
is an additional mass conservation law for each molecular species. Our derivation 
of the equations of fluid hydrodynamics will follow closely our previous examples, 
but we will make contact with alternative derivations based more closely on the 
local application of Newton’s laws.
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1 Co ns erva t ion  laws

In a one-component fluid of molecules of mass m, energy, mass and momentum 
are conserved. Their respective density operators are

where U ( \ )  is the two-body interaction potential. These densities obey local 
conservation laws

we shall see shortly, is closely related to the stress tensor. Note that the conserved 
momentum density is itself a current for another conserved density, the mass 
density. This is a feature that we did not encounter in our previous examples 
of hydrodynamics in which all modes in disordered phases were diffusive. It is 
responsible for many of the essential physical properties of isotropic fluids such as 
the existence of sound waves. As in our previous examples, the conservation laws 
apply to averaged or coarse-grained densities ε(χ, ί) =  (ε(χ, ί)), ρ(χ, ί) =  (ρ(χ, ί)) 
and g(x, ί) =  (g(x, ί)) as well as to the microscopic operators.

Angular momentum as well as momentum is conserved. The total angular 
momentum is obtained by integrating x x g  over the volume of the fluid and is 
not independent of g. Arguments identical to those used in Sec. 6.6 to show that 
the elastic stress tensor is symmetric imply that the momentum flux tensor πη 
must also be symmetric to guarantee conservation of angular momentum. No 
additional local variables other than those in Eqs. (8.4.2)-(8.4.4) are needed to 
describe angular momentum, and there are no hydrodynamical modes associated 
with its conservation law.

It is useful to consider two coordinate systems S and S' moving relative to 
each other with constant velocity, as shown in Fig. 8.4.1. We take S to be the 
frame at rest in the laboratory and S' to be moving relative to S with a velocity 
ve. Variables in S' are marked with primes and those in S are not. Thus,

The transformation from S to S' is called a Galilean transformation. Newton’s 
laws, which control the dynamical properties of a classical fluid, are invariant

g0 M )  =  5I(Pa)2/(2 m) +  i ^ [ / ( x a - x /i)<5(x-xa),
α <χφβ

p(x, i) =  ^  mS(x -  xa),
a

(8.4.1)
a

(8.4.2)

(8.4.3)

(8.4.4)

where jc is the energy current and π,·;· is the momentum current tensor, which, as

χα(ί) =  vet +  χ'α(ί), ρα(ί) =  mve +  ρ'α(ί). (8.4.5)
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S S '

v.e

Fig. 8.4.1. Coordinate systems S and S'. S is the laboratory rest frame, and 
S' moves with velocity ve relative to S. When ve =  v, S' is the rest frame of 
the fluid.

under such Galilean transformations for any value of ve. The mass density 
transforms under the Galilean transformation according to

where x' =  x  — vet and p'(x, ί) ξ  ( Σ α <5(χ — x/c<(t))). Similarly, the momentum and 
energy densities transform according to

g(x, i) =  g'(x\ i) +  p'(x', i)v£,

where ε' and g' are obtained from averages [Eqs. (8.4.1)] with xa and pa replaced 
by x'a and p'a.

Of all the moving coordinate systems, S', the most useful is the one that is 
locally at rest with respect to the fluid. In this, the fluid rest frame, the average 
momentum density g' is zero. We will denote the velocity of this frame by v. 
The distinction between ve and v is the same as that between Ω* and Ω in our 
rigid rotor example. The microscopic definitions of the conserved variables [Eqs.
(8.4.2)-(8.4.4)], Eq. (8.4.6) relating p to p', and the constraint g'(x\ i) =  0 imply

Here, εο(χ) =  ε'(χ — vi) is the rest-frame energy density at the laboratory point x. 
It is the average of the energy density of Eq. (8.4.1) with pa replaced by p'a but 
xa not replaced by x'a. These equations are valid for uniform translations of the 
entire fluid. They will, however, generalize to situations in which there are slow 
spatial variations.

(8.4.6)

ε(χί) =  ε'(χ', ί) +  g'(x', ί) · ve +  ^p'(x\ t)v2e, (8.4.7)

1 ?ε(χ,ί) =  εο(χ, i ) +  - p ( x , t ) v  , 

g (x, t )  =  p(x,t)v. (8.4.8)
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2 The rmo dy nam ic s  w i th  mass  mot ion

In order to derive the hydrodynamical equations for classical fluids, we have to 
include variations of all conserved variables in their thermodynamic potentials. 
This means that we must include momentum as well as energy and particle 
number. To do this, we can proceed exactly as we proceeded in the tutorial
example of rotors on a lattice. The laboratory frame Lagrangian expressed in
terms of coordinates with respect to the fluid rest frame is

&  =  i ^ m ( v  +  v'a)2 - [/[χ'α(ί)], (8.4.9)
a

and the momentum is

f i  =  f o *  =  m(»i+  »'?)■ (8.4.10)

Here we have chosen S' to be the fluid rest frame so that ve =  v, and (v'a) =  0. As 
in the rotor example, we could have chosen ve to be arbitrary, but the conditions 
of thermal equilibrium will eventually require ve to equal v. The total Hamiltonian 
is then

j r T =  pa · v'a -  &
a

=  J T - P v ,  (8.4.11)
where

p  =  Σ  Pa =  ί  άάχζ(χ ’ (8.4.12)
a ^

is the total momentum operator and
(fjU) 2

J?’ =  y '  +  u  (8.4.13)
t - s  7 m2 m

a

is the Hamiltonian, which has the same form as a function of pa regardless of the 
value of v. The average of J f  is the internal energy E. The canonical partition 
function for a fluid with N  particles in a volume V  is then

Ζ Ν( Τ , ν , ν )  =  τ τ ε - β^ ~ Ρ ',\  (8.4.14)

The thermodynamic potential,

F( T ,  V , N , v )  =  - T l n Z N =  E -  T S  -  P · v, (8.4.15)

satisfies

dF =  - S d T  -  p dV  +  μάΝ -  P · dv, (8.4.16)

where P =  (P). In classical systems, the trace over momentum variables is
independent of the trace over coordinates, and

Z N(T,  V, v) =  ε βΝηυ)1 2̂ Ζ Ν(Τ,  V , 0), (8.4.17)

or

F( T,  V , N , v )  =  F0(T,  V , N ) - ^ N m v 2, (8.4.18)
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where Fq =  — T \ n Z N(T,  V, 0) is the Helmholtz free energy in the rest frame
of the fluid. This equation and Eq. (8.4.14) imply as required that the total
momentum is the total mass times the velocity,

P, =  -  =  Nmvi,  (8.4.19)
OVi j  T 'V<N

and that the internal energy is the rest-frame energy Eo plus the kinetic energy 
j N m v 2 =  P 2/ 2 m N  associated with center of mass motion,

1 P 2
E(S,  V, N,  P) =  F +  T S  +  P · v =  E0 (S, V, N)  +  -  — , (8.4.20)

2 ffliv
where E0 (S, V, N)  =  Fo +  TS .  Note that £  is a natural function of extensive 
quantities only. The fundamental thermodynamic relation, Eq. (8.4.16), and Eq. 
(8.4.18) imply that pressure,

S F \  δ Ε \
p = ~ B V j  = ~ d V j  ’ ( ]

U V  /  T , N , \  v y  J S,N, P

and entropy, S =  —3 F / d T ,  expressed as functions of Τ,  V  and N  are independent 
of v. In addition, g and ε =  F_1(Jf) are given by Eq. (8.4.8). The chemical 
potential in the lab frame is related to that of the fluid rest frame, μο =  SFo/dN,  
via

rfF 1
μ =  —  =  μ0 -  - m v 2. (8.4.22)

As in quiescent fluids, it is useful to introduce the grand potential,

^( Γ, μ , ν , Κ)  =  Ρ - μ Ν ,  (8.4.23)

which is a function of only one extensive variable V  and satisfies
d s i  =  - S d T  -  p d V  -  Νάμ  -  P ■ dv. (8.4.24)

Arguments identical to those used in Sec. 3.2 imply that s i  =  —Vρ(μ, T,  v) and 

p =  - ( ε  -  αρ -  T s  -  g ■ v), (8.4.25)
where we have introduced the chemical potential per unit mass

a =  μ/m.  (8.4.26)

Note that p  is indeed independent of v and equal to —(εο — αορ — Ts)  if the 
density p (rather than a) is fixed, as can be seen from Eq. (8.4.8) for ε and g, 
a =  μ / m  =  ao — \ v 2, and the fact that T  and s are independent of v. Eqs. (8.4.24) 
and (8.4.25) lead to the entropy equation,

Td s  =  de — adp — v d g ,  (8.4.27)
which, as in our previous examples, is essential to the derivation of hydrodynam
ical equations.

3 The en t rop y  product ion  equa t ion

To determine the form of the constitutive equations relating the currents of 
conserved quantities to the fields Τ,  a and v, we proceed exactly as in our
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previous two examples. We use the entropy equation [Eq. (8.4.27)] and the
conservation laws [Eqs. (8.4.2)-(8.4.4)] expressed in terms of the coarse-grained
variables to arrive at an equation for the rate of change of entropy. As before,
the right hand side of this equation will include the time rate of change of the
entropy density and the divergence of an entropy current. Unlike previous cases,
the entropy current must include a term vs describing the secular transport of
entropy in addition to the heat current Q. The time and spatial derivatives arising
from the entropy equation are

ds de δρ  dgj
T —  =  ------ a - -------V i - r 1

δί δί  δί  dt
=  - V  · jE +  aV  · g +  VjWiKji,

T v  V s  =  v ■ V e  — av ■ V p  — ViVjVigj. (8.4.28)

Following the same procedures as before, we can use Eqs. (8.4.28) to obtain

-  Q · (V  "Γ/ Γ) — (g — pv) · Va

-  [πji -  pdjj -  v,gj]V,Vj, (8.4.29)
where p  is the pressure determined by Eq. (8.4.25) and

Qi =  j f  ~  a(gf -  pv,) -  ViE +  (v · g)vi -  vjnji (8.4.30)

is the heat current. Eq. (8.4.29), along with the requirement of non-negativity of
entropy production, will provide us with constitutive relations for the currents.

| + V . ( v S +  i Q)

4 Dissipat ionless hydrodynamics

In the absence of dissipation, d S / d t  is zero, and the right hand side of Eq. (8.4.29) 
must be zero, implying

g =  pv,
n ij =  P$ij +  V j g i =  - O i j  +  p V iV j , (8.4.31)

je =  (ε +  p)v =  ^>0 +  p +  ip u 2̂  v,

where σtj =  —pdij is the fluid stress tensor and where g =  pv was used to
produce the final form of the equations for and jc. Note that zero entropy 
production leads to the relation g =  pv, which was previously obtained by 
Galilean invariance and the requirement that the rest-frame momentum density 
g' is zero. The momentum density and the mass density are observable averages 
of microscopically defined variables. Their ratio is the local velocity field v.

Eqs. (8.4.31) and the conservation laws, Eqs. (8.4.2) (8.4.4), yield the equations 
governing inviscid or dissipationless flow in a fluid. We will now express these 
equations in a more transparent and familiar form. First, the mass conservation 
equation is simply

+  v  · (pv) =  0. (8.4.32)
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The momentum conservation equation can be converted into an equation for the 
local velocity:

dgi _  dpvi _  
dt  ~  d t  ~  Vj  i}

=  - V i p - V j i p v i v j ) .  (8.4.33)

This equation is Euler’s equation. It is one of the earliest (1755) and one of the
most important equations of fluid dynamics. It is usually written, with the aid of
the mass conservation equation Eq. (8.4.32), as

| ! + ( v V ) v  =  - - V p .  (8.4.34)
dt p

Our treatment focuses on a fixed volume in space, i.e., it uses Eulerian coordinates. 
An alternative approach (as we discussed in Sec. 6.6) is that of Lagrange, in 
which one follows the motion of individual mass elements. A mass element will 
have an instantaneous velocity ν(χ(ί), i) determined by the Eulerian velocity at its 
instantaneous position x(i). The rate of change of the velocity of a mass point is, 
therefore,

Μ  =  ^  +  ρ _ < Ι χ β
dt dt  dxj  dt

However, dx ( t ) /d t  =  v, and d v / d t  =  d v / d t  +  (v · V)v. Thus, Euler’s equation 
expressed in Lagrangian coordinates is simply Newton’s law, f  =  ma, for the 
mass point at x, 

d \
p — =  — Vp +  f ext, (8.4.36)

dt
where we have added an external force density f ext. Usually f ext arises from the 
gravitational field and is equal to pg, where g is the acceleration due to gravity. 
The external force could also be added to Euler’s equation [Eq. (8.4.34)].

There are five independent conserved variables that determine the hydrody
namics of a one-component fluid, and five equations are needed to determine 
their time dependence. In an inviscid fluid, four of those equations are the mass 
conservation law and the three components of Euler’s equation. The fifth equa
tion could be the equation for energy conservation with the last of Eqs. (8.4.31) 
for the energy current. Alternatively, an entropy equation could be used. Since 
there is no dissipation, Q =  0, and Eq. (8.4.29) is simply 

3s
— +  v  · (vs) =  0. (8.4.37)
dt

This is an equation of entropy continuity. It implies that if ever the entropy is 
homogeneous in space, it will remain constant and homogeneous at all future 
times, i.e., dissipationless hydrodynamic processes are isentropic processes.

5 Diss ipat ion

When there is dissipation, the right hand side of Eq. (8.4.29) must be positive. 
As in our previous examples, this requirement restricts the form of dissipative
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couplings between currents and fields with the opposite sign under time reversal. 
The dissipative heat current Q will be nonzero, and there will be a dissipative 
contribution, σ' ,̂ to the stress tensor defined as

π;/ =  pSij +  pvivj -  σ'η. (8.4.38)

Eq. (8.4.29) has a term proportional to (g — pv) · Va, and, following our previous 
hydrodynamical examples, it would seem that there should be a part g' of the 
momentum density proportional to V a and/or V T . g' =  g — pv is, however, 
the momentum density in the fluid rest frame, and is, by definition, zero. There 
are, therefore, no dissipative contributions to g, and g =  pv always. This result 
can also be proven using Kubo formulae (Forster 1983). The entropy production 
equation is therefore

T T t = ~  j  d' x i Q ' V T / T  ~  a‘}ViVj]· (8A39)
Q and v are odd under time reversal whereas T  and σ'·· are even. Thus, there 
will be dissipative couplings between Q and T  and between σ';· and v. A fluid is 
isotropic, so any second rank tensor must be a scalar, implying there is only one 
dissipative coefficient, the thermal conductivity k , coupling Q to V T :

Q  =  - k V T .  (8.4.40)

The dissipative coefficient coupling the stress tensor to the velocity, like the elastic 
constant tensor, is a fourth rank tensor:

e'ij =  VijkiVkVi- (8.4.41)
η φ ι  is the viscosity tensor, σ{· must be symmetric under interchange of i and 
j .  Furthermore, the total entropy production is proportional to so
that only viscosities that are invariant under the interchange i j  «-> kl contribute 
to dissipation. Kubo formulae for ηψι  confirm this symmetry. Thus, the viscosity 
tensor has the same symmetry and will have the same number of independent 
components as the elastic constant tensor discussed in Chapter 6. In isotropic 
fluids, there are only two independent fourth rank tensors (see Sec. 6.4), and the 
dissipative part of the stress tensor can be written (in three dimensions) as

° ij =  V ( v ^  +  V ,·  -  · v )  +  ζδην  · v. (8.4.42)

η is the shear viscosity and ζ is the bulk viscosity. Note that as required σ -j depends 
only on the symmetric combination (V;Vj +  V p i ) / 2 of velocity gradients, called 
the strain rate, because it is the time derivative of the strain tensor introduced in 
Chapter 6. The decomposition of the viscosity tensor into a bulk and a shear part 
is identical to the decomposition of the elastic constant tensor in isotropic solids. 
The bulk viscosity measures the dissipative contribution to the stress arising from 
time-dependent volume changes.

Viscosity has units of [(energy/volume)xtime] or poise =  erg s/cm 3 in c.g.s. 
units. On dimensional grounds alone, one would expect viscosities to be of 
order the kinetic energy density times the collision time τ. Indeed, lowest order
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Table 8.4.1. Viscosities η f o r  some common materials in units o f  
centipoise ( 1 0 ~ 2  erg s / c m 3).

Substance Temperature Viscosity (cp)

Air 18°C 0.018
Water 0°C 1.8

Water 20° C 1

Water 100°C 0.28
Glycerin 20° C 1500
Mercury 20° C 1.6

n-Pentane 20° C 0.23
Argon 85K 0.28
He4 4.2K 0.033
Superfluid He4 < 2.1K 0

Glass >  1 0 15

Note that, by popular convention, the designation 
“glass” is applied to any disordered material once 
its viscosity exceeds 1 0 15cp.

kinetic theory calculations predict a shear viscosity of order (p / m ) T x . The 
bulk viscosity is more subtle and is usually negligible in dilute gases. A useful 
way to think of the shear viscosity in a dense fluid is to imagine the fluid as 
being instantaneously a solid with a high frequency shear modulus μ(οο). Then 
η «  μ(οο)τ. This relation is certainly dimensionally correct, and is often used to 
describe viscoelastic phenomena, very viscous fluids such as polymers in solution, 
or solids under flow. Viscosities of various fluids under various conditions are 
listed in Table 8.4.1.

The dissipative generalization of Euler’s equation follows from Eqs. (8.4.33), 
(8.4.38) and (8.4.42):

dv , „  '
aF +  t . - v ) . =  - V p  +  >|V2v +  ( ζ +  ί ,  | V (V  · V ) .  (8.4.43)

This, along with the equations of mass and energy conservation (the latter is 
now quite complicated when nonlinear velocity terms are important) and the 
thermodynamic equation of state, provide a complete description of the long 
wavelength, low-frequency dynamics of a one-component fluid, even if there are 
large differences in velocity between different points in the fluid.

6  The N av ie r - S t ok e s  equa t ions

A fluid like water is nearly incompressible, and the most useful equations for 
describing its flow are those obtained from the general hydrodynamic equations 
by imposing the constraint that the density be a constant in space and time. This 
constraint, along with the mass conservation equation, implies V  · v =  0 since
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=  0 =  V  · (pv) =  - p V  · v. (8.4.44)
dt

The Navier-Stokes equation,

p ^  +  p(v · V)v =  —Vp +  /?V2v, (8.4.45)

along with the constraint V  · v =  0, describes the flow of incompressible fluids.
Because of the nonlinear term (v · V)v, the solutions to these equations can be
very complex.

7 H y d r o d y n a m ic  mo d es

There are five conserved hydrodynamic variables, and we expect five low- 
frequency hydrodynamic modes. If the reactive coupling between p and g were 
absent, all of these modes would be diffusive; its presence leads to a pair of lon
gitudinal sound modes. The linearized momentum equation expressed in terms 
of g rather than v is

^  +  V p - V g - ±  ( ζ  +  \ η )  V ( V g )  =  0. (8.4.46)
dt p  p  V 3 J

Because p is dynamically coupled only to the longitudinal part of g via the mass
conservation equation, it is useful to introduce longitudinal and transverse parts
of g:

g =  g/ +  gr> v  x g; =  0, V  · gt =  0. (8.4.47)
Vp is longitudinal, so that the equation for gt obtained by taking the transverse 
part of Eq. (8.4.46) is independent of p:

%  =  V g ,  (8.4.48)
dt p

This is a canonical diffusion equation for each of the two independent components 
of gt. There are thus two diffusive transverse momentum modes with frequency

ω =  - A q 2. (8.4.49)
P

The ratio η / ρ  is often called the kinematic viscosity. The transverse momentum 
correlation function will have the standard diffusive form we have encountered 
before.

Three modes remain to be determined. They involve the mass density, the 
longitudinal momentum and the energy density. We are interested in the linearized 
mode structure. We therefore write variables as equilibrium parts plus small 
deviations from equilibrium, e.g. p(x, i) =  p +  t>p(x,i), p(x,i) =  p +  t>p(x,i), etc. 
Taking the divergence of Eq. (8.4.46), using the mass conservation equation, we 
obtain

d 2  . 1 / 4  . Λ  d „ 2

dt2 + p  \  3 η + ζ )  d i V
<5p(x, t) +  V2t>p(x, t) =  0. (8.4.50)

This is a second-order differential equation in time and combines the information 
in first-order conservation laws. Finally, the linearized heat equation is
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d_
dt

, \ ε +  p  'ε(χ, ί ) ----------op(x,  t) kV δ Τ ( χ , t) =  0, (8.4.51)

where we used jE =  (ε +  p)v — k V T  [Eqs. (8.4.31)] for the energy current (with 
ε =  εο since we are considering linear excitations from the quiescent equilibrium 
state) and the fact that V  · v =  —p ~ l d p ( x , t ) /d t  for linear deviations from the 
spatially uniform state with density p. The temperature and pressure in Eqs. 
(8.4.50) and (8.4.51) are functions of ε and p  via the equation of state of the 
quiescent fluid. It is more convenient, however, to use entropy and density as 
independent variables. For small deviations from equilibrium, the thermodynamic 
identity (Eq. (3.1.39) or Eq. (8.4.27) with v =  0) of the quiescent fluid can be 
recast as

£ +  V
T  pds =  dq =  d e ----------dp, (8.4.52)

where s =  s / p  =  S / m N  is the entropy per unit mass. Thus, Eq. (8.4.52) involves 
the time derivative of q. In addition, T  and p  are thermodynamic functions of 
the independent variables p  and s.

Derivatives of T  and p  with respect to q are equivalent to derivatives with 
respect to entropy at constant volume and particle number:

dT(p , s )
dq

dp
dq

1 d r \  _  V_dT  
T p  ds J  T  dS

V d p
T d S

V,N

1
p c v ’

(8.4.53)

(8.4.54)

where cv =  c v / p  is the mass specific heat (heat capacity per unit mass) often used 
in preference to the volume specific heat cv  in discussions of modes in fluids. In 
addition, derivatives with respect to p  at constant q are equivalent to derivatives 
at constant entropy and particle number. Thus, Eqs. (8.4.50) and (8.4.51) can be 
rewritten as

1
d t 2  p + i dt dp

1 dp

and
dq
dt

=  k V 2T ( x ,  t)

d T \  K d T \  „ 2 ~I v 2t>p— —— V q. 
dp J  s T p  d s )

V2§ =  0
>

(8.4.55)

(8.4.56)

When there is no dissipation, κ, η and ζ are zero, 9 =  0, and Eq. (8.4.55) predicts 
a pair of sound waves with velocity

d_p
dp

Cp_dp_ 
cv dp

(8.4.57)
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where cp is the mass specific heat at constant pressure. Note that the speed of 
sound is determined by the isentropic compressibility. A purely mechanical theory 
predicts that the sound velocity is determined by the Newtonian or isothermal 
compressibility. It is the coupling between mass density and energy density that 
converts the isothermal sound velocity to the isentropic or adiabatic velocity.

When dissipation is included, there is a diffusive heai mode in addition to the 
two sound modes. This mode will have a frequency

ω =  —iDTq2, (8.4.58)

where D T is the thermal diffusion constant. In an incompressible system, V2p =  0, 
and, from Eq. (8.4.56), D T =  κ / p c v  =  k / c v . Thus, as in our previous examples, 
the thermal diffusion constant is the ratio of the thermal conductivity to a specific 
heat. In a compressible system, V2p is not zero. To find the thermal diffusion 
constant in this case, we can use the fact that the frequency of the thermal 
diffusion mode is proportional to q 2  and, at small q, is much less than the 
frequency, proportional to q, of sound modes. Setting d / d t  ~  ω  ~  q 2  and using
ω 2  ~  coq2  <  q 2  in Eqs. (8.4.50) and (8.4.55), we obtain t)p(q,co) =  0 ( q 4). Then,
to order q2,

Ι*"·»»' ,8A59»
When this density is used in Eq. (8.4.56), the resulting heat mode frequency is 
that given in Eq. (8.4.58) with

D T =  4 -  =  —
β£ρ Cp

_  κ (  1 d T / d p ) s d p / d s )p'
V - λ /λ ί I-  (8.4.60)p  \ c v dp / op)s  J

Thus, coupling to density fluctuations converts the constant-volume specific heat 
to the constant-pressure specific heat in the denominator of the thermal diffusion 
coefficient.

If q were zero (i.e., if the thermal conductivity were zero), the width of the sound 
wave mode would be (4^/3 +  ς)/ρ. When κ is nonzero, there is a contribution 
to the sound wave damping arising from entropy fluctuations. To determine this 
damping, we use the fact that the sound wave frequency is large compared to the 
thermal diffusion frequency. Eq. (8.4.56) can be used to solve for q in terms of p. 
Since ω  »  q2, we can neglect the V2q term in this equation, and we find

q 2 d T \  . d T / d p ) Ss. t* Λ c wq =  κ — —  δρ =  —ιωκ δρ,  (8.4.61)
ιω dp  J  s dp/dp)s

where we used ω 2  =  c2 q 2  +  0 ( q 4) and Eq. (8.4.57) for the sound wave velocity. 
When this q is used in Eq. (8.4.55), the resulting equation for the sound mode 
frequency is

ω2 — c2q2 +  ΐωΓ q2 =  0, (8.4.62)

where
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Γ = - ( ^  +  ζ )  +  - ^ ( ^ - ΐ Υ  (8.4.63)
p  \ 3  J  pcp \ c v J

The complex sound frequencies are thus

co =  ± c q  — i ^ T  q 2 . (8.4.64)

As in previous hydrodynamical examples, the imaginary part of the frequency
tends to zero with wave number faster than the real part. The thermodynamic
relation,

implies that the constant-pressure and constant-volume specific heats become 
equal in the incompressible limit when d p / d p  —> 0.

8  Li gh t  sca t t er ing

Light scattering measures fluctuations in the local dielectric constant, which to a 
good approximation in isotropic fluids is a function of the local mass (or particle) 
density. Thus, light scattering provides a direct measure of the density-density 
response function S„„(q, ω) =  m~2 Spp(q, ω). The susceptibility /"„(<!> ω) can be 
calculated from the hydrodynamic equations using the techniques discussed in 
Secs. 7.4 and 8.2. It is

c v c2 T q 4=  n
ω (ω 2  — c2 q 2 ) 2  +  (ωΓ<72)2

+  1 -
c v

- ( 1 - ^

D Tq 2

ω 2  +  (DTq 2 ) 2

(■ω 2  — c2 q 2 )q2 D T 
(ω 2  — c2 q 2 ) 2  +  (ωΓ<?2)2

(8.4.66)

This result was first derived by Landau and Placzek in 1934. It shows that the 
density correlation function contains peaks arising from both thermal diffusion 
and from sound waves. S„„(q, ω) is plotted in Fig. 8.4.2. The thermal peak of 
width D Tq 2  centered about ω  =  0 is the Rayleigh peak. The sound peaks at 
ω =  + c q  with width Γq 2  are the Brillouin peaks. The third term in Eq. (8.4 66) 
does not contribute significantly to light scattering intensities in the vicinity of 
the Rayleigh and Brillouin peaks and is often neglected. It is necessary, however, 
to guarantee that the first high-frequency sum rule of ω) is satisfied. The 
Landau-Placzek ratio cp/ c v  can be obtained from the ratio (cp/ c v ) — 1 of the 
intensities (integrated area) of the Rayleigh and Brillouin peaks. Note that this 
ratio tends to infinity near the liquid-gas transition where (dn/dp)  —> oo and,
from Eq. (8.4.65), cp oo. Thus, near the liquid-gas transition, most of the light
scattering intensity is in the Rayleigh peak, whose width also approaches zero 
because k / c p  —» 0.
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(b)

Fig. 8.4.2. Normalized light scattering intensity
nSm(q,w)/(dn/dp)T = [2fc/(l — e~^hm)]nx^n(qw)/(dn/dp)T as a function of ω 
at fixed q. (a) Far from the critical point, where the Brillouin peaks dominate, 
(b) Closer to the critical point, where the Rayleigh peak dominates.

9 Two -c om po ne nt  f l u ids

In two-component fluids containing molecules of mass ma and mb, there are two
conserved mass densities, p a and pb, and, correspondingly, two mass currents, ga
and gb, related by the conservation laws

^  +  v . fc -  0,

^  +  v - g „  =  0. (8.4.67)

Only the total momentum,

g =  g a +  g b,  (8.4.68)
rather than the momenta of the individual species, is conserved. The momenta 
for the individual species can then be expressed in terms of the total momentum 
g and a relative momentum J :

P a  . τ  P b  T
g a = — g +  J, g i > = — g - J ,

P P
pJ =  P b g a  ~  P a g b ,  (8.4.69)

where p  =  pa +  p b is the total mass density. As in one-component fluids, the 
total momentum density and velocity are related by g =  pv. Following the 
same procedures as for one-component fluids, we obtain the equation for entropy 
production,

7 - ( !  +  V ' ( "  +  Q /7-))

=  - Q  V T / T  -  J Va -  (πβ -  pdjj -  Vigj)ViVj, (8.4.70)

where a =  aa — a* is the difference of the chemical potentials per unit mass of the 
two species. Q and J have the same sign under time reversal, and there will be
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dissipative couplings between Q and a and between J and T : 

Q =  - k V T  - Τ β ν ο ί ,

J =  - T V o i - p V T . (8.4.71)

Apart from factors of mass, Γ is the same dissipative coefficient as introduced in 
Eq. (7.4.29). β  is the cross-dissipative coefficient. The same coefficient appears in 
the equations for both Q and J. This equality of cross-dissipative coefficients is 
called an Onsager relation (Onsager 1931). It is a consequence of the symmetry of 
response functions and Kubo relations expressing dissipative coefficients in terms 
of current correlation functions. A derivation of generalized Kubo relations from 
which the Onsager relation can be obtained is outlined in Problem 8.3. The 
dissipative part of the stress tensor is identical to that of a one-component fluid.

There are now six conservation laws, and we expect six hydrodynamical modes. 
They are two transverse momentum modes, two longitudinal sound modes, and 
two coupled thermal-diffusion-relative-mass-diffusion modes, whose frequencies 
can be calculated using the techniques we have developed in this section.

In this chapter, we have studied the hydrodynamics of both the ordered and 
disordered phases of systems with no mass motion. We have also studied 
one- and two-component simple fluids in which conservation laws completely 
determine the set of hydrodynamical variables. In this section, we will study the 
hydrodynamics of liquid crystals, crystalline solids and superfluids in which there 
are one or more broken-symmetry hydrodynamic variables in addition to the five 
conserved variables of a one-component fluid. We will leave generalizations to 
multicomponent ordered fluids to the problems at the end of the chapter.

As we discussed in Sec. 6.2 on generalized elasticity, the director n in a nematic 
liquid crystal is an elastic variable whose uniform changes do not change the 
free energy of the system. It is thus a hydrodynamical variable as well. In a 
theory linearized about a uniform state with n =  no =  ez, we may replace n by its 
deviations δηχ and dny from no. The linearized entropy equation for a nematic 
is, therefore,

8.5 Liquid crystals, crystalline solids, and superfluid 
helium

1 N em a t ic  liquid crys tal s

Tds  =  de — adp — v d g  — hijd(V ;n,·), (8.5.1)

where

(8.5.2)
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where K ^ i  is the Frank elastic constant tensor. As in previous examples, our 
next task is to find the reactive part of the current for n. The fields n and v have 
different signs under time reversal, and there may be reactive couplings between 
them. The director n does not change under rigid translation at constant velocity.
Therefore, the leading coupling of n to v must involve the gradient of v. The
dynamical equation for n including a dissipative current X[  is then

~  ~  k jkVjVk +  X! =  0. (8.5.3)

Since η · δη/ d t  =  0, there are only two independent components of the tensor 
λ ψ ,  which can be taken as the symmetric and antisymmetric with respect to 
interchange of the indices j  and k :

hjk =  +  S l n j )  +  ^ 2(dTj nk -  <5£n,·), (8.5.4)

where δ f. =  δη — n,nj. Under a uniform rigid rotation,

^  =  ω  χ  n =  i ( V  χ  v) x n. (8.5.5)

This implies that the coefficient λ 2  of the antisymmetric part must be equal to 
—1. The magnitude of the coefficient λ  is not determined by symmetry arguments. 
The coupling of n to v leads to an additional linear term in the reactive part of 
the stress tensor:

af: =  - ρ δ η  +  l kji hk, (8.5.6)

where p =  —(ε - T s  — up — g - v )  =  —d E / d  V) s j i f , v inj is the normal fluid pressure 
and where

<5F
hj =  V j h j  =  K j u V j V m  =  ~ j ^ ,  (8-5.7)

where F  is the Frank free energy for the nematic. Note that σβ  in Eq. (8.5.6) is 
not symmetric and is thus not the average of a microscopic stress tensor, which 
is symmetric. This is not really a problem for hydrodynamics where only the 
quantity ν,-σ  ̂ enters. It is possible to construct a symmetric stress tensor with 
exactly the same value of V/ffy.

When dissipation is included, the entropy production equation becomes

T T t = ~ j d' x  [Q ' ( V T ) / T “ a ^ iV}~ X >VjhiA · (8·5·8)
Since the nematic liquid crystal is uniaxial, all dissipative coefficients are tensors. 
There are two thermal conductivity coefficients,

Kij =  KyininJ +  K±dlj,  (8.5.9)

five viscosities,

a[j =  2v2Aij +  2(v3 -  v2)[Aiknkni + A jknink] -  (v4  -  v2)diJA kk 

- 2 (vj +  v2  -  2vi )ninj nkniAki

+ (v 5 -  v4 +  V2)[3ijnkniAki +  μ ,μ ,Λ *], (8.5.10)
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where A y  =  \(ViVj +  V/>,·) is the strain rate tensor, and one dissipative coefficient 
for the director,

X[ =  - y - ' V  jhtj. (8.5.11)

(We used v rather than η for the viscosities to avoid confusion with an alternative 
convention for specifying viscosities using the symbol η.) The coefficient y has 
units of viscosity (poise). There are no couplings between n and V  T  because of 
the invariance under n —» —n.

Since there are two additional broken-symmetry variables, dnx and dny, there 
are two more modes in a nematic than there are in an isotropic liquid. The 
compressional sound mode retains an isotropic velocity. Its damping and the 
heat diffusion mode become anisotropic. The transverse velocity modes couple to 
the director and lead to composite diffusive modes with frequencies that can be 
expressed when K p / y v  <C 1 as

« * , ( * « ?+ * , « ?>  =  y -  +  7 +

ίω52(·Κ2<7ι +  K^qi )  — y + - ( 1 + 1 ) '  

ico/i

4 v i (q j  -  q j ) 2  +  2(vi +  v2)q jqj

« 3

4'~ ' v3q j  +  v2 q i ’ 

Μ<ΐϊ  -  <72)2 +  2(vi +  v2)qjqj

P(9i +  <72)
V3q \  +  ν2<ϊι /η γ iιω/2 =  —  -------- L (8.5.12)

where the 3 direction is along n.

2 Smec t i c -A  liquid crys tal s

In a smectic-/! liquid crystal, the layer phase u is the single broken-symmetry 
hydrodynamic variable. The director relaxes in microscopic times to its preferred 
orientation normal to the layers and is no longer a hydrodynamical variable. The 
entropy equation for a smectic is

Tds  =  de — adp — v d g  — hjd(VjU), (8.5.13)

where

where /  =  ε — T s  is the Helmholtz free energy density. In our study of the elastic
properties of smectics in Chapter 6, we considered only processes at constant
temperature and chemical potential. In this case, /  is a quadratic function of u 
[Eq. (6.3:11)], and

ht =  B d izVzu -  KiVx,-Viu. (8.5.15)

As we saw in our treatment of isotropic fluids, hydrodynamical modes involve 
changes in entropy and density (and thus local temperature and chemical poten-
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tial). In a smectic, Vzu is a scalar, and there are couplings between it and changes 
in the density δρ  and the entropy dq.  Thus, to obtain a complete description of 
the mode structure of a smectic, hi should be treated as a function of u, p  and 
q, and its expansion about the equilibrium state should include terms linear in 
δρ  and dq.  To keep our discussion simple, we will investigate only modes in the 
isothermal, incompressible limit where Eq. (8.5.15) applies. The isothermal limit 
results when the thermal conductivity κ is infinite.

If the smectic is translated with a constant velocity v, du /d t  will be equal to vz, 
implying

where X '  is the dissipative current associated with u. The vz term in this equation 
leads to a reactive term in the stress tensor:

where the p =  —(ε — T s  — ap — g · v) =  —B E / d I / ) s ,n ,p ,v ,u , as in an isotropic 
fluid. The longitudinal property of V,u allowing vjhtWj(WiU) to be replaced by 
VjhiVi{VjU) was used to obtain this expression for the pressure. The dissipative 
currents are

where n° =  ez is the unit layer normal, β is a cross-dissipative coefficient, and 
where, as in a nematic, there are five independent components of the viscosity 
tensor ηψι  and two independent components of the thermal conductivity tensor
K ij .

The longitudinal sound mode of a smectic is essentially the same as that 
of a normal liquid except for anisotropies in the sound velocity and dissipative 
coefficients. The new Goldstone mode of the smectic involves u and the transverse 
momentum. To analyze the u — g modes, we will for simplicity assume that the 
temperature and density are constant (as would be the case if the thermal 
conductivity were infinite and the compressibility were zero). We will also assume 
an isotropic viscosity tensor with a single shear viscosity η. Because the smectic 
is uniaxial, we may, without loss of generality, choose q =  (qx, 0 , q z) to lie in the 
x z -plane. Then, the longitudinal and transverse components of g in the xz-plane 
are

The equations for u and g± in the incompressible limit when g/ =  0 are

(8.5.16)

ofj =  - ρ δ η  +  δizhj, (8.5.17)

Qi =  - K i j V j T  -  β η * ν  ■ h, 

X '  =  - C V - h - β η  °- V T  

a'ij =  VijkiVkVi,

(8.5.18)

gi = (Vxgx + < 7 z g z ) / < 7 ,  g ±  =  (< 7 z g *  -  qxgx)/q- (8.5.19)

—i(ou =  -^  — C(Bq2 +  Kiq*)u (8.5.20)

and
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Sound Speed (cm/sec)

Fig. 8.5.1. Brillouin scattering measurements of the sound velocities in a 
smectic-A liquid crystal as a function of angle ψ between the wave vector q 
and the director no. v3 is the velocity of longitudinal sound and v: that of 
transverse sound. It is clear that v: is a maximum at φ =  45°. The 
experiments are unable to resolve the transverse sound velocity near ψ =  0 ° 
and ψ =  90°. v: and v3, however, lie on the curves predicted by the 
hydrodynamical theory (see Problem 8.4). The depression in the longitudinal 
sound velocity at ψ =  45° results from a coupling between longitudinal and 
transverse sound not present in isotropic fluids. [York Liao, Noel A. Clark, 
and Peter Pershan, Phys. Rev. Lett. 30, 639 (1973).]

~icog± =  +  K t q*)u -  ηq 2 g±.  (8.5.21)

In the dissipationless limit, these equations predict a shear sound mode with 
dispersion

ω2 =  « I ,8.5.22)
r  p

Thus the shear sound velocity is maximum when q is at an angle of 45° with 
respect to the z-axis, as shown in Fig. 8.5.1. In a compressible smectic, the 
longitudinal and shear sound modes are coupled. As a result, the angular 
dependence of the shear sound velocity is more complicated than that predicted 
by Eq. (8.5.22). We leave it as an exercise to verify this result.

When qx =  0, u and gx decouple: there is a transverse momentum diffusion 
mode with ico =  r\c^ /  p  and a diffusive u mode with frequency

ito =  CBqj.  (8.5.23)

This is a mode in which there is relative motion of mass and the periodic structure 
of the smectic, i.e., one in which molecules diffuse from one layer to the next 
without changing the average periodic structure. It is called the permeation mode. 
When qx =  0 there are slow and fast coupled u — gx diffusive modes. The
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component of g perpendicular to the xz-plane is not coupled to u and always has 
a diffusive mode.

A real smectic is not incompressible, and there is a longitudinal sound mode 
that couples to the transverse sound mode where it exists. We leave it as an 
exercise to show that the coupled sound velocities are identical to those of a 
uniaxial elastic solid described by Eq. (6.4.18) with K n  =  K n  and K 4 4  =  0.

3 Crys tal l ine sol ids

In solids, there are three broken-symmetry phase variables u„ i =  x , y ,  z,  for each 
of the three directions in space. The entropy equation is

Tds  =  de — adp — v d g  — h,jd(WjUi), (8.5.24)

where
3ε \  de \  d f  \

' }  ~  d ^ u ) J s , p , g ~  e u 'j ) s , p , s  ~  d u i j J T ,p, 

where f  =  e — T s  is the Helmholtz free energy density. The free energy and 
internal energy depend only on the symmetric strain utj  rather than on all 
components of VjUj. Therefore, h,j is symmetric, and hyduij =  hijdVjUj. The latter 
form used in Eq. (8.5.24) is, as we shall see, the most useful for the derivation 
of hydrodynamical equations. The free energy f (T ,p ,U i j )  including coupling 
between density and strain was derived in Eq. (6.4.14). In isothermal systems, it 
yields

hy =  K"jkluki +  (D / p 0 )dijdp  (8.5.26)

where po is the equilibrium density. (As in smectics, an additional term propor
tional to dq  is needed for a general treatment of hydrodynamical modes.) K"jkl is 
the constant density elastic constant tensor, and D  is the density-strain coupling 
introduced in Eq. (6.4.41). K"jkl must be symmetric in i j  and kl  in order to ensure 
a symmetric stress tensor. Under uniform translations of velocity v, the phases u 
grow uniformly:

f = v ,  (8.5.27)

leading to an additional term in the reactive part of the stress tensor,

ση =  —pSjj +  hij. (8.5.28)

The pressure p  in this equation is —( /  — p d f  / d p )  =  — (ε — T s  — a p). Thus, 
Eq. (8.5.28), which is identical to Eq. (6.6.25), was derived using static arguments 
only.

There are five conserved and three broken-symmetry hydrodynamic variables 
in a solid. We therefore expect a total of eight modes. These are a heat diffusion 
mode and three pairs of propagating sound modes. In addition, there is a vacancy 
diffusion mode, analogous to the permeation mode of a smectic, which is present 
even in one-component solids. The diffusion constant for this mode is often very
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small because of the large potential barriers inhibiting mass diffusion. It is often 
ignored.

To illustrate how sound modes can be obtained from these equations, we will 
consider the dissipationless, isothermal limit (which can be obtained by letting 
the thermal conductivity go to infinity and all other dissipative coefficients go to 
zero). In this limit, δρ =  p od f  / d p  =  Α(δρ /ρο)  +  D V  ■ u to linear order, where A 
is the inverse compressibility introduced in Eq. (6.4.41). Then,

£ - * ·  <8· ^ >
and

^  =  Vj  [(D -  Α ) ( δ ρ /ρ 0 )δί] -  D V  ■ uStJ +  K f a m l  (8-5.30)

where we used the expressions for htj and p  discussed above. Equivalently, we 
used Eq. (6.6.29) for σ,-y. Eq. (8.5.29) implies that <5ρ/ρ0 =  —V  · u and

d 2 u·
P~fc i  =  V jKijk'Ukl, (8.5.31)

where Κ ψ ι  =  K"jkl +  {A — 2ΰ)δηδ^  is the elastic constant tensor at constant ηΩo 
(i.e., constant vacancy density) introduced in Eq. (6.4.43). Eq. (8.5.31) is identical 
to Eq. (7.3.2) for elastic waves in an elastic continuum. In an isotropic solid, it
predicts two pairs of transverse sound modes with velocity cT =  + (μ /ρ )1/2 and a
pair of longitudinal modes with velocity cL =  + [ ( /  +  2μ)/ρ]1/2, where the Lame 
coefficients λ  and μ are those at constant «Ωο.

4 Superfluid hel ium

Superfluid helium was the first system with a broken continuous symmetry to 
have its hydrodynamics investigated. In his landmark 1941 paper, Landau not 
only discussed the microscopic energy spectrum of helium II, but also derived the 
hydrodynamic equations governing its normal and superfluid flow. Here we will 
show how these hydrodynamical equations can be obtained using the techniques 
developed in this chapter.

The complex order parameter for superfluid helium is the condensate wave- 
function ψ =  (ψ) =  \ip\e'e, where ψ is the annihilation operator for helium atoms. 
If the condensate is put into motion with velocity vs, then the phase Θ of ψ will 
increase by mvs ■ x/h.  The velocity vs =  ( h / m ) V 9  is the superfluid velocity. If vs 
is nonzero, the free energy will increase as p s f  ddx v j / 2 , where ps, the superfluid 
density, has units of mass density. As in our previous example, this is the en
ergy associated with a spatially nonuniform order parameter. At this stage, our 
description of a superfluid is identical to that of all of the other systems with 
xy  symmetry we have studied. Unlike our other examples, however, vs really is 
a velocity, and we must inquire what happens under a Galilean transformation 
in which the whole system moves with velocity v„ relative to the laboratory 
rest frame. Under this transformation, the free energy acquires an extra term
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—N m v l /2  [Eq. (8.4.18)]. On the o ther hand, there is no energy associated with the 
phase o f the order param eter unless vs differs from  v„, i.e., unless the condensate 
is in m otion with respect to the fluid. These considerations imply tha t the free 
energy as a function o f volume V, particle num ber N ,  tem perature T , norm al 
velocity v„ and superfluid velocity vs is

As in a norm al fluid, the m om entum  density is obtained via differentiation with 
respect to v„:

This equation suggests tha t superfluid helium can be viewed as consisting of 
norm al and superfluid parts with different mass densities, each o f which can carry 
m om entum . Indeed, the hydrodynam ic theory o f superfluids is often referred to 
as the two-fluid model. The field conjugate to the superfluid velocity,

is zero when vs =  v„.
O ther therm odynam ic functions follow using the procedure employed through

out this chapter. The free energy o f  Eq. (8.5.32), like that o f Eq. (8.4.15), is 
E — T S  — P  · v„. (There is no term  involving f  h · vsddx  because F  is a function of 
vs and no t h.) The pressure is thus p =  —(ε — up — T s  — g ■ v„) (i.e., Eq. (8.4.25) 
with v replaced by v„), and

The energy, mass and m om entum  densities obey the same conservation laws as 
in a norm al fluid.

As in our previous examples, we need to determ ine any reactive couplings 
between vs, which is odd under time reversal, and fields that are even under time 
reversal. To do this, we proceed exactly as we did in deriving spin hydrodynam ics 
in Sec. 8.3. The num ber operator N  com m utes with the H am iltonian t f .  Its 
com m utation relation with ψ,

is analogous to the com m utation relation between Sz and S+ =  Sx +  iSy in spin 
systems. Consider now the effect on the time dependence o f ψ o f adding an

F ( T , V, N ,  v„,vs) =  F0 (T ,  V ,N )  -  ~ m N v2n +  i  j  ddx p s{vs -  v„)2 =  V f .

(8.5.32)

(8.5.33)

I f  we define the norm al density p„ via 

Ρ  =  P n  “t” Ps>

then

g =  P n * n  +  PsVs-

(8.5.34)

(8.5.35)

(8.5.36)

Tds  =  ds — <xdp — v„ · dg — h ■ dvs. (8.5.37)

[ψ, N] =  ψ, (8.5.38)
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external chemical potential μ<,:

ψ{ί,μ() =

= εΜ *ψ{ί,μ<, =  0). (8.5.39)

In therm al equilibrium, ψ (ί,μβ) =  {ψ(ί,μβ)} m ust be independent o f time, and we 
conclude

^  =  (8-5.40)

where μ =  —T(ds/dn)  is the equilibrium  chemical potential. As in the rigid 
ro tor and our magnetic examples, we introduce a “curren t” X  =  (h /m )dd /d t . Eq. 
(8.5.40) implies that X  m ust have a p art equal to the chemical potential per unit
mass a =  μ /m ,  i.e., X  =  a +  X ',  when μβ =  0. The equation for vs when με =  0 is
then

s)\
^  +  V (a  +  X ')  =  0. (8.5.41)
ct

In  our previous examples, we were able to identify the analog o f X '  with a 
dissipative current. In the present case, we will find that X '  is purely dissipative 
in a linearized theory bu t that it has nonlinear non-dissipative parts.

We now have the inform ation needed to derive the complete hydrodynam ic 
equations for superfluid helium. The equations for entropy production are iden
tical to those o f a norm al fluid, with additional contributions arising from  vs. 
These are

3 s
T ^  =  · · · + h ·  V (a  +  * ') ,  (8-5.42)

ct
Tv„ · V s  =  · · · -  vnjh;V jVsi =  ■■■ -  vnjh;ViVsj, (8.5.43)

where · · · represents the contributions to these equations identical to those o f a 
norm al fluid. The last equation follows because vsi =  V;0 is longitudinal. With 
these additions to the equations for a norm al fluid, we find

ds _  f  Q  
Λ + ν ' ( ' · 5 + Τ

V T
Q  · - γ -  -  (g -  pvn -  h) · V a

[π ί̂ P^ij Vnigj />;r,7]V ;r„;

+ { - X '  +  vs -v „ )V -h  (8.5.44)

with

Qi =  i t  ~  «(gi -  PVm) -  ενηί -  (v„ · g)vni -  νηβ μ  +  (v„ · vs -  X')hi.
(8.5.45)

In  the non-dissipative limit, the right hand  side o f this equation is zero, implying
g =  P^n +  h, in agreem ent with Eqs. (8.5.33) and (8.5.34), X '  =  vs · v„, and

Tlji =  p S i j  +  V n i g j  +  h iV s j

=  P^ij +  PnVniVnj Ps^siVsj- (8.5.46)

The non-dissipative p art o f the energy current is

=  v„ T s +  ag +  v„g · v„ -  ps( \n ■ vs)(v„ -  vs). (8.5.47)
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Dissipative currents can be determ ined in the usual way. Here V  · h and V  · v„ 
have the same sign under time reversal, and there is a dissipative coefficient 
coupling X ' to V  · v„ and a'Vj to V  · h :

2
ViVnj +  VjVni ~  'a ij =  η

+<5>yK2V  · v„ +  Ci V  · h],

Q  =  - k V T ,  (8.5.48)

X" =  -C 3V - h - C i V - v „ ,  

where X " = X ' — vs · v„. The dissipative coefficient ςι appears in bo th  X "  and 
a\j because o f Onsager reciprocity theorem  (see Eq. (8.4.71) and Problem 8.3). 
We now have a complete set o f  therm odynam ic and hydrodynam ic equations for 
superfluid helium. These equations are usually expressed in a coordinate system 
in which vs =  0. We leave it as an exercise to derive therm odynam ic param eters 
and currents in this coordinate system.

To determ ine the nature o f  the G oldstone mode o f superfluid helium, we will 
determ ine the linearized modes predicted by the above hydrodynam ical equations 
in the non-dissipative limit. In  this limit, Q  =  0, the energy current je can be 
expressed in terms o f g and vs as

f  =  - ( a p„ +  Ts)g -  Bi. T s v s. (8.5.49)
P n  Pn

Using this in the time derivative o f the energy conservation equation [Eq. (8.4.2)], 
we obtain

Λ  _ m  + Ts ξ ρ  +  Ε, Τ ι ν 2α _ 0 (8,5.50)
O t 1 P n  d t 1 P„

with the aid o f Eq. (8.5.41) with X ' =  0. As in norm al fluids, it is convenient to 
use the heat variable q ra ther than the energy density. To linear order in vs, the 
relation dq =  ds — (ε +  p)(dp/p)  [Eq. (8.4.52)] between q and ε also applies to 
superfluids. This equation can be used to obtain an equation for the second time 
derivative o f q, which, with Eq. (8.5.49) for the energy current, is

d2Q Ps rr ~ d2p  Ps rp ~Y72„ π  (Q c  C1\- τ - γ ------ T s — .y Η------ T p s \  a =  0, (8.5.51)
d t 1 P n  d t 2 Pn

where s =  s /m  is the entropy per unit mass. In the norm al fluid in the non 
dissipative limit, q =  0. Here, there are reactive couplings to p  and a tha t vanish 
when p s =  0. The stress to linear order in vs and v„ is — pdy so tha t the equation 
for the total density p  is the same as in a norm al flu id :

§  -  V2p =  0. (8.5.52)

W hen a and p are expanded to linear order in q and δρ  using the relation
dp =  sdT  +  pda, Eqs. (8.5.50) and (8.5.51) lead to the following characteristic
polynom ial for the frequency:
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ω4  — co2 q2
dp_

d p

Ps~2 *+ - s 2-
P n  CV  J

p s T s2 dp
P n  CV d p

=  0. (8.5.53)

This equation yields two pairs o f sound-like modes with dispersion ω =  +c\q  and 
ω =  +C2 q. The first sound velocity c\ tends to the longitudinal sound velocity of 
a norm al fluid when p s —> 0. The second sound velocity tends to zero with p s . A t 
the low tem peratures where superfluidity sets in, cp & cy  and d p / d p ) s  *  d p / d p ) T , 

and
d p  

d p

i i l i .  (8.5.54)
P n  CV

The second sound m ode results from  the coupling o f the heat current to the 
superfluid velocity.

cr =

8,6 Stochastic models and dynamic critical phenomena

1  Critical slowing down and the conventional theory

As we have seen throughout this chapter, conservation laws and broken symmetry 
determ ine all those variables whose characteristic frequencies ω  are guaranteed 
to tend to zero with wave num ber q, i.e., all those variables for which ω τ  <  1 

whenever qX <C 1. H ydrodynam ical equations determ ine the low-frequency, long- 
wavelength tem poral and spatial behavior o f these variables. The great virtue of 
hydrodynam ics is tha t it provides a correct and closed description o f the dynamics 
o f a small set o f m acroscopic observables such as density or magnetization. It 
does no t require an exam ination o f all o f the order 10 23 microscopic degrees of 
freedom o f a typical condensed m atter system, though these degrees o f freedom 
do ultim ately determ ine the values o f  transport coefficients.

I t is natural to extend the hydrodynam ical approach to o ther “slow” variables 
whose characteristic frequencies are less than  the inverse microscopic collision 
time τ-1 . Since hydrodynam ics includes all variables for which ω —> 0 as q —> 0, 
the new variables will have a nonzero characteristic frequency ξ  τ^ 1 a t q =  0. 
In order for the hydrodynam ic approach to m ake sense for these new variables, 
it m ust be tha t ω ^ τ  =  τ / τ ^  <C 1 , i.e., there m ust be a clear separation between 
microscopic and collective time scales. Such a separation occurs quite naturally 
near a mechanical instability or a second-order phase transition. The overdamped 
oscillator discussed in Sec. 7.2 [Eq. (7.2.14)] provides the simplest example o f a 
division into slow and fast time scales. The slow frequency, =  (/c/a), tends
to zero as the spring constant k  tends to zero, whereas the fast frequency, 
ω / =  y, is independent o f k. Thus, by controlling k, it is always possible to
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reach ω 5·ο/ω/■ <  1. In this limit, the inertial term  can be neglected, and the 
equation o f m otion for x  becomes a simple first-order differential equation. N ear 
a second-order phase transition with a non-conserved order param eter φ, one can 
expect a similar separation o f  time scales with a dissipative m ode for φ  with a 
w idth τ^ 1 ~  Γ /χ ,  where χ  is the susceptibility for φ  and Γ  is a phenom enological 
dissipative coefficient. In the conventional theory (often called the Van Hove 
theory) (Van Hove 1954, L andau  and K halatnikov 1954), it is argued tha t Γ  
approaches a constant as T  —» Tc and that τ5 diverges as | T  — Tc\~y and 
becomes arbitrarily  large com pared to any microscopic collision time. This is the 
phenom enon o f critical slowing down. The approach to a critical point leads quite 
generally to critical slowing down even for hydrodynam ical m odes associated 
with a conserved order param eter. Thus, for example, in the Van Hove theory, 
the diffusion constant D =  Γ / χ  vanishes as |T  — Tc\y near the phase separation 
critical po in t o f  a binary mixture. The frequency ω =  —iDq2 decreases as T  —> Tc 
at fixed q, i.e., there is critical slowing down.

In  this section, we will develop stochastic equations tha t generalize hydrody
namics to include non-hydrodynam ic variables with m ode frequencies tha t are 
slow com pared to inverse microscopic collision times. In addition, these equations 
will introduce noise sources, reflecting the presence o f high-frequency modes, that 
will guarantee the approach to therm al equilibrium. Stochastic equations are the 
generalization to continuous fields (or to fields on a lattice with m any degrees 
of freedom) o f the Langevin equations for a single variable discussed in Sec. 
7.5. They are also the natural dynamical generalization o f the Landau-G inzburg- 
W ilson (LGW ) phenom enological field theories discussed in C hapter 5. They 
determ ine dynam ical properties o f variables whose static properties are deter
mined by the LGW  field theories. We will then discuss generalizations o f scaling 
near a critical po in t to dynamical, i.e., time- or frequency-dependent, quantities, 
and show, in particular, how the form o f ordered phase hydrodynam ical modes 
determines the tem perature dependence o f dissipative coefficients Γ  near a critical 
point.

Stochastic equations describing the low-frequency properties o f a given system 
m ust include hydrodynam ics. Thus, the stochastic equations for fields in any 
LGW  field theory will depend on w hether or no t those fields are conserved or 
describe broken continuous symmetries. I t is, therefore, possible to associate 
m any different dynamics with a given static LG W  theory. A fter discussing 
dynam ic scaling, we will show how reactive couplings leading to propagating 
modes can be obtained from  Poisson bracket relations. The resulting non-linear 
stochastic equations give rise to probability distributions that decay in time to 
the equilibrium  distribution described by the associated LGW  H am iltonian. We 
will then consider a num ber of explicit models with Poisson bracket terms that 
have been used in the study o f critical dynamics. In  low -tem perature ordered 
phases, these models reproduce broken-sym m etry hydrodynam ics discussed in this 
chapter. They also describe non-hydrodynam ic slow modes in disordered phases.
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Finally, we will show how nonlinear couplings between slow modes inherent in 
the above theories lead to wave num ber dependent renorm alizations o f transport 
coefficients.

2 Dissipative dynamics

Purely dissipative stochastic models are often referred to as kinetic Ising models. 
The simplest stochastic dynam ical model is one in which there is a single non
conserved scalar field φ(χ)  in contact with a constant tem perature heat bath. 
This model is variously called the G lauber (1963) model, the time-dependent- 
G inzburg-Landau (TD G L) model, or model A. It provides a good description of 
Ising spins on a lattice coupled to phonons with a therm al conductivity very large 
com pared to that o f the spins alone. The energy o f the spins in such a system 
is transferred quickly to the lattice and is thus no t conserved. The only “slow” 
variable is φ(χ,  ί), whose equation o f  m otion is

3φ  r $ t f  T  (-/

model A *  = '  ~ W + C M
= - r — +TMx,i) + C(x,i), (8.6.1)σφ

where t f r  is the total H am iltonian, h(x, t) is the external field conjugate to 
Φ, and ζ(χ, i) is a noise source. This equation is simply the generalization to 
continuous fields o f the Langevin equation [Eq. (7.5.30)] for a velocity. In  the 
case o f a diffusing particle, the noise described the effects o f microscopic degrees 
o f freedom  o f its host fluid. Here, it describes in a phenom enological way the 
effects o f degrees o f freedom with wave num ber q greater than the cutoff Λ in
the phenom enological H am iltonian t f  or o f o ther fast degrees o f freedom not
described by φ. As in the case o f Langevin theory for a single particle, we assume 
tha t ζ (χ ,ί)  is an independent random  variable a t each poin t in space with zero 
m ean and a white noise spectrum :

{ζ(x, t)C(x', tf)) =  2 Τ Γ δ (χ  -  x')3(t -  tf). (8.6.2)

N ote that Eq. (8.6.1) is non-linear if t f  is anharm onic. We will return to this
point later.

Response and correlation functions for φ  are easily calculated when t f  is a 
G aussian H am iltonian (see Sec. 5.8). In this case,

^  =  - r [ r - c V 2W  +  r h  +  C, (8.6.3)

or, after Fourier transform ation,

φ & ω )  =  0 (ς,ω )[Γ /ι(ς ,ω ) +  ζ (,,«»)], (8.6.4)

where

G(q, ω) =  — ------ - i ---------(8.6.5)
’ - ΐ ω  +  Γ  {r +  cq2) v ’

The last equation allows us to calculate the dynamic response function,
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χ (ς ,ω ) =  TG(q,co) = + χ  (q) (8.6.6)
Γ

where χ(ς) = (r +  cq2)- 1  is the static wave num ber dependent susceptibility and 
the correlation function,

(φ( q, ω)φ{ q', ω ')) =  G(qco)G(q', ω'){ζ (q, ω)ζ (q', ω ')) (8.6.7)

or

€φφ( q, ω) =  ^  lz(q, ω )|2 =  2 ^ z " ( q .ω )· (8·6·8)

This equation is the classical fluctuation-dissipation theorem. The noise fluctua
tion in Eq. (8.6.2) was chosen so that this relation would be satisfied. The dynamic 
response function can be rewritten in a form  analogous to tha t [Eq. (7.2.24)] for 
an overdam ped oscillator

r d ^ ·  <8·6·9»
where co(q) =  T/x(q).  Thus, co(q =  0) =  Γ /χ (0 ) goes to zero linearly with 
r ~ T - T c.

M odel A  describes the slow dynamics o f a non-conserved variable bu t no t that 
o f a conserved variable. A  purely dissipative dynamics for a conserved variable 
can be obtained by replacing Γ  by —IV 2:

model Β ψ- =  + ζ. (8.6.10)
dt οφ

This defines the C ahn-H illiard model (Cahn and Hilliard 1958) or model B. The 
noise correlations m ust satisfy

(ζ(χ, i)C(x', 0 )  =  —2T1V 2<5(x -  χ')<5(ί -  i') (8.6.11)

to ensure tha t the fluctuation-dissipation theorem  is satisfied. If  t f  is the Gaussian 
H am iltonian, the response and correlation functions for model B are identical to 
those o f model A  with Γ  replaced by T(q) =  l q 2:

x~ l (q, ω) =  + x~l (q)· (8-6.12)

This is identical to the diffusive response function o f Eq. (7.4.18) with D =  λ/χ .  
M odels A  and B are easily generalized to n-com ponent fields by replacing φ  by
Φί·

A  non-conserved order param eter m ay be coupled to a conserved bu t possi
bly non-critical density such as the energy density or the m agnetization in an 
anisotropic antiferrom agnet. The static LGW  H am iltonian for such a system will 
be a functional o f bo th  φ  and the new conserved variable, which we will denote 
by m. In  a φ 4  model, for example, the H am iltonian would be

/=  /  ddx γ φ 2 +  ύ φ 4  +  ^c(V </>)2 +  wmφ 2 +  ^ C m1 m2 (8.6.13)

If  m is non-critical, i.e., if Cm‘ does no t approach zero, then it can be removed 
by integration to produce an effective H am iltonian for φ  alone. The dynamical
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equations ensuring conservation o f m are
δφ  _  <3^ j

model C dt δφ  ’
^  =  i mV2 ^ + C m, (8.6.14)
dt dm

where J ^ T =  — f  ddx(hφ  +  hmm) and

< U x , i ) U x ',0 >  =  - 2 T l mV2<5(x -  x')<5(i -  f ) .  (8.6.15)

Eqs. (8.6.14) and (8.6.15) define model C with a non-conserved critical field and 
a non-critical conserved density. In the harm onic approxim ation, these equations 
yield frequencies ω ψ(ς) =  — iT /x(q)  and ω m(q) =  —i(X/Cm)q2.

One could also imagine a critical conserved density φ  coupled to a non-critical 
density m. The dynamics o f this model (model D) is described by Eq. (8.6.14) 
with Γ  =  —l^V 2.

These simple models can be used to define characteristic frequencies in terms 
o f response and correlation functions whose form is quite generally applicable. 
The dissipative coefficient Γψ for a field φ  with dissipative dynamics is

1 δ Χ φ φ (* ω )\
r ^ T ^ F t o r )  ■ (8'616)/  ω=0

and a characteristic frequency ωψ(q) can be defined as

<0φ(<ύ =  Γφ/Χφ(<ΐ)· (8.6.17)
W hen the field φ  is conserved, then

λφ =  \ i m q - 2 Γ φ(q). (8.6.18)
q - *  0

This definition o f a characteristic frequency is adequate when modes are dissipa
tive and spectral weight is concentrated near ω  =  0. W hen there are propagating 
modes, however, an alternative characteristic frequency co^(q) defined via

r * ( q) d o  i
—  5ψψ(ς , ω ) = - 5 ψ ψ(ς ) (8.6.19)

-<o*(q) 2π 2I
is preferable.

3 D ynam ic scaling

In C hapter 5 we learned that, near a second-order critical point, therm odynam ic 
functions obey generalized hom ogeneity relations leading to scaling laws. In 
particular, we found that the order-param eter susceptibility satisfies x(q ,r ) =  
b2_ ',/(b q ,b 1/vr), where r ~  T  — Tc is the tem perature variable. The phenom enon 
o f dynam ic slowing down would lead one to expect tha t dynam ic response and 
correlation functions would obey similar scaling relations. Indeed, the G aussian 
response functions for models A  and B obey scaling relations tha t are direct 
generalizations o f the mean-field scaling relations discussed in C hapter 5:

*(q, ω, r) =  b2~ix(bq, bzco, b '/vr), (8.6.20)
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where η =  0 and the dynamic scaling exponent z  is equal to 2 for model A  and 
to 4 for model B. Below the upper critical dimensions, where critical fluctuations 
become im portant, one can expect Eq. (8.6.20) to hold, with η the critical point 
exponent and z, in general, no t equal to 2 or 4. Eq. (8.6.20) then implies the 
scaling relations

*(q , ω, r) =  \ r\~yX ^ ,  ω ζ ζ) (8.6.2 1 )

and

co(q) =  qzSl{qi) =  Γ 'ί Μ β ί ) ,  (8-6.22)

for the dynam ic susceptibility and the characteristic frequency. Here, ξ ~  |r |~ v is 
the correlation length. I f  the transport coefficients Γ  and λ  rem ain constant near 
the critical point, then ^_ 1 (q,ω ,τ )  =  [(—m / r ( q ) )  +  / “ Hq, r)] with T(q) =  Γ  for 
model A  and Xq2 for model B. In this case, /(q , ω, r) and o)(q) obey the scaling 
laws o f Eqs. (8.6.21) and (8.6.22) with z =  2 — η for m odel A  and z =  4 — η for 
model B. These are the scaling exponents predicted by the classical Van Hove 
theory. In  general, however, one can expect transport coefficients to become 
singular at the critical point. R enorm alization group and 1 /n  calculations for 
model A  confirm  this expectation and yield

z =  2 +  cj; (model A). (8.6.23)

N ear four dimensions, c =  0.7621(1 — 1.687e) +  0 (e 4), where e =  4 — d. The 
quantity c-η has also been calculated to order \ / n  and to first order in e' =  d — 2 

for n > 2. The latter calculation is done with a dynam ic generalization of the
nonlinear sigma model discussed in Sec. 6.7. Similar calculations for model B
yield the Van Hove result

z =  4 — η (model B) (8.6.24)

to all orders in e. In m odel C, the order param eter is coupled to a conserved
variable with diffusive dynamics. This coupling leads to

z =  2 +  -  (model C, n =  1) (8.6.25)
v

for systems with Ising symmetry, where a is the specific heat exponent. W hen n >  1 
and a <  0, the coupling to the non-critical conserved variable is unim portant, 
and model C is equivalent to model A.

In  the purely dissipative models ju st discussed, the characteristic frequencies 
are proportional to ξ~ζ for small q bo th  above and below Tc. In models 
with a broken continuous symmetry in the ordered phase, there are Goldstone 
modes whose long-wavelength frequencies tend to zero with q, with coefficients 
determ ined entirely by therm odynam ic rigidities and susceptibilities. In  the 
disordered phase, on the o ther hand, the characteristic frequency o f a non- 
conserved order param eter will tend to a finite constant as q —> 0. In this 
situation, the function Ω(^£) will have different small argum ent limits for T  > Tc 
and T <  Tc. In  addition, the exponent z is a function o f static exponents only. 
Consider first the p lanar m agnet (whose ordered phase dynamics is essentially
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the same as that o f the rigid rotor, the isotropic antiferrom agnet, and superfluid 
helium). In this model, co(q) =  (ps/ y m)l/2q (see Secs. 8.2 and 8.3). The rigidity 
obeys the Josephson scaling relation ps ~  ξ~^~2'>. The susceptibility ym is 
associated with the non-critical field m =  mz. I t is non-divergent (case 1) when 
the system is invariant under m —» —m, and terms in an effective H am iltonian 
o f the form  mcf>2 are prohibited. This symmetry applies to the p lanar m agnet 
with no external m agnetic fields bu t no t to one with an external field, or to the 
superfluid where m is really the density. In  the la tter case (case 2), ym will diverge 
as ξ α/ν if a >  0. Thus, in the ordered phase,

where a =  m in(a,0) for case 2. From  this and Eq. (8.6.22), we conclude

We can now construct the behavior o f co(q) in the three regions shown in Fig. 
8.6.1: (I) — 0, T  < Tc; (II) q i  — oo; and (III) q i  — 0, T  > Tc:

There is a continuous crossover between behaviors (I) and (II) and between 
behaviors (II) and (III) at q i  ~  1.

The hydrodynam ical analysis at the beginning o f the chapter also predicted a 
dam ping o f the G oldstone modes proportional to q2, i.e., Imco(q) =  Dq2. N ear 
the critical point, scaling predicts D ~  ξ~ζ+2.

In the isotropic ferrom agnet, the G oldstone m ode has frequency co(q) =

In the disordered phase, a)(q) =  —iDq2 because the m agnetization m is a conserved 
variable. Scaling implies D ~  ξ~ζ+2.

In  high dimensions, where critical fluctuations are unim portant, the Van Hove 
theory with mean-field static critical exponents (i.e., η =  0) is valid. A t the upper 
critical dim ension dfyn, where Van Hove theory breaks down and dynamical 
critical fluctuations become im portant, the exponent z predicted by scaling will 
be equal to the Van Hove result zH. This perm its us to determ ine d fyn for the 
p lanar model and isotropic ferrom agnet. The order param eter in the p lanar 
m agnet is no t conserved, and z/j =  2. Setting z in Eq. (8.6.27) equal to 2 (and 
using the fact that a =  0 at d =  4) yields d p n =  4. The upper critical dimensions 
for static and dynam ic properties are identical. In the isotropic ferrom agnet, the 
order param eter is conserved and zh =  4. Setting z in Eq. (8.6.29) equal to
4 with η =  0, we obtain d p a =  6 for the ferromagnet. Thus, d p a > dc =  4, 
and the dynam ic fluctuations become critical before the static therm odynam ic

(case 1 ); 
(case 2 ),

(8.6.26)

(case 1 ); 
(case 2 ).

(8.6.27)

<Tz+1<Z (I) 
qz (II
r z (π

(II)

(III) ·

(8.6.28)

(ps/ M 0 )q2 ~  ξ ^  2)+0/vq2, implying

z  =  d — (β /ν )  =  ^ (d  + 2 - η ) . (8.6.29)
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Τ Τ
C

Fig. 8.6.1. The macroscopic domain o f wave vector q and coherence length 
ζ.  In the three shaded regions, the correlation functions have different 
characteristic behaviors. These regions are, respectively, defined by 
{qi  <  1, T <  Tc), (qi  > 1 ,  T ~ T C) ,  and (qi  <  1, T  >  Tc). The 
asymptotic forms for these regions merge when extrapolated to the lines Li 
or L 2 ( q i  =  1 for T  <  Tc and T >  Tc, respectively). An experiment done at 
constant q (line L 3) will pass through all three regions as temperature is 
varied. [B.I. Halperin and P.C. Hohenberg, Phys.  Rev.  177, 952 (1969).]

flu ctuations as d  is low ered. T here is an om alou s d ynam ical critical behavior, even  
th ou gh  static properties are still described  by  m ean-field  theory. C alcu lations  
b ased  on  a stoch astic  m od el for ferrom agnets to  b e d iscussed  shortly  confirm  this 
result.

4 Poisson bracket terms

M od els  A - D  are purely  d issipative; they d o  n o t have reactive cou p lin gs betw een  
fields o f  op p o site  sign  under tim e reversal and, as a  con seq u en ce, they have  
n o  p rop agatin g  m odes. In  this subsection , w e w ill d iscuss h ow  these coup lin gs  
can  b e in corporated  in to  stoch astic  m odels. T he m acroscop ic  h yd rodyn am ic or 
q u asi-h ydrodyn am ic fields φ μ( χ,  t )  w ith  low -frequency m o d es are coarse-grained  
averages o f  m icroscop ic  fields φ μ( χ , ί ) ,  w hich  are fu n ction s o f  the m icroscop ic  
can on ica l variables such as particle p ositio n  and  m om entum . T he tim e de
p en d en ce o f  φ μ( χ , ί )  is con tro lled  by  its P o isson  bracket w ith  the m icroscop ic  
H am ilton ian  m:

= {^η,,Φη,}· (8.6.30)

S ince averages o f  the m icroscop ic  field φ μ and the coarse-gra ined  field φ μ are 
identical, w e exp ect th at the coarse-grained  fields w ill have con trib u tion s to
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their equations o f m otion similar to Eq. (8.6.30) bu t with replaced by a 
phenom enological coarse-grained H am iltonian which is a functional o f the 
coarse-grained fields only. This leads to contributions to the equations o f m otion 
for φ μ o f the form 

Βφμ(χ, t)
dt / s  y?

Λ ' β μν( χ , χ ' ) ^ - ^ ,  (8.6.31)

where

ρ μν(χ, χ ') =  -β ν μ (χ ', X) =  {</v(x), <Mx')} (8.6.32)
is the Poisson bracket o f φ μ(χ) and φ ν(χ') evaluated as though they were m acro
scopic fields. We will consider some explicit examples o f <2μν(χ, x') shortly.

Equations o f m otion for stochastic variables (like the velocity in Sec. 7.5) 
m ust produce probability distributions that obey a Fokker-Planck-Sm oluchowski 
equation and decay to equilibrium distributions at long times. This requirem ent 
leads to a slight modification o f Eq. (8.6.31). Consider the phenom enological 
equations for a set o f stochastic fields φ μ(χ, t ) :

^ τ £ ί- ι'»Μ - Γ' · ^ + « ,ί· ,)· <8'633)
where νμ(χ) is a non-dissipative “velocity” tha t contains the Poisson bracket o f 
Eq. (8.6.31) and may depend on the fields φ μ, Γ μν is a dissipative tensor that 
may have com ponents proportional to —V2, and ζμ(χ,ί)  is a noise source with 
variance

<ζμ(χ, i ) £ v ( x ' ,  ί ' ) )  =  2 Τ Γ μν<5(χ -  χ')<5(ί -  ί ' ) ·  ( 8 . 6 . 3 4 )

A  probability distribution for the fields {φμ(χ)} can be introduced in analogy 
with that for the m om entum  o f diffusing particles discussed in Sec. 7.5. Let

P({4>v(x)},t\{4>l(x)},to)= /jj< 5(< /v (x) — φ μ{ χ , ί ) ) \  (8.6.35)
' χ,μ ' Μ(χ)}.ίο

be the probability that the fields φ μ(χ, t) take on values φ μ(χ) a t time t, given that 
they had values φ°μ(χ) a t time t =  i0. A n equation for the time evolution o f this 
probability distribution can be derived using the procedures presented in Sec. 7.5. 
First, following Eq. (7.5.33), we write

Ρ ({φ μ(χ)},ί  +  Αί\{φ°μ(χ)} ,ί0) (8.6.36)

@Φ'μ(Χ·)Ρ({Φμ(Χ)}, t +  Δί| {Φ'μ(Χ·)}, ί)Ρ({φ'μ(χ)}, t\{φ°μ(χ)}, to).

As in our derivation o f the Fokker-Planck equation in Sec. 7.6, we need to 
determ ine the equation for Ρ ({φ μ(χ)}, t +  Αί\{φ'μ(χ)}, t) to first order in Δί. We do 
this by integrating Eq. (8.6.33) subject to the boundary condition tha t φ μ{χ, t) be 
equal to φ'μ(χ) a t time t:

φ μ(χ , ί  +  Αί) =  φ μ(χ)

I -

+ V ' ( x ) - r ,μν
b ^ e

δφ'ν(χ)_ / ί+ Δ ί

ζμ(χ,ΐ')ά ΐ', (8.6.37)
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where ν'μ and S tf  /δφ 'ν are functionals o f φ'μ(χ). Using Eq. (8.6.35), we find 

+  Δ ί|{<^(χ)},ί)

d t f  \  δ

and

1 + Δ , / Λ ( κ » - Γ „ , ^ , ( χ ) ; ί ψ , (χ)

+ A , r „ y  π  w „ w  - % < * » (8.6.38)

-  T l ·dt J  δ φ ν(χ) \ T  δ φ ν(χ) δ φ ν(χ)

-  ί (8·6·39̂ J δ φ μ(χ )
The first term  in this equation is clearly zero if P  takes its equilibrium form 
e- jf /T . The second term  is zero if

V„,x) =  - / Α '  ( δ , - ( χ , χ ' ) ^  -  · (8.6.40)

Thus, there is an extra term  no t predicted by the Poisson bracket relation for 
the microscopic fields. In m ost models tha t are studied, the second term  in this 
expression is either zero or unim portant.

The Poisson brackets contain inform ation about translational, ro tational and 
other invariances o f the system. They produce the same reactive terms in 
hydrodynam ical equations as we derived in preceding sections o f this chapter 
using invariance argum ents alone. Consider, for example, the Poisson bracket of 
the mass density and m om entum  density:

X" ( eP(x) eSi(x') dpi*) dgi(*')\
m i * * * »  =  - s r - 5 5 - J

=  w0V;(p(x)<5(x — x')). (8.6.41)

The coefficient wq is unity with our standard  choices for p“ and x“. I t will be 
useful, however, to regard it as a param eter tha t can vary under renorm alization 
in models we will shortly discuss. W hen integrated over x', this equation becomes 
{p(x),Pi} =  V,p(x), a relation tha t follows from  the fact that the total m om entum  
operator P  is the generator o f infinitesimal translations. Eqs. (8.6.40) and (8.6.41) 
then imply the following contributions to the equations o f m otion from  p  and g:

I  -  -  J  % . »  «,(*'» ^  =  -w„V, ■ (8-6-42)

The H am iltonian t f  is a functional o f the m om entum  density g(x) via the kinetic 
energy term

t f * n  =  f d d x (8.6.43)
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implying tha t <5^f/<5g;(x) =  g ,(x)/p  is the velocity v,(x) and tha t Eq. (8.6.42) 
is identical to the conservation law d p /d t  =  —V  ■ (pv) =  —V  · g. The Poisson 
bracket relation between p and gi also contributes to the equation for g,·:

is a functional o f the density p(x). For small deviations from  equilib
rium, p(x) =  p0 +  <5p(x), and the leading dependence o f on p(x) is (1 / 2 ) 
f  ddxpQ2 K~1 (dp)2, where ks =  —p(dp/dp)s is the isentropic compressibility. W ith 
this form for J f ,  Eq. (8.6.44) becomes

in agreem ent with our analysis o f the linearized hydrodynam ics equations for a 
fluid in Sec. 8.4.

The com plete nonlinear equations for a fluid can be derived from  Poisson 
brackets. However, direct evaluation o f some Poisson brackets, particularly those 
involving the energy density, are sometimes tedious.

In  the simple example ju st given, the nonlinear character o f δ ^ / δ φ μ(χ) was 
suppressed. In general, however, δ ^ / δ φ μ(χ) is a nonlinear function o f the fields 
φ μ(χ), and the Poisson bracket relations provide non-trivial nonlinear couplings 
am ong long-wavelength, low-frequency modes. These couplings lead to im portant 
renorm alization o f hydrodynam ic reactive and dissipative coefficients, particularly 
near second-order phase transitions.

We now turn  to an enum eration o f some specific stochastic models that have 
been used in the study o f dynam ical critical phenom ena in systems with reactive 
couplings. In particular, we will consider model H  dynamics o f the liquid-gas 
transition critical point and the phase-separation critical point o f binary fluids, 
models E and F  for the p lanar ferrom agnet and superfluid helium, model G  for 
antiferrom agnets, and model J for ferromagnets. These models reduce in the 
hydrodynam ic limit, when only conserved and broken-sym m etry variables are 
kept, to the hydrodynam ic equations considered in this chapter.

We begin with model H  for the liquid-gas transition. We saw in Sec. 8.4 that 
linearized hydrodynam ics o f a one-com ponent fluid is best described in terms of 
the scalars p(x) and q(x) =  [ε(χ) — (ε + ρ)(δρ/ρ)\.  Coupling between the pressure 
p and the entropy field q occur only through sound waves in the dynamics and 
no t through zero-frequency thermodynamics. The sound-wave frequency with 
ω  ~  q is always much faster than that o f diffusive modes with ω ~  q2. N ear the 
critical point, the Rayleigh peak, ra ther than the Brillouin peak, dom inates the 
density correlation function (see Eq. (8.4.66) and Fig. 8.4.2) and the sound mode 
is irrelevant. A  good model for slow dynamics near the liquid-gas critical point

(8.6.45)

5 M odels  w ith  Poisson brackets
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is thus one tha t neglects bo th  pressure and the longitudinal com ponent o f the 
m om entum  density. These considerations and the Poisson bracket o f Eq. (8.6.41) 
lead to the following model in terms o f the entropy density field φ =  q and the 
transverse m om entum  density g (with V  · g =  0):

where SPf- =  (<5,y· — V/Vy/V2) is the transverse projection operator and =  
JP +  ext with

where h and hg are infinitesimal external applied fields and where we have chosen 
our units so tha t p =  1. If  nonlinear terms are neglected, these equations

hydrodynam ical results o f  Eqs. (8.4.60) and (8.4.49) if ro =  cp \  / 0 =  κ, and 

'/o =  n/p-
N ext we consider the p lanar ferrom agnet and superfluid helium. Here the 

order param eter is the complex field ψ =  mx +  imy. The z-com ponent o f the 
m agnetization m = mz is a conserved non-critical field. The Poisson bracket for 
ψ  and m is

Normally, go is unity; it can, however, be regarded as a param eter that can 
change under renorm alization group transform ations. This Poisson bracket leads 
to the following dynam ical m odels:

In  the p lanar model, the H am iltonian m ust be invariant under m —» — m. In  this 
case, >’o =  0, and Γ 0 m ust be real. This is model E. W hen there is no symmetry 
constraint on m, as in the case for the p lanar model in a field or for superfluid 
helium, y0 is no t zero, and Γ 0 may be complex; this is model F. In  model E, the 
susceptibility %m is a constant a t Tc. In  model F, ym diverges as ξ α/ν for a >  0. 
W hen linearized, Eqs. (8.6.49) predict ωψ =  +cv q with c2 =  goPs/XmO, where

model H

=  j d dx  γ ο φ 2 +  \ ( ν φ ) 2 +  ηοφ* +  ^ 2 ,

(8.6.47)

predict m ode frequencies ωψ =  —ilroq2 and cog(q) =  —irjoq2 tha t agree with the

{ψ(χ), m(x')} =  igοψ(χ)δ(χ -  x'). (8.6.48)

models 
E  &  F

where

Jt? = J  ddx  r0 \ip\2 +  |Vy;|2 +  ^m0M 4 +  + 7om\ip\2

(8.6.50)
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Ps =  |(φ )|2 below Tc and ψ =  r 0r0 =  Γ 0 / χ ψ, and com =  (h/Xmo)q2 for T  > Tc. 
Thus, they reproduce the m odes predicted by hydrodynam ics below Tc, and they 
yield an overdam ped order param eter m ode and a diffusive m agnetization mode 
above Tc.

Finally, we turn  to three-dim ensional ferrom agnets and antiferrom agnets. In 
the ferrom agnet, there is a single vector order param eter m, with Poisson bracket 
relations

{mumj} =  go eijkmk. (8.6.51)

In the antiferrom agnet, there is the staggered m agnetization order param eter field 
N  =  φ  in addition to the conserved m agnetization m that satisfies

{ψί, mj} =  g0 eijkipk. (8.6.52)

The dynam ical equations for the antiferrom agnet are then
θψ _  d t f τ  d t f τ  Y
T t -  ~ Γο^ Γ + ξ ο φ Χ ^ - +ζψ

~5t =  0 £m go^  * +  g°m X Cm’ (8·6'53)

model G

where

=  J d dx ^ r 0ip2 +  i | V ^ | 2 +  Μ0φ 4 +  jXm1™2 (8.6.54)

Finally, the dynam ical equations for an isotropic ferrom agnet are

model J  ^  =  λ
dt

where t f  is the φ 4  Ham iltonian.

dm , 2& tfT  b t f T
model J  —  =  10V· +  go"! χ  +  ζ η , (8.6.55)

6  M ode-m ode  coupling

The stochastic equations we have ju st considered have nonlinear couplings am ong 
dynam ical variables and, therefore, interactions am ong harm onic modes tha t lead 
to corrections to the harm onic correlation functions and transport coefficients. 
These m ode-m ode coupling corrections can be calculated using very elegant 
diagram m atic perturbation  theories or dynam ical field theories tha t are beyond 
the scope o f this book. Here we will be content to give a non-rigorous calculation 
o f  the form tha t these corrections take for model H. The equations o f  m otion for 
model H  with only the lowest order nonlinear couplings are

^  =  λον2( τ - ν 2) φ - η 0ν φ · ξ  +  ζφ,

8- §  =  ^ [ η ο ^  +  Μ ν ί Φ ^ - ^ Φ  +  ζειΙ  (8.6.56)

I f  wo =  0, the G reen functions for φ  and g are 

q, ω) =  -ia> +  Xoq2(r +  q2),

G°g~! (q,co) =  - i(a  +  rj0q2. (8.6.57)



478 8 Hydrodynamics

W hen interactions are included, these functions can be written as 

Gw(q,a>) =  0 ^ _ 1 (ς ,ω ) +  Σ ψψ(ς,ω),

G ^ q .c o )  =  Ggg 1 (q,ω ) +  Zgg (q, ω). (8.6.58)

The non-interacting correlation functions for φ  and g; are, as usual, 
£φφ(q-ω ) =  2Τ 1 0«2 |(ϊψψ(ς,ω )|2 and C °g.(q,co) =  ^ ( q ) 2 T i / 0q 2 |G ^ (q ,w )|2. The 
interacting correlation functions are given by the fluctuation-dissipation theorem.

Using the G reen functions o f  Eq. (8.6.57), one can solve for φ  and g perturba- 
tively: gi =  Gg0£g, +  <5g,· and φ =  β φ0ζψ +  δφ,  where

/ sldh Γ sisi^
(2 π γ  J  2 ^ ' I’(fl- k ) ' 8 (k ’£U' ) ^ ( q - k , « - w ' )

/ d^k /* den'
(2 π γ  J  2τi ^ q ~  ^  + k̂  8̂'6'59

χ  φ( q — k, ω — ω ’)φ( 1ί, ω ’).

These results can be used to develop a controlled perturbation  theory for Οψ and 
Gg. To obtain expressions for Σψ and Zg, one norm ally sums an infinite series. 
R ather than doing this explicitly, we will proceed with a decoupling procedure 
similar to the one we used in our discussion o f  self-consistent field theory in 
Sec. 5.3. I f  we expand Eq. (8.6.56) for φ  to linear order in δ φ  and <5g, the term 
in wo becomes

-w o  J q;^y(k)/cjG°g(k',co")</>(k-k ',ω’ - ω ”)

x</>(k',co")</>(q — k,co — ω')· (8.6.60)

~ w() J  G ^ (k , o)’)kl{k] -  /c')g,(q -  k, ω  -  ω ')

xg ,(k ', ω")φ (k -  k', ω' -  ω"),

where the integral is over k, k', ω ’ and ω". Now decouple the product o f  three φ ’s 
into an average over two φ ’s and a free φ  and the product over two g’s and a φ  
into an average over two g ’s and a free φ. Using the W iener-Khintchine relation 
[Eq. (7.1.7)] between the averages o f  fields and their correlation function, we 
then obtain

/ sldh p
( 2 ^  J ^ ^ y ( k- ) ^ L ( k-,«')

x C ^ ( k + ,o / - o ; ) ,  (8.6.61)

2/ , 2λ ί  ___________ Τ qt̂ jj(k)qj_________
W° r q J (2n)d (r +  k\)[— ia> +  rj0kl +  Xo(r +  kl)]

where k+ =  k +  (q/2). A  similar analysis can be carried out to obtain the form 
o f Zgg.

To lowest order in perturbation theory, the G reen function and correlation 
function in this expression are those o f the harm onic theory. One can, however,
replace them by their actual values to obtain self-consistent equations for Gss  and
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Ggg. In general, these functions have all the complexity o f  dynam ical correlation 
functions near a critical point. For the purposes o f  solving a self-consistent 
equation, however, one can assume a Lorentzian form for the dynamics but 
allow for nontrivial q-dependent renorm alization o f  the static susceptibilities and 
transport coefficients. I f  we set =  —io)+X(q)q2 / ^ ( q )  and G~g* =  —ίω+η((\)ς2,
then the self-consistent equations for /(q ) and >/(q) are

,  , 2 ί  d d k  „  Λ
m  4, + W0 J  (27t)d̂ (k +) (̂k_)fc2 + i(k+)z-l(k+)/c2

(8.6.62)

. =  -  wo^~2 r ddk ~
η η° d -  1 J (2 π)ά l(k+ )x^l(k+)k2+ +  l ( k _ ) ^ ( k _ ) / c i

(8.6.63)

N ear the critical point, χφ is strongly divergent, and the /(k+) term  can be 
neglected in Eq. (8.6.62). I f  the static scaling form for χφ [Eq. (5.4.9)] is used and 
λο and rj0 are neglected, then Eqs. (8.6.62) and (8.6.63) adm it a scaling solution 
with

l(q ) =  q ~ ^ L λ(9 ξ)

^(q) =  (8.6.64)

where

*λ +  Χ η =  4 — d +  η. (8.6.65)

In the limit q —► 0, λ  ~  ζ Χι and η ~  ξ χΐ, with

λη =  νν$χφ( q =  0  ̂ 2~dR, (8.6 .66)

where R  is a universal num erical constant. W hen expressed in terms o f the therm al 
diffusivity D =  λ /χφ  in physical units, this relation becomes D =  R k g T / η ξ ά~ 2 
(Kawasaki 1970). A  numerical calculation is required to obtain the exponents χχ 
and χφ

8.7 Nucleation and spinodal decomposition

The focus throughout this book has been on static and dynam ic properties o f 
condensed systems at or near therm odynam ic equilibrium. I f  external conditions 
or fields, such as tem perature or pressure, are suddenly changed, then a system 
initially in equilibrium will no t be in equilibrium under the new conditions. 
The approach to a new equilibrium  state involves very complex nonequilibrium  
processes. In this section, we will investigate some simple versions o f  these 
nonequilibrium  processes.
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Consider first an Ising ferrom agnet with a nonconserved order param eter obeying 
m odel A  dynamics. Its phase diagram  in the external field-tem perature (h — T)  
plane is reproduced in Fig. 8.7.1. There is a first-order phase boundary at h =  0, 
T  < Tc, along which the spin-up and spin-down phases coexist. A long this 
boundary, there are two equivalent m inim a in the local free energy densityf 
f(<t>), A t points in the phase diagram  (Fig. 8.7.1) on either side o f  the phase 
boundary, between the dashed curves term inating at the critical point, there are 
two inequivalent m inim a in / ,  the lower energy o f  which corresponds to the 
equilibrium state and the higher energy o f  which corresponds to a m etastable 
state (see Sec. 4.5). Beyond the dashed curves, there is only a single well in the 
free energy. Thus, the dashed curves are the limits o f  m etastability o f  the Ising 
magnet. The m etastable region between these two curves is exactly analogous to 
the m etastable region, between tem peratures T* and T " ,  which we encountered 
in our study o f  the isotropic-to-nem atic transition in Sec. 4.5.

Consider now the effect o f  a sudden reversal in the sign o f  the m agnetic field, 
depicted schematically in Fig. 8.7.1, on a system initially in equilibrium with 
negative m agnetic field and order param eter φο. I f  the field reversal is sufficiently 
rapid, then the order param eter immediately after reversal rem ains equal to φο. 
The free energy curve, on the o ther hand, has changed. It has local minima 
at φ Α < Φβ· Φο is close to, bu t in general no t equal to, the m etastable order 
param eter φ Λ. However, the free energy has a finite slope at φο ( S f  / 8 φ\φ(ι φ  0), 
and in a short time the order param eter will relax to Φα according to the rules 
o f  model A  dynamics. A t long times after the field reversal, the system should 
eventually reach the equilibrium state with order param eter φ =  φ Β corresponding 
to the absolute m inim um  o f the free energy in the new field. In  the absence o f 
fluctuations or external disturbances, the system would rem ain indefinitely in the 
m etastable phase. Therm al fluctuations, however, will create droplets o f  the lower 
energy equilibrium phase in the “sea” o f  the higher energy m etastable phase. As 
we will show below, the energy o f these droplets has a maxim um  at a critical 
radius Rc. For radius R  < Rc, the system can lower its energy by decreasing the 
size o f  a droplet: bu t for R  > Rc, it can lower its energy by increasing the size of 
the droplet Thus, a critical droplet or nucleus with R  =  R+ will spontaneously 
grow, creating larger and larger regions o f  the favored equilibrium phase. The 
form ation o f the critical droplet is called nucleation.

There are two com peting contributions to the energy o f a droplet, which we 
will assume to be a sphere o f  radius R. One is the gain in bulk energy arising 
from the creation o f  a region with the lower free energy o f  the equilibrium phase. 
The o ther is the energy o f  the spherical interface separating the m etastable phase

t  Recall that /(</>) is not the actual free energy density. It is the energy density entering the 
coarse-grained Hamiltonian .W (Sec. 5.2). The actual free energy is the log of the partition 
function associated with .W.

1 N uclea tion  w ith  a nonconserved order param eter
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h

Fig. 8.7.1. Schematic representation of a field reversal across a first-order 
boundary (double lines in the figure) of an Ising ferromagnet. The dashed 
curves are the limits of metastability. Between these two curves, the free 
energy has a double-well structure. Outside these curves, there is a single 
minimum in the free energy. The inset curves are the function ί{φ). The 
direction of the quench is indicated by the arrow. Before the reversal, the 
system is in equilibrium with an order parameter φ0. Shortly after the field 
switch, the system relaxes to a metastable state with order parameter φΑ. The 
energy difference between the metastable state with order parameter φΛ and 
the equilibrium state with order parameter φ Β is Af.

at infinity from the new equilibrium  phase at the center o f the droplet. Let 
A f  =  —(fa  — f a ) >  0 be the m agnitude o f the difference in free energy density 
between the new equilibrium phase with order param eter φ Β and the m etastable 
phase with order param eter φ Α, and let σ be the energy o f a wall separating the 
two phases (see Secs. 10.2 and 10.3 for a discussion o f walls). Then the energy of 
a droplet is

Απ
^drop (R) =  - y  Δ /Κ 3 +  4 n c R 2. (8.7.1)

^drop (R) attains its m axim um  value,

* *  _  4n(T  p2 _  16πσ3 , ο Ί π
drop 3 Rc 3(A f)2 ’ { ’

at the critical radius 
2 σ
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Τ

Φ

Fig. 8.7.2. Schematic representation of a symmetric temperature quench in 
an Ising model at zero field h. Before the quench, the system is in a global 
minimum of the free energy with φ =  0. After the quench, the system is at an 
unstable local maximum of the free energy in a region of two-phase 
coexistence in equilibrium.

Thus, the critical nucleus, which minimizes t f  drop, is the m ost probable one. Once 
it forms, it will grow in the m anner discussed above. The surface o f a droplet is 
a dom ain wall (see Secs. 10.2 and 10.3) in which the order param eter differs by a 
finite am ount from its value at spatial infinity. A  droplet, therefore, is a localized 
fluctuation with a large deviation in order param eter.

I f  the field reversal takes the system outside the m etastable region, then the 
order param eter will decay rapidly and hom ogeneously to  the single m inimum in 
the free energy. There will be no nucleation.

N ucleation occurs whenever a sudden change in external param eters (such as 
h or T) takes a system from one side o f a first-order phase boundary into a 
m etastable region on the other. If  the order param eter is nonconserved and has 
discrete symmetry, then the energy and radius o f the critical nucleus are identical 
in form to those o f the Ising model just discussed. I f  the order param eter is 
nonconserved bu t has a continuous symmetry (as is the case, for example, in the 
isotropic-to-nem atic transition), then the critical nucleus m ay trap  a topological 
defect (see Chap. 9). Its energy will have an elastic contribution  as well as surface 
and bulk contributions, and will, therefore, differ in detail from the Ising energy. 
If  the order param eter is conserved, as it is in the liquid-gas transition or in 
a binary fluid, then a change in external param eters m ust conserve the order 
param eter, and it is no t possible to access arbitrary  points in a phase diagram. 
As we shall see below, however, it is still possible to reach m etastable regions. 
N ucleation then proceeds in m uch the same way as described above.

The probability o f creation o f a droplet o f radius R  is 

P  ~  e x p ( - J f dlop(K ) /r ) . (8.7.4)
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2 Sym m etric  unstable quench with model A  dynamics

A  change in external param eters th a t is so rapid th a t the state o f the system 
(in particular, its order param eter) immediately after the change is identical 
to  its state immediately before is called a quench. Such a sudden change in 
tem perature is a temperature quench, etc. One route to  a nonequilibrium  state is 
via a tem perature quench from a one-phase region to a globally unstable point 
in the coexistence region. Consider for simplicity a tem perature quench in an 
Ising model with external field h =  0 from T  > Tc to  T  < Tc (Fig. 8.7.2). For 
T  > Tc, the equilibrium  value o f φ  is zero. For T  < Tc, there are coexisting 
phases with φ =  +Φα · Im m ediately after the quench, φ =  0. As time progresses, 
approxim ately equal size regions with φ =  ± φ Α will form. These regions will 
be separated by dom ain walls. The characteristic size o f  dom ains with either 
sign o f  φ  will grow with time t after the quench in a process called coarsening. 
Inform ation about the time developm ent o f  dom ains and correlations am ong 
them  is contained in the tim e-dependent structure factor,

N ote th a t S(x, i) is the average o f  the product o f the order param eter a t two 
points in space at the same time. In  equilibrium situations, this function would 
be independent o f  time. Simulations show tha t this structure function obeys a 
scaling law o f the form

For the systems considered here, with a nonconserved order param eter obeying 
model A  dynamics,

This can be inferred as follows. In model A  dynamics [Eq. (8.6.1)], the time 
dependence o f  the order param eter is controlled by the equation

N ear a dom ain wall described by a position function R(u, i), the variation o f φ  
is predom inantly along the direction N  norm al to the wall, and =  N δ φ /δ Ν .
Thus, ν 2φ =  δ 2 φ / δ Ν 2 + ( ν · 'Ν ) δ φ /δ Ν ,  and δ φ /δ ί  =  ν δ φ /δ Ν ,  where v =  N  d R /δ ί  
is the velocity o f the wall along its norm al direction. We therefore have

S(x -  χ ', ί) =  (φ(χ, ήφ (χ ' ,  ή). (8.7.5)

S(x,i) =  A-(|x|/L(i)),
where the characteristic length L(t)  grows as a power law with tim e: 

L(t) ~

The Fourier transform  o f S(x, i) then obeys the scaling law 

S(q,t) =  L d(t)Y(qL(t)).

(8.7.6)

(8.7.7)

(8.7.8)

ω =  1 / 2 . (8.7.9)

(8.7.10)

- Γ  - c (8.7.11)
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The term  in square brackets on the right hand side o f this equation is zero for an 
equilibrium wall [Eq. (10.2.5)]. In addition, V  · N  is just twice the m ean curvature 
2Hc =  2 /R  o f the wall [Eqs. (10.4.15) and (10.4.13)]. This gives us the A llen-Cahn 
(Allen and Cahn 1979) equation,

8R 2Tc (8.7.12)

This implies tha t the characteristic length scale R(t) grows as i 1/2 after the 
quench. R(t) is presum ed to  be the only length scale in the problem. Thus, it 
is a measure no t only o f the m ean separation between dom ains bu t also o f the 
average curvature o f dom ain walls, and can be identified with L(i) in Eq. (8.7.7). 
The power law dependence o f L(t) on time implies th a t L(i) is finite for any finite 
time, and, therefore, tha t the infinite system does no t reach true equilibrium in 
any finite time. It coarsens continuously.

3 Conserved order parameters and spinodal decomposition

Conserved order param eters and spinodal decom position 
Quenches in systems, such as one-com ponent or two-com ponent fluids, with a 

conserved order param eter are m ore complex than  in those with a nonconserved 
order param eter because the integral, f  ά3 χφ ,  o f the order param eter over the 
volume o f the sample m ust rem ain constant in time. This constraint leads to 
interesting and nontrivial behavior in quenches into coexistence regions. Consider, 
for example, the tem perature quench at constant order param eter φο from a 
tem perature T  =  T0 >  Tc into the coexistence region with T  < Tc, as depicted in 
Fig. 8.7.3b. A t long times after the quench, the system will separate into regions 
in which the order param eter takes on one o f its two coexisting values, φ Λ or 
φ Β· The volume fractions xa and x B =  1 — xa  are determ ined by the lever rule: 
xa =  (Φβ ~  Φο)/(Φβ ~  Φα) and x B =  {φο -  Φα)/(Φβ ~  Φα), where φ Β > φο > Φα· 
In an external gravitational field, which favors the dense B  phase at the bottom  
of the container, the eventual final state will be one with a single B  region at the 
bottom  o f the sample separated by a single dom ain wall from the A  phase at the 
top  o f the sample.

Fig. 8.7.3b depicts schematically a constant order param eter quench from 
T  > Tc into the coexistence region with T  < Tc. There are two im portant 
curves in this figure: the coexistence curve, Τα0 (φ), and the spinodal curve, 
Tsp(4>), which lies below the coexistence curve, f  For quench tem perature T\ 
lying between the spinodal and coexistence curves, the system is in metastable 
equilibrium, and  decay towards the equilibrium state occurs initially via droplet 
nucleation. For quench tem peratures T2 below the spinodal curve, the system 
is globally unstable, and the system immediately develops a spatially m odulated

t  The spinodal curve is, strictly speaking, a mean-field concept. In real systems, where fluctuations 
are important, the boundary separating nucleation from spinodal decomposition is not perfectly 
sharp.
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/ T

(a ) (b)

Fig. 8.7.3. (a) Free energy density as a function of the order parameter near 
the critical point for temperatures above and below the critical temperature, 
x ’s mark the equilibrium values of φ and o’s indicate the inflection points, 
(b) The phase diagram predicted from free energies in (a). The solid curve is 
the curve Τ00(φ) giving the equilibrium value for the order parameter as a 
function of temperature (from x ’s in (a)). The dashed curve is the spinodal 
line r sp(<£) (from o’s in (a)). Between the solid and dashed lines is a 
metastable region where finite energy and size fluctuations are needed to 
nucleate the phase separation. Inside the dashed spinodal line, the system is 
unstable and spontaneously decomposes into the two equilibrium values of φ 
at this temperature. The arrow indicates the direction of the temperature 
quench described in the text. The temperatures T0, T\, and T2 indicate, 
respectively, equilibrium temperature with order parameter φ0 in the 
one-phase region, a metastable quench at φο, and a spinodal quench at ψ0. 
φΑ and Φβ are the equilibrium values of the order parameter at coexistence 
at temperature T2.

order param eter whose am plitude grows continuously from  zero. Thus, in the 
spinodal region, the approach to equilibrium  is initially via small am plitude 
changes in the order param eter th roughout the sample rather than  via the large 
am plitude bu t localized fluctuations encountered in nucleation.

We begin with a discussion o f nucleation in the m etastable region. To do this, 
we need to  find states tha t extremize the free energy subject to the constraint

This constraint can be enforced via the introduction o f a Lagrange m ultiplier A 
in the Euler-Lagrange equation for φ:

If  we assume th a t the system is sufficiently large tha t the change in com position 
associated with droplet form ation is small, then A can be evaluated by requiring 
the right hand  side o f Eq. (8.7.14) to be zero when φ  =  φ 0, i.e., Λ =  Β //Β φ \φ 0. The 
coefficient A is a Lagrange m ultiplier chosen to  keep the average order param eter

(8.7.13)

(8.7.14)
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fixed. For the uniform system in equilibrium, it is the chemical potential μ. We 
can now introduce a modified free energy density

(8.7.15)

Because o f  the constraint, Eq. (8.7.13), we can replace /  by /  in the total free 
energy functional (or H am ilton ian):

1
t f  =  I d x  

The function
- / ■

^ c(V<£)2 + / (8.7.16)

/  =  l- r { φ 2 -  2φφο) +  ηφ (φ 3 -  4φ 30) (8.7.17)

for a φ 4 theory with r =  a(T  — Tc) is plotted for various tem peratures in Fig. 
8.7.4. This function always has an extrem um  at φ =  φο· A t a tem perature To 
above the coexistence curve, /  has an absolute m inim um  at φ =  φο, and the 
system is in hom ogeneous equilibrium. W hen the tem perature is lowered to  Ti, 
the m inim um  at φ =  φο is no t a global minimum, and the system is in metastable 
ra ther than  stable equilibrium. W hen the tem perature is lowered further to  T2, 
there is a local maxim um  in /  at φ  =  φο, and there is no restoring force to 
keep φ =  φο· The system is globally unstable with respect to  the form ation of a 
spatially varying state. The system passes from being m etastable to unstable at 
φ =  φο when the curvature δ 2 / / δ φ 2 \φ0 passes through zero. Thus, the spinodal 
line in Fig. 8.7.3 is determ ined by

δ φ 2
δ2ί
δ φ 2

=  0. (8.7.18)

In  the φ 4 theory, this condition yields a spinodal tem perature Tsp =  Τ€—(12ιιφ/α). 
The coexistence tem perature, on the o ther hand, is Tco(^) = TC — (4ηφ 2 /a).

In the m etastable region with Tsp <  T  <  Tco, the initial approach to  equilibrium 
takes place via the nucleation o f  droplets, as discussed at the beginning o f this 
section. Thus, there is a surface tension σ determ ined by /  and a critical droplet 
radius Rc =  2σ / A f .  N ote th a t /  is constructed so tha t one o f its m inima in 
the m etastable region is always at φο. A t neither m inim a o f f  does the order 
param eter take on either o f its values Φα or φ Β on the coexistence curve. The 
constraint o f Eq. (8.7.13) prevents either o f these from being a local m inimum of 
/ .  Thus, the droplets th a t are nucleated immediately after the quench will not 
have an order param eter equal to either o f the equilibrium coexistence values. As 
time progresses, however, regions with order param eters equal to  φ a and φβ will 
eventually form.

We have expressed this problem  in general terms. W hen applied explicitly to a 
quench from the gas phase to  the fluid phase, the order param eter is the particle 
density n, f  is the function νν(η,μ, T) with μ  =  A  [Eqs. (3.1.45) and (4.4.1)], and 
A f  =  Αρ(μ, T )  (with μ  =  λ) is the pressure difference between the interior and 
exterior o f the droplet. In  this case, the critical radius can be expressed as
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/

Fig. 8.7.4. Free energy density /  [Eq. (8.7.17)] including the Lagrange 
multiplier Λ. At 7o the system is in equilibrium and homogeneous. At Ti the 
system is metastable, and at T2 it is unstable against small fluctuations in φ 
about φο. These three temperatures correspond to those indicated in 
Fig. 8.7.3b.

Λ

Rc =  ^ ~ .  (8.7.19)
Ap

W hen written as Ap =  Ι σ /Rc, this is the expression for the Laplace pressure 
(relating the internal to  the external pressure to  a droplet with equilibrium  radius 
Rc). The energy o f the critical-radius droplet is 16πσ3/3(Δ ρ)2.

We now turn  to w hat happens inside the spinodal curve (Cahn 1961). For the 
earliest stages o f growth, the order param eter rem ains close to its initial value:

δ φ  =  φ  — φο =  >4cosq · (x — x0). (8.7.20)

The wave num ber q is nonzero, and this disturbance explicitly satisfies the
constraint Eq. (8.7.13). Expanding the local free energy /  in a series about φο, we
obtain

( φ - φ ο ) 2 +  · · · ,  (8.7.21)

where we have used the fact tha t the second derivatives o f /  and /  are equal. 
N ote tha t there is no term  linear in φ — φο since A is defined so tha t /  is an 
extrem um  at φο· Putting the sinusoidal variation o f the order param eter in the 
H am iltonian and integrating over space, we find the energy difference (relative to 
the uniform  state) to be

VAl i J 2f  ,
A E =  - 4 - { 2 W + C q ) ’ (8·7·22)

where V  is the volume. If  the curvature o f /  is positive, then AE  is positive for
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all q. However, if δ 2/ / δ φ 2\, 
critical value,

is negative, AE  is negative for all q less than  the

= 1 ( Β 2/ / 3 φ 2\φο) 1/2. (8.7.23)

F luctuations with q < qc lower the free energy. Physically, the second derivative 
o f /  with respect to density or concentration is a compressibility or osmotic 
compressibility. A  positive compressibility is a condition for stable equilibrium 
[Eq. (3.2.24)]. A  negative second derivative corresponds to negative compressibil
ity, and implies tha t a higher density lowers the volume, which further increases 
density, and the system “runs aw ay”. A  negative compressibility implies m echan
ical instability.

The preceding energy calculation [Eq. (8.7.22)] suggests that, immediately after 
a quench below a spinodal, the system should develop spatial m odulations with 
all wave num bers q < q c. The actual developm ent o f m odulations is governed by 
the dynamics o f phase separation rather than  by energy alone, and experiments 
show a som ewhat different behavior. Since we are looking at long wavelength 
m odulations o f the order param eter, we can treat the time developm ent of 
the m odulation using phenom enological equations such as those discussed in 
Sec. 8.6 . The order param eter is conserved, so we should use model B dynamics. 
(We neglect any coupling to  the m om entum , which m ay play a role in the case of 
a liquid-gas transition bu t would no t be relevant for the case o f a binary mixture 
o f com ponents with the same mass density.) From  Eq. (8.6.10) and the form of 
the H am iltonian in Eq. (8.7.16) we obtain the linearized equations o f m otion for 
φ:

' s 2i
dt δφ

=  - λ
δ φ 2 2 2

(8.7.24)

N ote th a t we do no t need to distinguish between /  and /  in this equation. The 
frequency o f these modes is

<y(q) ξ  ia(q) =  - ϊ λ
d2f
δ φ 2 2

(8.7.25)

I f  δ 2f I δ φ 2 \φϋ is positive, the m ode is exponentially dam ped. This is the case 
outside the spinodal region. However, in the spinodal regime where δ2 / / δ φ 2 \φ0 
is negative, there is a range o f q values for which a(q) is positive. The amplitudes 
o f order param eter fluctuation for this range o f wave vectors grow as exp[a(q)i]. 
In  Fig. 8.7.5, we schematically illustrate the growth rate as a function o f wave 
vector. All m odulations with q < qc grow, bu t the m axim um  growth rate is 
for qmax =  qc/*j2. Since the m odulations start from infinitesimal amplitudes, 
the m ode with the fastest exponential growth is the one tha t will dom inate 
experim ental observations. N ote tha t the growth rate a(q) depends only on the 
m agnitude o f  q and no t on its direction (or on the phase q xo o f the concentration 
m odulation). We therefore expect th a t the m odulation o f φ  will be an uncorrelated



a

8.7 Nucleation and spinodal decomposition 489

Fig. 8.7.5. The growth rate of a sinusoidal modulation of the order 
parameter as a function of wave vector for the spinodal regime.

superposition o f sinusoidal m odulations o f wave vector m agnitude | qc | bu t in 
random  directions and displaced origins. The tim e-dependent structure function 
m easured by scattering experiments is proportional to the square o f t), 
determ ined by Eq. (8.7.24) and averaged over initial ensemble. Thus, the structure 
function [Eq. (8.7.5)],

where S (q ,0 ) =  S(q) is the static structure factor immediately before the quench. 
If  the quench was from high tem peratures, then the characteristic length scale is 
a microscopic length, and S(q) is a constant for q up to  m any times qc. Thus, 
S(q, i) has a single ring in q space with m axim um  intensity at q =  qmax.

W ithin the linearized theory just presented, the position o f the peak remains 
constant in time, bu t its intensity increases. However, as the am plitude of 
m odulations increases, the effective curvature o f the free energy density will 
evolve to  some average over the range o f (j>'s around φο represented by the 
am plitude o f  the m odulation. Since a t large values o f | 0  | the curvature of 
/ ( φ ) is necessarily positive (as in Fig. 8.7.1), we expect d2 f / δ φ 2 |eff to  become 
less negative as time progresses and the value o f  qmax to  decrease. To get an 
idea o f how this comes about (Langer, Bar-on, and M iller 1975), we consider a 
self-consistent field theory (Sec. 5.3) o f the φ 4  model around its symmetric point:

S (q ,i)  =  S (q ,0 )e2a^ , (8.7.26)

δφ
dt

■λ [α(Τ -  Τα) ν 2φ +  4mV20 3 -

ω (8.7.27)

and

(8.7.28)
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The fluctuation (φ ) is determ ined self-consistently via

(<m  =  / ( 0 ^ (q,i) (8-7.29)

and increases with time because S(q, i) increases with time. Thus, as time evolves, 
(φ2) increases, qmax decreases, and the wavelength for m axim um  growth increases: 
the system coarsens. Unless there is a deep quench (large A T ),  the initial stage 
o f fixed q is short lived.

A t long times after the quench, the structure factor S(q, i) (or S(x —x',f)) obeys
a scaling law identical to  Eq. (8.7.7) with the growth law for L(t) determ ined by
an exponent

ω =  1/3. (8.7.30)

This exponent can be derived heuristically as follows. Consider a quench in 
a binary fluid. The diffusion current is J  =  — Γ ν μ ,  where μ is the chemical 
potential difference between species. The gradient o f μ, and thus J , is largest in 
the vicinity o f  dom ain walls. If  we assume tha t there is only one length scale L(t) 
in the system at large times, it will determ ine bo th  the average distance between 
dom ain walls and the curvature o f the walls. Thus we can estimate ν μ  ~  Α μ/L ,  
where Δμ is the change in μ across the wall. N ear coexistence, the difference in 
free energy between two phases is o f order φΑ μ  (where φ  is the m agnitude o f the 
order param eter in either o f the phases a t coexistence) and L ~  2σ / φ Α μ  from 
Eq. (8.7.3). Thus, we have J  ~  (Γσ /φ )Ι-Γ 2. But J  is also φϊ,.  Thus, we have

dL Γ σ  1 ( K l i n
Ί ί ' ψ ΐ ? ·  (8·7·31)

This yields L(t)  ~  i 1/3 a t long times. Light scattering experiments on binary liquid 
mixtures tend to  show this characteristic behavior. D irectly following a pressure 
quench, a ring o f constant q forms and grows in amplitude, while remaining 
at the same radius for the initial stages. Eventually, the nonlinear effects come 
in, the system coarsens, and the scattering ring collapses to  smaller q. The i 1/ 3 

behavior o f L(t)  is often called the Lifshitz-Slyozov (1961) law.

In  the case o f a binary m etal alloy, the quench is often from a m olten phase 
above the phase separation boundary to a solid phase in the spinodal region. 
The initial decom position takes place as outlined above with concentration m od
ulations on the scale o f 2n /q max as expected. However, before further processes 
can take over, the diffusion has decreased to  such an extent tha t the m odulations 
rem ain for geological times. Samples can then be split open and the m odulation 
observed with a microscope. The period o f  the m odulation is observed to depend 
inversely as the square o f  A T ,  the depth o f the quench, as suggested above.

M odel B dynamics describes diffusive behavior. The existence o f a positive sign 
for the time exponent is sometimes referred to as a negative diffusion coefficient 
(diffusing up a concentration gradient) resulting from the m etastability o f the
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system, the negative value o f the compressibility, and eventually the negative 
derivative o f the free energy function with respect to  concentration.
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P ro b lem s

8.1 How m any hydrodynam ic modes do the following systems have?

(a) A  hexagonal colum nar discotic liquid crystal (Fig. 2.7.11).
(b) A  lam ellar smectic with surfactant layers separated by water (Fig. 2.7.14).
(c) A  lam ellar microemulsion with alternating water and oil layers separated 

by surfactant (Fig. 2.7.16).
(d) A  cholesteric liquid crystal.
(e) A  cubic plum ber’s nightm are (Fig. 2.7.15).
(f) Superfluid H e4-H e3 mixtures.
(g) Brass in bo th  its ordered and disordered phases.

M ake an educated guess as to the nature o f the modes in each case.
8.2 Determ ine the hydrodynam ical equations and linearized m ode structure for 

a one-com ponent hexagonal colum nar liquid crystal.
8.3 This problem  will lead you through the derivation o f a general expression 

for transport coefficients in term s o f current correlation functions and will 
establish the Onsager reciprocity theorem. Let {ρα(χ, i)} be a set o f conserved 
variables with associated conjugate fields {/ια(χ, i)} and currents {Ja(x, i)} 
satisfying δρα +  V  · J a =  0. Using the fact th a t the conservation law implies

If  the external fields vary slowly in space and time, then δΐΐβ(χ',ί') =  
δ}ΐβ(χ +  χ ' — χ, ί + 1 ' — ί) »  δ}ΐβ(χ, ί) and

show that

^(<5Λ,(Χ,ί)) =  J  dt' J ά<Ιχ' - 2 ' J

χ  V j0 hfi(x',t')

+  2  i J  ddx ' f j r.pf(x - x ' , t - t '  =  0 )δίΐβ(χ', ί) j  .

=  0, ω =  0)]V;<5Mx, ω)

ijj(a))Vj3hfi(x,(o).
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If  J a and 3β have the same sign under time reversal, show that

Then, using the fluctuation-dissipation theorem , show tha t

where { A ,B }+ =  A B  +  BA.  From  this follows the O nsager reciprocity 
relation, λ α̂  =  λβJ>ai. In  an isotropic system, =  δ,]λαβ with λαβ =  λβα. 
I t is possible in some systems for χ".Jfij/co to have a part proportional to 
δ(ω). In  this case, will have a p art proportional to l /ϊω. I f  J a and
3β have opposite signs under time reversal, the is im aginary in the
low-frequency limit.

.4 Determ ine the hydrodynam ical equations and m ode structure for a helical 
m agnet described by the H am iltonian in Problem 6.1.

.5 Show tha t the sound velocities in a dissipationless smectic satisfy the equa
tions for sound in a uniaxial solid with K 44 =  0  and K n  =  ^ 1 1 :

cj +  c23 =  p~ l [Kn  + ( ^ 3 3  -  X u ) c o s 2 ψ],

c\c\ =  p~ l [ K u K a  — K 13] cos2 ψ  sin2 ψ, 

where ψ is the angle th a t the wave vector q makes with the layer norm al 
and where

.6 Use the ordered phase hydrodynam ical equations o f  Sec. 8.2 [Eqs. (8.2.59) 
and (8.2 .68)] to  calculate the order param eter correlation function

in a two-dimensional system. You m ay assume th a t θ(\,  t) satisfies G aussian 
statistics. Show tha t the t —> 0 limit o f this function shows destruction of 
long-range order. Discuss the long-time behavior o f  G(x, i).

.7 Derive the hydrodynam ical equations for a two-dimensional nem atic liquid 
crystal and calculate the dynam ical correlation function defined in the pre
vious problem.

.8 The hydrodynam ical equations for superfluid helium can be expressed in 
m any coordinate systems. One o f particular interest is the one locally at rest 
with respect to  the superfluid, i.e., the frame in which vs =  0. Landau and 
K halatnikov (Landau 1941, K halatnikov 1965) write the hydrodynam ical 
equations in this frame. Show that, in this frame,

where εο and go are, respectively, the energy and m om entum  density in this

G(x, i) =  S 2 (cos2[0(x ,i) — 0(0,0)])

Tds =  deo — ocodp — (v„ — vs) ■ dg0,



frame and αο =  a — j(v„ — vs)2 — ji;2. N ote tha t there is no contribution 
to  the entropy production from h in this frame. Show tha t the pressure is 
p =  —εο + T s  +  αοp +  p„(v„ — vs)2. Finally, show tha t

|  + v ( w + A , , - x ' ) - o

and

f  =  (Q -  X ' ) h  +  vnT s + ( u o  +  g +  P „v „ [v „  · (v„ -  vs)].

8.9 Calculate to harm onic order the response and correlation functions for the 
dynam ical variables in models Η, E, G, and J.

8.10 Determ ine the stochastic equations governing the low-frequency dynamics 
o f the rigid ro tor model discussed in Sec. 8.2. Y our dynam ical variables 
should be Qy(x, i)> i(x> 0 . and ε(χ > 0 -

(a) Show th a t these equations reproduce the hydrodynam ics derived in Sec.
8.2 when Qij =  S(ninj — is non-zero.

(b) Since Qy is a two-dim ensional symmetric-traceless tensor, TrQ 3 is zero, 
and the transition from  the disordered to  the ordered phase can be 
second order. W hat does dynamical scaling predict about characteristic 
frequencies above and below this second order transition?

8.11 A  thin liquid film on a solid substrate is a two-dimensional fluid in which 
m om entum  is no t conserved (because it can be absorbed by the substrate). 
Identify all hydrodynam ical variables o f such a film and determ ine their 
hydrodynam ical equations. Show, in particular, th a t the density mode is 
diffusive rather than  propagating.
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9
Topological defects

In C hapter 6 , we studied the states o f systems with broken continuous symmetry 
in which the slowly varying elastic variables described distortions from  a spatially 
constant ground state configuration. These distortions arose from the im position 
o f boundary conditions, from  external fields, or from therm al fluctuations. In this 
chapter, we will consider a class o f  defects, called topological defects, in systems 
with broken continuous symmetry. A  topological defect is in general characterized 
by some core region (e.g., a point or a line) where order is destroyed and a far field 
region where an elastic variable changes slowly in space. Like an electric point 
charge, it has the property th a t its presence can be determ ined by m easurements 
o f an appropriate field on any surface enclosing its core. Topological defects have 
different names depending on the symmetry th a t is broken and the particular 
system in question. In superfluid helium and xy-models, they are called vortices; 
in periodic crystals, dislocations; and in nem atic liquid crystals, disclinations.

Topological defects play an im portan t role in determ ining properties o f real 
materials. For example, they are responsible to  a large degree for the mechanical 
properties o f metals like steel. They are particularly im portan t in two dimensions, 
where they play a pivotal role in the transition from low -tem perature phases 
characterized by a non-vanishing rigidity to a high-tem perature disordered phase.

This chapter begins (Sec. 9.1) with a discussion o f how topological defects 
are characterized and a brief introduction to  the concepts o f hom otopy theory. 
Examples o f  topological defects in a num ber o f systems will be discussed in 
Sec. 9.2. Then, in Sec. 9.3, energies o f individual and interacting defects will be 
calculated. The Kosterlitz-Thouless vortex unbinding and related transitions in 
two-dim ensional systems will be discussed in Secs. 9.4 and  9.5. Some m athem atical 
details associated with the renorm alization group for the Kosterlitz-Thouless and 
lattice models relevant to topological defects will be discussed in Appendices 9A 
and 9B.

9.1 Characterization of topological defects

In our discussion o f the xy-model in C hapter 6, we assum ed tha t the angle variable 
Θ was continuous everywhere and th a t the m agnitude (s(x)) o f the order param eter 
was everywhere nonzero. Because (s(x)) =  s(cos0(x), sin 0(x)) is a periodic

495
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Fig. 9.1.1. Three k =  1 vortex configurations with (a) θο =  Φ, (b) 
θο =  Φ +  π / 2  and (c) θο = φ + n.

s (r )

Fig. 9.1.2. (a) Removal of mathematical singularity by cutting a hole in the 
material, (b) Magnitude of the order parameter s(r) near the core of the 
vortex.

function o f 0 (x), it is possible to have situations in which (s(x)) is continuous 
everywhere in d-dimensional space except in a subspace o f dim ensionality ds less 
than  d. For example, if d =  2 and

θ(χ) =  φ  +  θ o, (9.1.1)

where θο is any constant and x =  (r, φ) in polar coordinates, then (s(x)) is 
continuous and V 0 =  1 / r  is finite everywhere except at the origin, as shown 
in Fig. 9.1.1. The m athem atical singularity at the origin (a point o f  dimension 
ds =  0) can be removed simply by cutting a hole o f some radius ξο out o f the 
m aterial, as shown in Fig. 9.1.2a. A n alternative solution to  cutting a hole in 
the m aterial is to  have the m agnitude o f the order param eter go to  zero at the 
origin and to  rise to its equilibrium  value a t a radius ξο, as shown in Fig. 9.1.2b. 
Since (s(x)) =  0 at the origin, the angle Θ is no longer defined there, and the 
m athem atical singularity has been removed.

The configuration o f  spins ju st defined is called a vortex. The angle Θ, specifying 
the direction o f  the order param eter, changes by 2 π in one circuit o f any
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(a) (b) (c)

Fig. 9.1.3. Point singularities of planar spins in two dimensions with winding 
numbers (a) —1, (b) 2, (c) —2.

closed contour enclosing the core o f  the vortex located at the origin. Since 
(s(0)) =  (s(Θ +  2kn)) for k  =  0 , + l , + 2 , t h e r e  are an infinite num ber o f distinct 
singularities in which Θ increases by 2kn  in one complete circuit o f the core. The 
integer k  is called the winding number, o r sometimes the strength, o f the vortex. 
Spin configurations for low values o f k  for which

0(x) =k(f> +  90 (9.1.2)

are shown in Fig. 9.1.3. A  vortex is characterized by its winding num ber and 
not by Eq. (9.1.2). There are infinitely m any configurations o f (s(x)) for which 
θ(χ) changes by 2kn  in one circuit along any contour enclosing the core. For 
example, θ(χ) =  k(j> +  sin φ  or θ(χ) =  kφ  +  tanh(r cos^>)cos7^> bo th  describe 
spin configurations with winding num ber k. The existence o f a nonzero integer 
winding num ber necessarily implies a singularity in V 0  at the core. This can be 
seen as follows: Θ changes by 2kn  in any circuit o f  the core. Thus, VO on a 
circuit a distance r from  the core m ust be o f  order 2k n / r  and diverge as r —* 0.

The physical variable (s(x)) is perfectly continuous th roughout the plane. On 
the o ther hand, if 0 <  φ < 2n and Θ satisfies Eq. (9.1.2), then Θ undergoes 
a discontinuous change o f  —2kn  as the positive x-axis is traversed in a coun
terclockwise direction. The x-axis can thus be viewed as a cut introducing two 
imaginary surfaces (lines) along which Θ has respective values 0 and 2kn, as shown 
in Fig. 9.1.4. Different param eterizations o f Θ in terms o f φ  and r and different 
choices o f the ranges o f φ  (e.g. —η < φ  < n )  lead to cuts, which may be curved, 
extending in arbitrary  directions away from  the core to infinity. These cuts are 
purely m athem atical and have no physical significance. They will, however, prove 
useful in evaluating the energies o f vortices, as we shall see in Sec. 9.4.

Defects such as the vortices ju st described are im portan t because they cannot be 
made to disappear by any continuous deform ations o f the order param eter. They 
are, therefore, called topological defects. Consider a singularity free distortion 
(Fig. 9.1.5a) o f the ideal aligned state. I t can be returned to  the aligned state by
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Fig. 9.1.4. Cut, across which Θ is discontinuous.

\  \  /  /  \ \ t t
\  \  t  t  \ \ t t

(a) (b)

t t t t ί f t ί

t t t t t ί t ί
(c) (d)

Fig. 9.1.5. Sequence of distortions leading continuously from singularity free 
state to state of total alignment.

a sequence o f  distortions in which each spin changes by an infinitesimal am ount 
relative to  the previous configuration, as shown in Figs. 9.1.5b-d. Now consider 
the k  =  1 vortex. Spins ro tate through 2π along every contour enclosing the core. 
It is, therefore, impossible to  distort the spin configuration o f a k  =  1 vortex into 
th a t o f a perfectly aligned state w ithout tam pering with spins a t an arbitrary 
distance from  the core. The k  =  1 vortex is thus said to  be topologically stable. 
Similar considerations apply to vortices with arbitrary  winding num ber k φ  0.

Topological stability is a m athem atical concept distinct from  physical stability, 
which depends on free energies o f different configurations. In  m ost cases, however, 
topological stability implies physical stability. Consider again the k  =  1 vortex. 
A ny attem pt to  carry out a sequence o f distortions o f this configuration to  bring 
it to a state in which all o f the spins are aligned along a single direction will 
invariably lead to  configurations such as shown in Fig. 9.1.6b. The only way 
to achieve the aligned state is to flip lines o f spins through an angle o f  π, i.e., 
discontinuous changes in the directions o f the spins are necessary. The energy of 
the state shown in Fig. 9.1.6b is much higher (of order JL ,  where J  is the exchange 
energy and  L is the size o f the sample) than  tha t o f  the initial configuration shown 
in Fig. 9.1.6a (which is o f order J  ln L, as we shall see shortly). Since it is necessary 
to go through an interm ediate state, such as tha t o f Fig. 9.1.6b, in order to  reach
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(a)

I t

(b)

Fig. 9.1.6. (a) A k =  1 vortex, (b) An attempt to align spins by a continuous 
distortion. Note the appearance of boundaries (shown as dashed lines) where 
the spin changes rapidly from up to down.

the uniform  state, it is extremely unlikely th a t a statistical fluctuation will destroy 
a single vortex. The vortex state could, o f course, be destroyed by returning 
to the disordered state and reform ing a state with uniform  (s(x)). This process 
has an energy barrier o f order J L 2 and is even more unlikely than  the previous 
one. Thus, the vortex state, even though it has a much higher energy than  the 
ground state, is stable because there is no path  to  the ground state tha t is no t 
energetically costly. Similar argum ents show tha t the k =  1 vortices shown in 
Fig. 9.1.1 can be converted into each other w ithout passing over an energy barrier 
but th a t they cannot be converted to  the k φ  1 vortices shown in Fig. 9.1.3.

Pairs o f vortices with opposite winding num ber lead to  far-field configurations 
that can be distorted continuously to the uniform  state. Two configurations o f 
a /c  =  + l , / c  =  —1 pair o f vortices are shown in Fig. 9.1.7. N ote th a t far from 
the pair, the vectors (s(x)) are nearly parallel. As the two cores o f the vortex 
pair approach each other, the region over which (s(x)) deviates significantly from 
spatial uniform ity decreases. Continuous distortions o f (s(x)) can bring the two 
vortices together and cause them  to annihilate. Thus, the state with a vortex 
pair is topologically equivalent to the uniform  state. W hereas a single vortex has 
energetically costly elastic distortions far from  its core, a pair o f vortices with 
opposite winding num ber does not. Vortex pairs represent im portant excitations 
from the ground state o f two-dimensional systems with xy-symmetry, as we shall 
see in m ore detail in Sec. 9.4.

1 Vortex pairs

2 Order parameters w ith more than two components

Topological stability depends critically on the symmetry o f  the order param eter 
and the codimension d' =  d — ds, where ds is the dimension o f the core. In 
the example o f the topologically stable vortex just considered, both  d' and the
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Fig. 9.1.7. Vortex pairs composed of vortices with winding numbers k = +1 
and k = — 1 . (a) and (b) show two possible configurations of spins for such 
vortex pairs.

dim ensionality n o f  the order param eter are 2. Vortices are also stable in three 
dimensions if the core is a line (ds =  1). In this case, again n =  d' =  2. In 
fact, the generalization o f the vortex to  n-dimensional vector order param eters 
is stable if d' =  n. For example, the “hedgehog” configurations with ds =  0 and 
d' =  3 (Fig. 9.1.8) o f a three-dim ensional spin in a three-dim ensional space are 
stable. The analog o f the loop enclosing the vortex core is the surface enclosing 
the center o f the hedgehog. As for vortices, there is an integer-valued topological 
index k  characterizing the strength o f the hedgehog. The k  =  +1 hedgehog shown 
in Fig. 9.1.8a has spin vectors pointing outw ard from the core, like the electric 
field o f a positive point charge. The k  =  — 1 hedgehog in Fig. 9.1.8c has spin 
vectors pointing inward tow ard the core-like the electric field o f a negative charge. 
Note, however, tha t alternative configurations can be obtained by rotating (s(x)) 
about any fixed axis. For example, the k  =  +1 configuration shown in Fig. 9.1.8b 
can be obtained from th a t o f  Fig. 9.1.8a by rotating all spins through π about 
the vertical axis.

If  n > d', there are no topologically stable defects. Consider, for example, 
three-dim ensional (n =  3) spins in a two-dimensional space. A  configuration of 
spins identical to  th a t o f a k  =  1 vortex for two-com ponent spins can be created 
as shown in Fig. 9.1.9a. I t is possible, however, to  reach the state in which all 
o f the spins are aligned norm al to  the two-dimensional plane via a sequence of 
distortions involving only infinitesimal changes in the directions o f the spins, as
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(a) (b)

/

/

(c)

/

/

I

(d)

I

Fig. 9.1.8. “Hedgehog” defects of a three-dimensional unit spin s (O3 order 
parameter) in 3-space, (a) A +1 defect with s parallel to (x,y,z). (b) A — 1 
defect with s parallel to (—x ,—y ,—z). (c) A +1 defect with s parallel to 
(—x ,—y,z). (d) A — 1 defect with s parallel to (x ,y ,—z). The defects in (c) 
and (d) are respectively obtained from those in (a) and (b) by rotating s 
through π about the z-axis.

shown in Figs. 9.1.9b,c. There is an “escape to  the th ird  dim ension” th a t renders 
the vortex state o f a three-com ponent spin topologically unstable.

If  n <  d', it is impossible to construct configurations in which the order 
param eter rotates continuously around the core. Consider, for example an Ising 
model (n =  1) in two dimensions. A ny attem pt to ro tate s =  sex through 2π 
around the core will lead to a line rather than  a point defect. For example, if 
s(0 ) =  cos 0 / 1  cos 0 |, then s =  + 1  for 0 <  φ < π and s =  — 1 for π <  φ < 2π 
and s changes discontinuously from  —1 to +1 as the x-axis is crossed. There is 
therefore a line rather than  a po in t defect. Line defects, or walls, will be discussed 
in m ore detail in the next chapter.

3 Order param eter spaces and homotopy

To discuss topological defects for m ore general order param eters, it is convenient 
to introduce the concept o f an order parameter space J l .  For two-com ponent 
spins, J i  is the unit circle (Si); for three-com ponent spins, it is the surface 
(S2) o f  the unit sphere; and for n-com ponent spins, it is the surface (S„_i) o f
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Fig. 9.1.9. Sequence of distortions taking an n =  3, Ic = 1 vortex state in two 
dimensions into the aligned state (spins normal to vortex plane).

an n-dimensional unit sphere. (The subscript p in Sp specifies the dimension 
o f  the surface o f the sphere and no t the dimension o f  the space in which it 
is embedded.) M ore generally, J i  is simply the ground state manifold, i.e., the 
space o f param eters tha t describes changes in the order param eter th a t leave 
the equilibrium  free energy unchanged. It is the space o f param eters th a t enters 
into an elastic theory with points corresponding to  the same physical value of 
the order param eter identified in some way. The characterization o f topological 
defects and the way they com bine can be related in a very elegant way to 
topological properties o f the order param eter space J i  as we will now discuss.

Specification o f the order param eter in some coordinate space dom ain 3  defines 
a m apping from  3  to J i .  In the vortex example, specification o f Θ on some closed 
loop Γ  in 3  (which is topologically equivalent to  a circle Si in coordinate space) 
defines a m apping /  from  the loop Γ  into J l  =  Si, as shown in Fig. 9.1.10. 
Similarly specifying the spin direction on a closed surface 3  surrounding the 
core o f  a hedgehog defines a m apping from  3  in coordinate space to  the order 
param eter space J i  =  8 2 -

Consider again the xy-model in two dimensions and some loop Γ  in the two- 
dim ensional plane. Different spin configurations on Γ  define different mappings 
into J i  =  Si, i.e., different closed paths in J i ,  as shown in Fig. 9.1.11. W hen all 
spins in Γ  are parallel, the image o f Γ  in J i  is simply a point, as shown in Fig. 
9.1.11a. M ore generally, the image o f Γ  in J i  is a closed contour th a t wraps J i  
one or m ore times if Γ  encloses a vortex, as shown in Figs. 9.1.11c and d, or 
a pa th  tha t closes in on itself, as shown in Fig. 9.1.11b, if Γ  does no t enclose a 
vortex. D istortions o f spins on Γ  lead to distortions o f the closed image contours 
in J i .  Continuous deform ations o f Γ  itself also lead to  continuous distortions of 
the image in J i  if Γ  does no t pass through the core. A  sequence o f distortions 
such as tha t shown in Fig. 9.1.5 causes the image o f Γ  in J i  to shrink to a point.
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Fig. 9.1.10. Mapping of contour Γ surrounding a k =  1 vortex onto the 
order parameter space Si.

Two m appings /o  and f i  are defined to be homotopic if they can be continuously 
deform ed into each other, i.e., if there exists a one-param eter family o f m aps ht 
such th a t ht=o =  /o  and ht=l =  f i .  The explicit construction o f the deform ation 
o f /o  to f i  is called a homotopy. Fig. 9.1.11 shows how closed paths on Si not 
encircling Si can be continuously distorted to  points. This implies th a t all m aps 
from  a loop Γ  no t enclosing a vortex are hom otopic to  a m ap in which all spins 
are aligned. Similarly, all m aps th a t wrap Si k  times are hom otopic. Finally, 
we note tha t two different paths Γ  and Γ ' enclosing identical defects define two 
hom otopic m aps /o  and / 1 because it is possible to  find a one-param eter family 
o f m aps ht such tha t ht=o =  /o  and ht=\ =  f \ .

We can now classify defects in the two-dimensional xy-model into different 
hom otopy classes. Defects are in the same hom otopy class if the m appings of 
all paths enclosing them  can be continuously deform ed into each other. The 
hom otopy classes o f po in t defects o f the two-dimensional xy-model are indexed 
by the num ber o f times the paths wrap Si, i.e., by the winding num ber k. The 
same is true o f line defects in the three-dim ensional xy-model. M ore generally, 
hom otopy classes for any model can be defined by considering m appings from  
any closed surface or loop Γ  into J i .  In the O3 model, all m aps from  closed 
loops to the order param eter space S2 are hom otopic because it is possible to 
slide any closed path  off the surface o f a sphere, as shown in Fig. 9.1.12. There 
is only one hom otopy class. This is the escape to the th ird  dimension depicted 
in Fig. 9.1.9. M aps from  closed surfaces in three dimensions to S2, however, are 
indexed by the num ber o f times they wrap S2. Point defects (hedgehogs) for the 
three-dim ensional O3 model can be divided into hom otopy classes indexed by an 
integer “charge” k. Similar results apply to  po in t defects o f On models in d =  n 
dimensions.

The real value o f  hom otopy theory is th a t it provides a natural group structure 
for com bining defects. Since topological defects are associated with hom otopy 
classes o f  the order param eter space, the rules for com bining defects are equivalent
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(a )
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Fig. 9.1.11. Spin configurations on circular contours (left) and the maps they 
determine of the contours into order parameter space (right), (a) The spin is 
uniform over the entire contour. The contour is, therefore, mapped into a 
single point of order parameter space, (b) The spin is nonuniform with zero 
winding number. The resulting map of the contour into order parameter 
space can be shrunk to a point, (c) The spin is nonuniform with winding 
number 2. The resulting map wraps the contour twice around the circular 
order parameter space. [N.D. Mermin, Rev. Mod. Phys. 51, 591 (1979).]

(a) (b) (c ) (d)

Fig. 9.1.12. Continuous distortion of n =  3 vortex (line around equator of S2) 
to the aligned state (point at a pole of S2).

to rules for com bining paths in different hom otopy classes in the order param eter 
space. The group associated with closed loops in the order param eter space M  is 
called the fundamental group or the f irst homotopy group o f J l  and is denoted by 
the symbol M ore generally, the group associated with an n-dimensional
spherical closed surface in J i  is denoted by
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B

fci

fci

(a )

D

(b)

(c)

Fig. 9.1.13. (a)-(c) Sequence of distortions taking a loop around two vortices 
ki and /c2 to two loops around the individual vortices. This construction is 
possible because the change in Θ going from A to B exactly cancels the 
change in going from C to D. For more complicated order parameters, this 
cancellation is not possible, and the addition law is more complicated.

It is easy to  see tha t defects in the xy-model com bine according to the sum 
o f their winding num bers. Consider, for example, two vortices with winding 
num bers ki and /c2 located at different points in space, as shown in Fig. 9.1.13. 
The path  enclosing both  vortices is hom otopic to the two paths enclosing the 
vortices individually, as can be seen by the sequence o f  continuous deform ations 
o f the original path  depicted in Fig. 9.1.13. Since the rule for com bining vortices 
is tha t their winding num bers add, the group in question is simply Z , the group 
o f the integers under addition, and one writes tti(Si) =  Z . Similarly, since 
all configurations o f three-dim ensional spins in d =  2  are hom otopic, π ι φ )  is 
equivalent to the group consisting only o f the identity element, and one writes 
^ 1(^2) =  0. In  general,

n„(S„) =  Z

nn(Sm) =  0, m >  n . (9.1.3)

This m eans th a t there are topologically stable configurations indexed by an integer 
for n +  1-dimensional spins in an n +  1-dimensional space for all n >  1. The 
groups π„ for order param eter spaces o ther than  S„ are not, in general, equal to 
Z . The fundam ental group πι m ay even be nonabelian. The group n„ for n >  1 
is, however, always abelian.

A lternative representations o f the order param eter space are sometimes useful. 
For example, Si can be represented by the real line with the rule tha t all points 
separated by 2k π are equivalent. A  vortex o f winding num ber k, therefore, defines 
a m apping from  a loop in real space onto the real line beginning at the origin 
and term inating at the po in t 2kn, as shown in Fig. 9.1.14.
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Fig. 9.1.14. Alternative representation of Si: the real line with identification 
of points 2kn.

9.2 Examples of topological defects

1 Vortices in xy-m odels

In the preceding section, we introduced the concept o f a topological defect in 
som ewhat general term s using the xy-model as an example. In this section, we 
will consider some examples o f  three-dim ensional line and two-dimensional point 
defects in m ore detail. As we saw in Sec. 9.1, these defects are characterized by 
a m apping from  some loop Γ  in real space onto the order param eter space such 
th a t the physical order param eter rem ains single-valued in a complete circuit of 
Γ  (Fig. 9.2.1). For the xy-model, this implies

In two dimensions, the line integral about the core is taken in the counterclockwise 
direction. In  three dimensions, the core is a line. Its unit tangent vector, chosen to 
be a continuous function o f  arclength, defines a direction 1 a t each point along its 
length. The line integral in Eq. (9.2.1) is taken in the counterclockwise direction 
defined by the right hand  rule and 1.

Free standing smectic-C films provide striking visual p roof o f the existence 
o f vortices. A  schematic representation o f such a film is shown in Fig. 9.2.2. 
The director n specifying the direction o f average m olecular alignment is tilted 
at an angle relative to  the norm al to  the film. The projection o f n onto the 
plane o f the film is a tw o-com ponent vector order param eter c with xy-symmetry. 
The intensity / ( Φ) o f depolarized light reflected from  such a film is proportional 
to  sin2 ®, where Φ is the angle between s and the axis o f  polarization of the 
incident light. In a typical experiment, incident light is polarized along an axis 
P,  and reflected light is passed through an analyzer th a t only accepts light that 
is polarized along an axis A. I f  A  is perpendicular to  P ,  the average intensity 
o f  reflected light passing through the analyzer will be zero if P  is parallel to 
s. If  there is a vortex (called in this case a disclination) in the sample, Φ will

k =  0, + 1 ,..., s. (9.2.1)
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Fig. 9.2.1. Loop Γ enclosing a defect core with tangent vector 1.

undergo a change o f 2n about a core, and there will be four bright regions at 
Φ =  π /4 , 3 π /4 , 5 π /4  and 7 π /4  and four dark  regions at Φ =  0, π /2 , π and 3π/2 . 
A  photographic image o f light reflected from  a single disclination is shown in 
Fig. 9.2.3a. By ro tating  A  relative to  P,  it is possible to  determ ine th a t the director 
rotates about the core o f the disclination with the pattern  shown in Fig. 9.1.1b. 
Fig. 9.2.3b shows a positive-negative disclination pair. The direction o f m olecular 
alignm ent o f this pair is the same as th a t shown in Fig. 9.1.7b.

2 Dislocations in smectic liquid crystals

In  a distorted smectic, planes are defined by the relation (see Sec. 6.3)

z — u(x) =  kd =  2nk /  qo, (9.2.2)

where the displacem ent field u(x) is a function o f  all o f the com ponents of
the position vector x. u(x) is analogous to the angle θ(χ) o f the xy-model. The 
contribution from  u(x) to the phase o f the mass density at wave num ber G  =  kqoez 
is kqou(x). Thus, a change in u(x) o f 2kn/qo =  kd (k =  0, ± 1 ,± 2 ,...)  will leave the 
am plitude o f every mass-density wave, and therefore the total density, unchanged. 
The order param eter space is, thus, the real line representing u with all points 
u =  kd  identified (Fig. 9.2.4). This is identical to the alternative representation of 
the order param eter space for the xy-model discussed a t the end o f the preceding 
section.

N ote that, because u represents displacements in the z-direction, the set of
identified points for u is identical to the direct lattice o f the smectic planes. To
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Fig. 9.2.2 Schematic representation of a free standing smectic-C film. 
[Adapted from David H. Van Winkle and Noel A. Clark, Phys. Rev. A  38, 
1573 (1988).]

emphasize this fact, and to facilitate contact with our discussion o f solids, we 
define the vector

b(x) =  kdez. (9.2.3)

The vector b is called a Burgers vector. The set o f Burgers vectors is equivalent to 
the direct lattice specifying equilibrium  positions o f smectic planes. A  line defect 
is thus characterized by the relation

j )  dn =  b =  kdez. (9.2.4)

Since u has a direction, the physical nature o f  the defect can depend on the 
direction, 1, o f the core relative to b (the z-axis here). If  1 is parallel to the z-axis 
(i.e., parallel to b), the spatial variation o f u(x) is in the xy-plane. I f  u changes by 
+d  in one circuit o f the core (passing through the origin in the xy-plane), then 
the equation determ ining the position o f the smectic planes is

z -  =  kd; (/>(*,y) =  tan - 1(y /x). (9.2.5)
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Fig. 9.2.3. (a) Photographic image of a single unit strength disclination in a 
free standing smectic-C film, (b) Photographic image of a positive-negative 
disclination pair. [David H. Van Winkle and Noel A. Clark, Phys. Rev. A 38, 
1573 (1988).]

t

d

Fig. 9.2.4. Order parameter space for a smectic-^ is a straight line with 
points separated by d identified. The vectors b =  kdez, with k an integer, are 
Burgers vectors. They are equivalent to the vectors in the direct lattice 
specifying the equilibrium positions of smectic planes.

This equation says th a t a plane containing the positive x-axis a t z =  0 will 
increase in height as the core is encircled in the counterclockwise direction. In 
one complete circuit o f  the core, the height will have changed by d so tha t the 
plane th a t was a t z =  0 when φ =  0 becomes the plane z =  d a t φ =  2n. Since 
the planes turn  in a screw-like fashion, this defect is called a screw dislocation. 
R epresentations o f simple configurations o f  screw dislocations are shown in 
Fig. 9.2.5.
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(a) b =  +  d

■  P
(b) b =  -  d

(c) b =  +  d

Fig. 9.2.5. Schematic representation of screw dislocations in a smectic-/!. The 
cross-sections shown indicate that each layer changes height by half a layer 
in half a circuit of the core. Note that planes rise in going from left to right 
in front of the core if 1 is parallel to b and fall if 1 is antiparallel to b.

If  1 is perpendicular to b, the plane in which u varies contains the z-axis. These 
dislocations are called edge dislocations. I f  1 is along the x-axis, the equation 
determ ining the position o f  the smectic planes becomes

z — tan - 1 (z /y ) =  kd  +  u q ,  (9.2.6)
I n

where the constant u0 defining the zero o f  the coordinate has been introduced to 
facilitate geometrical interpretation. (As we shall see in Sec. 9.3, the tan - 1  form 
for u is no t the one yielding the lowest energy for this dislocation. I t  suffices, 
however, for the present qualitative discussion.) Fig. 9.2.6 shows how to construct 
planes from  Eq. (9.2.6) for b =  d. A lso shown is a dislocation for b =  —d. For 
1 pointing ou t o f the paper as shown, a b =  d dislocation requires the insertion
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6=  π, z0 = d / 2

- z0 =  0 

d
— z_ i  =  —d

b= —π, z0 =  —d / 2 ------------------

(a)

(b) b =  +d (c) b =  —d

Fig. 9.2.6. (a) Representation of displacement of smectic planes as a function 
of φ =  tan- 1  z /y  for an edge dislocation with u0 =  d/2, (b) An edge 
dislocation with b =  +d. (c) An edge dislocation with b = —d. An extra 
plane with an edge along 1 is inserted from the direction of 1 x b or 
alternatively removed from the direction of —(1 x b).

o f an extra layer from  the left (or the removal o f a layer from  the right) o f the 
dislocation, whereas the dislocation with b =  —d requires the insertion o f an extra 
layer from  the left. These pictures show tha t +d  and —d dislocations annihilate 
when they com bine to reproduce a state with uniform  layering. The direction 
o f 1 relative to the z-axis can, o f course, be arbitrary. In this general case, a 
dislocation can be decom posed into a screw part and an edge part.

D islocation lines m ust either term inate a t the boundary o f the sample or form  
closed loops inside the sample. Closed loops lying entirely in the xy-plane are 
pure edge loops and describe the removal or addition o f layers inside the loop, 
as shown in Fig. 9.2.7. The covering surface S  o f  the loop m arks the points 
where the field u undergoes a discontinuity o f b. S  is the analog o f the line of 
discontinuity for Θ shown in Fig. 9.1.4. The surface S  is no t uniquely defined by 
its perimeter. I t is merely the surface where one chooses to place the discontinuity 
in u. I t can be chosen to coincide exactly with the surface where m atter was
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(a) (b)

Fig. 9.2.7. Edge dislocation loops, (a) A +d  loop corresponding to removal 
of matter from interior of loop, (b) A —d loop corresponding to insertion of 
a layer inside loop.

Fig. 9.2.8. An edge dislocation loop with a distorted covering surface.

inserted or removed, as shown in Fig. 9.2.7. Even with this convention, S  can be 
distorted, as shown in Fig. 9.2.8. A  general dislocation line tha t is neither in the 
xy-plane nor parallel to the z-axis yields both  twist and edge distortions.

In smectic liquid crystals, edge dislocations with large Burgers vectors are often 
im portant. A  large Burgers vector dislocation is shown in Fig. 9.2.9.

3 Periodic solids

The elastic variable analogous to  Θ in a periodic solid is the vector displacement 
field u(x). Changes o f u by a direct lattice vector R leave the lattice unchanged. 
Thus the order param eter space for the solid is the three-dim ensional space 
o f displacements u with lattice points identified as shown in Fig. 9.2.10. An 
alternative representation in term s o f  a 3-torus (the generalization o f the circle
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Fig. 9.2.9. A large Burgers vector edge dislocation in a smectic liquid crystal.

for the xy-model) is also possible. A  dislocation with a core along 1 is thus 
characterized by

j)  du = <j> -j-ds  =  R ξ  b, (9.2.7)

where Γ  is a curve enclosing the core. This equation defines the m apping depicted 
in Fig. 9.2.10: a curve from  the origin to b in the order param eter space is 
traced out as the core is encircled along Γ. The set o f vectors R indexing the 
strength o f the dislocations are the Burgers vectors b of the crystal. In periodic 
lattices, the Burgers vector lattice and the direct lattice o f atomic positions are 
equivalent. As in the smectic, there are screw dislocations if 1 is parallel to  b and 
edge dislocations if 1 is perpendicular to  b, as depicted in Fig. 9.2.11.

There is a simple way, depicted in Fig. 9.2.12, to  determ ine the Burgers vector 
o f a dislocation. Consider any closed path  in an ideal crystal following nearest 
neighbor bonds in the lattice. C ount the num ber o f steps along nearest neighbor 
bonds tha t are m ade in each o f the lattice directions in com pleting the circuit 
along this path. Now follow exactly the same sequence o f steps in a path  around 
a dislocation core starting at a po in t S  and ending at a point E. This path  is not 
closed. The vector from  S  to  E, as shown in Fig. 9.2.12, is the Burgers vector 
characterizing the strength o f the dislocation. Alternatively, the circuit around the 
dislocation may be traversed first. The same sequence o f steps in the undislocated 
lattice will no t close, and in this case the vector from the ending point to the 
starting point is the Burgers vector.
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Fig. 9.2.10. Two-dimensional Burgers vector lattice and mapping of a loop Γ 
onto a path between Burgers vectors in the order parameter space.

edge dislocation screw dislocation

Fig. 9.2.11. Edge and screw dislocations in solids.

(a) (b)
Fig. 9.2.12. Burgers circuit in an undislocated (a) and a dislocated lattice (b). 
The Burgers vector b is the vector SE.
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dislocation core

Fig. 9.2.13. The Volterra construction for edge and screw dislocations.

4 Volterra construction

A  useful way o f thinking o f  dislocations in solids is provided by the Volterra 
construction. A  cylinder o f m aterial oriented along the z-axis is cut along the 
yz-plane. The m aterial on the two sides o f the plane are displaced by b relative to 
each other and then glued together (with additional m aterial inserted if needed), 
as shown in Fig. 9.2.13. A  screw dislocation is created if  b is along the z-axis, 
and two types o f edge dislocations are created when b is in the xy-plane. This 
construction places no constraint on the displacem ent b. I f  the m aterial is periodic, 
however, the two sides will no t glue together perfectly unless b is a vector o f the 
direct lattice. The direct lattice provides a quantization o f the possible values of 
b.

5 H exagonal and close-packed lattices

The hexagonal, BCC, FCC, and related lattices require special consideration. The 
sites on a hexagonal lattice are the points o f intersection o f the three sets o f 
parallel grids defined by the equations

Go · x =  2nko, G i - \= = 2 n k i ,  G 2 · x =  2nk2, (9.2.8)

where Go, G i and G 2 are the three vectors in the hexagonal reciprocal lattice 
shown in Fig. 9.2.14. These equations m ay be understood in term s o f the Fourier 
expansion o f the density:

2

P(x) =  Po +  X ]  p c e iGx =  po +  2 | pGo | cos(G„ · χ  + φ η) + · · · ,  (9.2.9)
G  n= 0

where by symmetry | poa |= | pc, |= | p(h I· The phases φ η o f the mass-density 
waves a t wave num ber G„ can be expressed as

Φ η =  y /3  — G„ · u. (9.2.10)
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(a) (b)

Fig. 9.2.14. (a) The vectors Go, Gi and G2 in a hexagonal reciprocal lattice, 
(b) Vectors bo, bi and b2 in the direct lattice. The vectors bo and bi form a 
basis for the direct lattice and satisfy b, · G; =  2nStJ.

The constant y is fixed in the equilibrium  state, as can be seen by noting tha t the 
th ird  order term  in the liquid-solid free energy discussed in Sec. 4.6 is proportional 
to

Thus, if only third-order term s are present, y =  0 is preferred for positive w. In 
general, o ther values o f y may be imposed by higher order term s in the expansion. 
Eqs. (9.2.8) define planes o f constant phase o f the mass-density waves.

Now consider a dislocation for which the displacem ent u(x) changes by a 
Burgers vector b in one circuit o f the core. In  this case, u(x) depends on x, and 
Eqs. (9.2.8), defining planes o f constant phase o f the mass density, become

For a dislocation with Burgers vector —bi (Fig. 9.2.14), the phase o f the mass- 
density wave with spatial m odulation parallel to  G 2 changes by 2π and th a t with 
m odulations parallel to  G i changes by — 2π. Thus, a dislocation in a hexagonal 
lattice involves the insertion o f  extra lines o f atom s in two directions (Fig. 9.2.15). 
In  Fig. 9.2.15 both  lines term inate at approxim ately the same point in space. This 
is not necessarily the case. It is possible, and even common, for dislocations 
in hexagonal lattices to  be com posed o f two partial dislocations separated by 
several lattice spacings. A n extra line o f atom s ends at the core o f each partial 
dislocation. The phase o f only a single mass-density wave changes by 2π in a 
circuit around the core o f a partial. D islocations in  FCC lattices also involve the 
insertion o f m ore th an  one layer o f atoms. Fig. 9.2.16 shows a dislocation pair in 
a m agnetic bubble dom ain pattern.

—w cos((/>i +  <f>2 + φ ί)  =  — w cos y. (9.2.11)

G„ · [x — u(x)] =  2nk„, k„ =  integer. (9.2.12)
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Fig. 9.2.15. A dislocation in a two-dimensional hexagonal crystal. The lines 
in this figure are lines of constant phase of the three mass-density waves of 
the crystal. The Burgers vector is —bi, and extra lines are inserted from the 
right in the grids perpendicular to Gi and G2 . The Burgers circuit around 
the core starts at S and ends at E. The vector connecting S to E is the vector 
—bi shown in Fig. 9.2.14. Note that, in the core region, there is a site with 
five neighbors and a site with seven neighbors, indicating that a dislocation 
can be viewed as a disclination pair.

6 Disclinations in crystals

There is another class o f topological defects in solids analogous to twist and bend 
distortions that could occur in a smectic liquid crystal. They involve rotations of 
the lattice and are called disclinations. They are energetically very costly and occur 
only under special circumstances in the solid phase. They are, however, easily 
produced in the hexatic bond-angle-ordered phase that can  intervene between 
the solid and isotropic liquid phases in two dimensions. The easiest way to 
visualize a disclination is via the V olterra construction. The two sides o f  the 
Volterra cut are twisted rather than  translated relative to each other, as shown 
in Fig. 9.2.17. The point group o f the lattice restricts the num ber o f angles 
through which the two sides can be ro tated  and still glued together. In  simple
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Fig. 9.2.16. Magnetic bubble domain pattern showing a dislocation pair in 
an otherwise ideal hexagonal lattice. The size of the magnetic bubbles can 
adjust to minimize energy. The bubbles at five-fold sites at dislocation cores 
contract whereas those at seven-fold sites expand. This pattern is on a 
magnetic garnet film of composition (YGdTm)3(FeGa)6 0 i2 grown to a 
thickness of approximately 13μιη on a single crystal substrate of gadolinium 
gallium garnet in the (111) orientation. It was produced by cooling the film 
from the paramagnetic state in a small normal field (Η ~  1 oersted). [M. S. 
Seul and C.A. Murray, Science 262, 558 (1993).]

cubic lattices, only ro tations o f multiples o f π /2  are perm itted. Wedge and twist 
disclinations o f + π / 2  in a cubic lattice are shown in Fig. 9.2.18. Disclinations 
o f strength + π /3  for a hexagonal lattice are shown in Fig. 9.2.19. N ote that 
the positive disclination has a site that is five- rather than  six-fold coordinated, 
and the negative disclination has a site tha t is seven-fold coordinated. A  single 
dislocation in a triangular lattice has one five- and one seven-fold coordinated 
site (Figs. 9.2.15 and 9.2.16). A  dislocation is thus equivalent to a plus-minus 
disclination pair.

7 S treng th  o f  crystals

D islocations play a very im portant role in determ ining the strength o f materials. 
The yield stress om o f a solid is the m axim um  stress to which it can be subjected
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wedge disclination

Fig. 9.2.17. Volterra construction for wedge and twist disclinations.

(a)

(c) (d)

Fig. 9.2.18. Wedge and twist disclinations in a cubic solid: (a) +90° wedge,
(b) —90° wedge, (c) +90° twist, (d) —90° twist.
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(a) (b)

Fig. 9.2.19. (a) +60° and (b) —60° wedge disclinations in a triangular crystal. 
The bond angle order parameter undergoes respective changes of +60° in 
one circuit around the disclination core. The site at the core of the +60° 
disclination is five- rather than six-fold coordinated and that at the core of 
the —60° disclination is seven-fold coordinated.

w ithout breaking or flowing. A n ideal periodic solid has a very high yield stress. 
It will no t yield until atom s in adjacent rows o f the lattice are displaced by half 
a  lattice spacing (a /2 ) relative to  each other, as shown in Fig. 9.2.20. The stress 
can be estim ated by assuming th a t it is a simple periodic function o f the relative 
displacem ent x tha t reduces to  the correct elastic limit when the displacement 
is small. For small displacement, the strain is x /c ,  and the stress is μ χ /c. We 
therefore estimate

This estim ate can be refined, but it is always o f order μ / 10. Observed yield 
stresses in solids are m uch lower, o f  order 10_4μ to  10_2μ.

To see how the presence o f an edge dislocation dram atically lowers the yield 
stress, consider Fig. 9.2.21. M otion o f an edge dislocation parallel to  the Burgers 
vector b requires essentially no mass m otion. Only local displacements o f atoms 
are needed to  move the dislocation with an extra plane o f atom s along AA'  and 
core at site A  to one with an extra plane along BB'  and core at site B  adjacent 
to A. For this reason, m otion o f a dislocation along b is called conservative. 
The plane along which conservative m otion or glide takes place is called the 
glide or slip plane. M otion o f a dislocation perpendicular to  b, i.e., an upward

μα . , N μ χ  „
σ  » -----sinizTrx/fli —► —  for x  —► 0, (9.2.13)

yielding
_  μα_ μ_ 

2nc 10'
(9.2.14)
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(a) (b)

Fig. 9.2.20. (a) Unstrained and (b) strained rectangular lattice with lattice 
constants c and a.

(a)
A ' B ' C ' D '

B. C/D.

m

A '  B'  C 'D '

Fig. 9.2.21. A stressed crystal with an edge dislocation. In (a) the extra plane 
is AA'; in (b) it is BB'. The displacement of the top relative to the bottom is 
much less than half a lattice spacing. When the dislocation has moved off the 
right end of the crystal, there will be a perfect bulk crystal with a jog on the 
left surface.

displacem ent o f  the dislocation core a t A  in Fig. 9.2.21, requires m otion o f  an 
entire plane o f  atoms, and it is m uch more difficult to produce. Such m otion is 
called climb. Now consider the effect o f  a shear stress applied to the defected 
crystal shown in Fig. 9.2.21. The stress required to  produce dislocation glide is far 
less than  th a t needed to  displace atoms by half a lattice spacing in an ideal crystal. 
Furtherm ore, moving the top h a lf o f  the crystal by one lattice spacing relative to 
the bottom  half corresponds to  moving a single dislocation the entire length o f 
the crystal. Thus crystal flow is produced with a far lower stress in a dislocated 
crystal than  in an ideal crystal. Typical crystals th a t are no t specially prepared 
have a dislocation density, interpreted either as the num ber o f dislocation cores 
crossing a unit area o f  m aterial or as the total length o f  dislocation core per unit 
volume o f m aterial, ranging from  102 to 1012 cm-2 . Freely mobile dislocations 
reduce the strength o f  a m aterial. To make a m aterial strong, one needs either 
to reduce the density o f  dislocations or inhibit dislocation motion. This can be 
accomplished by pinning dislocations to  im purity sites or by putting in so many 
dislocations th a t they inhibit each o ther’s m otion. The latter process is called 
work hardening.
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Fig. 9.2.22. The surface of a crystal with a single screw dislocation. The 
preferred sites for adding atoms are those adjacent to the step (darkened 
region) produced by the dislocation.

8  Crystal  growth

Dislocations can aid in the process o f  crystal growth. A n atom  from  the vapor 
phase is more likely to  attach itself to  sites with the m axim um  num ber o f  occupied 
neighbor sites. Thus, a corner or an edge site is preferable to an exposed site, as 
shown in Fig. 9.2.22. This leads to  growth o f  crystalline whiskers with a single 
twist dislocation.

9 Grain boundaries

A low-angle grain boundary separating two crystals with a different orientation 
can be interpreted as a surface containing a sequence o f dislocations. The angle 
o f  the grain boundary depends on the num ber o f  dislocations per unit length 
in the boundary. Fig. 9.2.23 shows an edge grain boundary and a twist grain 
boundary in a smectic-/! liquid crystal. Each grain boundary consists o f  regularly 
spaced unit strength dislocations separated by a distance Ij. In both  cases, the 
layer spacing far from  the grain boundary  is d. Simple geom etry shows tha t the 
smectic layers rotate through an angle

<50 =  2 sin“ V / 2 / d) »  d/ ld (9.2.15)

from  one side o f  the grain boundary to the other. This relation is equivalent to 
Eq. (9.2.4), fa. du =  Njd,  where Nd is the num ber o f  unit strength dislocations 
enclosed in Γ. Consider first the edge grain boundary (Fig. 9.2.23a), which we 
take to  be in the yz-plane. A t large distances above and below the boundary, the 
norm al to the smectic layers is, respectively, N + and N _, with

N + =  [0, +  sin(<50/2),cos(<50/2)]. (9.2.16)
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(a)

Fig. 9.2.23. (a) A low-angle edge grain boundary and (b) a low-angle twist 
grain boundary in a smectic-/! liquid crystal. The normal N to the smectic 
layers rotates through an angle δθ from N_ to N+ from one side of the grain 
boundary to the other. Low-angle grain boundaries can be represented as a 
regular array of dislocations. The edge dislocations in (a) come out of the 
paper and pass through the terminated planes. Since the terminated planes 
enter from the left, the dislocations have positive Burgers vectors, as shown 
in Fig. 9.2.6. The layer spacing far from the grain boundary is the 
equilibrium spacing d. A rectangular contour Γ is shown in (a). The slanted 
dark lines in (b) show the smectic planes at large distances in front of the 
grain boundary, and the dashed slanted lines show the smectic planes behind 
the grain boundary. Also shown are the smectic layers in the plane of the 
grain boundary with separation d' =  d/cos(<50/2) rather than d.
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The displacem ent field above and below the boundary is determ ined by the 
equation (z — u+) =  N+ · x or

u± =  [0,+  sin((50/2)y, (1 -  cos(<50/2))z]. (9.2.17)

Now consider a rectangular loop Γ  in the yz-plane w ith sides Lz and L y. Then,

j>du =  dy  =  2L y sin(50/2) =  N dd. (9.2.18)

This equation is identical to Eq. (9.2.15) because 1̂  =  L y/Nd.  A n alm ost identical 
analysis can be carried out for the twist grain boundary.

In crystals, there can be both  edge and twist grain boundaries. A  twist grain 
boundary requires two planes o f  screw dislocations because two sets o f  parallel 
planes ra ther than  the single set o f  a smectic liquid crystal m ust be rotated.

10 Nemat ic  and hexat ic liquid crystals

Because positive and negative directions o f  the director are equivalent, defects in 
nem atic liquid crystals differ from  those o f  systems with a d-dimensional vector 
order param eter, even though they both  involve broken rotational symmetry. 
Consider first a two-dimensional nematic. Physical configurations in the nematic 
are invariant under inversion o f  the director (n —► —n), and the order param eter 
space is the unit circle w ith opposite points identified (i.e. 0 =  0 and 0 =  n  are 
equivalent). This space is denoted P i. Alternatively, the order param eter space 
can be the real line with points 2kn, k =  0 ,+ 1 /2 ,+ 1 ,+ 3 /2 ,. . .  identified. Since
0 =  0 and 0 =  π are equivalent, there is a topologically stable defect in which 0 
changes by + π  on a circuit enclosing the core :

j )  ~j~ds =  ± n ,  (9.2.19)

as depicted in Fig. 9.2.24. Such defects with half-integral winding num ber are 
no t possible in the x y -model. The tangent lines for k  =  + 1 /2  disclinations are 
shown in Fig. 9.2.25. Defects in two-dim ensional nem atics with integral winding 
num ber are, o f  course, possible. Since nem atic defects involve rotations, they are 
often called disclinations. The rules for com bining defects are the same as for 
the xy-model so th a t the hom otopy group rem ains tha t o f  the integers under 
addition, i.e. π ι(Ρ ι)  =  Z .

The situation in three dimensions is quite different. We argued in Sec. 9.1 
th a t there is no topologically stable line defect for a three-com ponent vector 
order param eter in three dimensions because it is possible continuously to roll 
any loop off a sphere. The order param eter space P2 for the three-dimensional 
nem atic is the unit sphere S2 with antipodal points identified. It is still possible 
to  roll any loop closed in S2 off o f  P2 · One therefore expects no integral winding 
num ber defects for the nematic. A  defect with a winding num ber o f  exactly 1/2 
is possible, however, since it is impossible to  deform  to a po in t a pa th  starting 
at one pole and ending at the other. All o ther half-integer paths, starting at
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Fig. 9.2.24. Mapping between the circuit Γ and the order parameter space 
for a +1/2 disclination in a two-dimensional nematic.

Fig. 9.2.25. (a) k = 1/2 and (b) k = —1/2 disclinations in a two-dimensional 
nematic.

one pole and winding several times around the sphere before term inating at the 
other pole, can be continuously deformed into the winding num ber 1/2 path  
starting and ending at a pole, as shown in Fig. 9.2.26. Thus, there is one and 
only one stable line defect in a nem atic liquid crystal. The hom otopy group is 
simply the integers m odulo 2: πι(Ρ2) =  Z 2. This means, for example, th a t the 
disclination loops shown in Fig. 9.2.27 formed by ro tating  the + 1 /2  and —1/2 
disclinations shown in Fig. 9.2.25 about a vertical axis displaced from  the core are 
topologically equivalent. Inspection o f  the director configurations far from  the 
core shows th a t this result is no t surprising. The configurations far from  the + 1 /2  
disclination loop are equivalent to those o f the +1 hedgehog o f  Fig. 9.1.8a with 
arrows removed, whereas those far from  the —1/2 loop are equivalent to  those 
o f  the +1 hedgehog o f  Fig. 9.1.8b, again with arrows removed. In a nematic, a
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Fig. 9.2.26. (a) Order parameter space, the surface of a sphere with antipodal 
points identified, for a three-dimensional nematic, (b) Distortion of a path 
with k =  3/2 to one with k =  1/2.

single positive hedgehog is indistinguishable from  a negative hedgehog because 
o f  the invariance under n —► —n. Both k =  1 and k =  1/2 disclinations have been 
observed in nematics under crossed polarizers. The k =  1 defects exist only at the 
surface, whereas those with k =  1/2 descend into the bulk, in agreem ent with the 
argum ents ju st presented.

In hexatic liquid crystals, changes o f  the angle Θ by 2 π /6  leave the order 
param eter (e6‘e) unchanged. There can therefore be disclinations o f  strength 
± 2 n k / 6  for an integer k.

9.3 Energies of vortices and dislocations

1 S imple calculation o f  xy -vor tex  energies

The energy Ej  o f  topological defects can be divided into two parts: (1) the 
core energy E c, and (2) the elastic or strain energy £ ei- The core energy is that 
associated with the destruction o f  the order param eter a t the core o f  the defect. 
Its detailed calculation requires some microscopic model for the order and is 
generally quite complicated. The order o f  m agnitude o f  E c can, however, be 
obtained by observing th a t the increase in free energy per unit volume due to 
the destruction o f  the order param eter is the condensation energy / COnd o f the 
ordered state. In the φ 4 field theories o f  C hapter 3, / cond =  r 2/16u. E c is o f  order 
the volume (or area) o f  the defect times / cond· Thus, the core energy o f  a vortex 
in two dimensions is

Ec =  Aa2f cond, (9.3.1)
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Fig. 9.2.27. Disclination loops in a nematic formed by rotating the (a) 
k = 1/2 and (b) k = —1/2 disclinations shown in Fig. 9.2.25 about a vertical 
axis. These two configurations are topologically equivalent and can be 
distorted one into the other via continuous transformations. The far-fields of 
both correspond to a +1 hedgehog with (a) equivalent to Fig. 9.1.8a and (b) 
to Fig. 9.1.8b.

where A  is a num erical constant. This is also the core energy per unit length o f
a vortex line in three dimensions. The elastic energy is th a t associated with the
slow spatial variation o f  the elastic variable (e.g., Θ or u) far from  the core. It 
can be calculated using the theory o f  elasticity developed in C hapter 6 and the 
boundary conditions imposed by the defect.

Consider first the two-dimensional xy-vortex with winding num ber k. As we 
have seen, §  άθ =  2kπ  for any loop enclosing the vortex. The actual configuration 
outside the vortex core is obtained by minimizing the elastic free energy subject 
to this topological constraint, i.e., Θ a solution to Eq. (6.1.2) [—psV20 =  0] with 
§  άθ =  2kn.  The field

θ =  k<p,

vs =  V 0  =  - ε φ, r  =  (χ2 +  y2)1/2, (9.3.2)
r

where φ  =  tan (y /x ), satisfies both  the circuit constraint and the equilibrium  
condition everywhere except a t the origin. We have introduced here the notation 
vs for V 0. Using this expression for Θ, the elastic energy o f  the vortex (strictly 
speaking the free energy) is easily calcu lated :

1 f  λ  2 1 ,7  f R  r d r
Eel =  - P s  J  d2 x \ s =  - p s2 nk  I

=  n k2ps ln(R /a), (9.3.3)
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where a is the core radius and R  is the linear dimension o f  the sample. The total 
energy o f  the vortex is then

£ v =  Eel +  E c. (9.3.4)

The core radius a rem ains unspecified in this equation. It is a variational 
param eter, which will adjust to m inimize E v. Using Eqs. (9.3.1) and (9.3.3) and 
minimizing with respect to a, we find

n k 2 ps
a

+  2aA fcoad =  0,

(9.3.5)
Z  A J  cond

where we used the Josephson scaling relation [Eq. (6.1.11)] ps ~  Τ0ξ~ ^ ~ 2̂  and 
/ c o n d  ~  TcQ~d. Thus, as expected, the core radius a is proportional to the 
correlation length ξ. It also grows linearly with winding num ber k. The core 
energy at the optim al value o f  a grows quadratically with k :

Ec =  nPsk 2 / 2. (9.3.6)

A n identical calculation applies in three dimensions, in which case Eq. (9.3.6) is 
the energy per unit length o f  the vortex line.

A n alternative calculation o f  E t\ is instructive and is m ore easily generalized 
to the calculation o f  interaction energies. This calculation uses the fact tha t vs is 
a continuous variable whereas Θ is multivalued. A  cut along which Θ undergoes 
a discontinuity o f  2kn  is introduced as shown in Fig. 9.1.4. This cut has two 
surfaces labeled Σ -  and Σ +. Θ is zero on Σ -  and 2kn  on Σ +. The norm als to Σ-  
and Σ + are in the — and directions, respectively. The vortex energy is now 
obtained by an integration by parts using the fact tha t V20 =  0:

Ed =  \ J  d2 x p s( V d ) 2 =  ^ J d h s - d L - ^ p s J  ά2 χ θ ν 2 θ, (9.3.7)

where we introduced the field,

hs =  psys, (9.3.8)

conjugate to  vs. The surface integral is over the two sides o f  the cuts, and because 
V20 =  0, we have

Et\ =  \  ( J e+h*' άΣ+ +  J  d~hs · άΣ-

=  θ+ -  Θ ) J  drps | vs |

=  n k 2 ps ln(R/a),  (9.3.9)

reproducing our first calculation.
The interaction energy between two vortices can be calculated in a similar 

m anner by introducing a cut for each vortex, as shown in Fig. 9.3.1. The solution 
to  Laplace’s equation with two vortices at positions xi and x 2 is θ(χ) =  0(I) +  0(2), 
where 0(l) =  tan - I [(y — γΐ) /{χ — x,·)] (see Problem 9.1). Let v*1) =  V 0 (1) and
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Fig. 9.3.1. Non-intersecting cuts for two vortices. The “+ ” surfaces always 
have their normals parallel to the vector βψ defined with respect to an origin 
at the core of the associated vortex.

v<2) =  V 0 (2). Then the energy o f  two vortices with respective winding num bers ki 
and k 2 is

Et\ =  ~ J  d2 xp s(vll) +  v<2))2

=  E i + E 2 +  \ J d 2 x( h W -v p i+ h * 2) · ^ )

=  £ i  +  E 2 +  \ {θ+ -  θ2 ) f  ps^ d r  +  ^(θ+ -  θγ )  f  ps^ d r

=  Ei +  E 2 +  2npsk ik 2 ln(i?/r), (9.3.10)

where E\  and E 2 are the energies o f  the isolated vortices, which are distance r 
apart. The R  pa rt o f  the interaction term  can be com bined with the Λ-dependent 
parts o f  Ei  and E 2 to yield

E eί =  psn(ki +  k 2 ) 2 ln(i?/a) +  2 n p sk ik 2 ln (a /r). (9.3.11)

There are two things to note about this equation. First, the Ini? divergence is 
eliminated if  ki =  —k2. M ore generally, there will be no In R  term  in a system with 
m any vortices if  the sum, /ca, o f  the winding num bers o f  all o f  the vortices is 
zero. Thus, states containing vortices whose winding num bers satisfy kx =  0 
have energies th a t do no t diverge with the sample size. These states will be 
therm ally excited for T  >  0. Secondly, the sign o f  the interaction energy depends 
on the relative sign o f  ki and k2. Since ln (a /r)  is a m onotonically decreasing 
function o f  increasing r, the interaction is clearly repulsive if  ki  and k2 have the 
same sign and attractive if  they have opposite signs. The force F 21 exerted by 
vortex 1 on vortex 2 is

F 21 =  - V 2£  =  2 π Μ ι^ 2 , (Χ2~ Χΐ!2· (9-3.12)
I Xi -  Xi I2

The above result also applies to  the energy o f  two parallel vortex lines in
three dimensions. As discussed in the preceding section, there can also be vortex
loops in three dimensions, as shown in Fig. 9.3.2. The energy o f such loops can 
be reduced to  an integral over the covering surface Σ  o f  the loop by the same 
technique we used to calculate the energy o f  two vortices. Let the discontinuity 
in Θ take place across Σ. Then on the upper p art Σ -  o f  Σ, θ =  θ~, and on the 
lower part Σ +, θ =  θ+ =  2kn,  and we have
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Fig. 9.3.2. Covering surface of a vortex loop, θ = Θ on the upper surface, 
and θ = θ+ on the lower surface.

E =  \ J  d3xhs ■ vs =  1(0+ -  ΘΓ) J  hs · άΣ =  1 (2nk) j \ i s dL,  (9.3.13)

where k  is the winding num ber o f  the loop.

2 Ana lo gy  with magneti sm

There is an obvious analogy between vortex interactions and m agnetic interactions 
am ong loops carrying constant currents. The line integral o f  vs around a vortex 
line is 2π times the winding num ber. This is analogous to  the line integral o f  the 
m agnetic intensity H  equaling the current I  carried by the enclosed wire, i.e., 

f  vs ■ dl =  2k n  H  «-► vs
=> (9.3.14)

J H  di =  I  I  *-* 2kn  
Similarly, the equation o f elastic equilibrium  implies th a t the divergence o f 
hs =  PsVs is zero. Thus, hs is the analog o f the m agnetic induction B and ps is the 
analog o f  the m agnetic perm eability μ:

ρ 5Ψ θ  =  V  · hs =  0 B <-► hs
=> (9.3.15)

V  B =  μ ν  · Η  =  0 μ<-> ps
G iven this analogy, it is natural to  introduce a field m in the vortex problem  that 
is the analog o f  the current density J  o f  the m agnetic problem. I f  there are many
vortex lines with winding num bers ka passing through the surface S  enclosed by
a contour Γ, then

or

vs ■ dl =  / v x v , i S  =  2π ^ / c a =  J  m · dS, (9.3.16)

V  x vs =  m. (9.3.17)
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The field m defined in this way is the vortex analog o f  the electric current density 
J. The vortex density associated with a single vortex is clearly singular at the 
vortex core since any contour enclosing the core will yield 2nk  for <f vs · dl. Thus, 
for a line parallel to ez at χ  =  (x±, 0),

m(x) =  2π/ίβζ<5(2)(χ± -  x)- (9.3.18)

This is precisely analogous to the current density o f  a wire. I f  there are many 
vortex lines parallel to  the z-axis with cores at positions (x^, 0), then

m(x) =  ^ 2 π / ί αβζ(5(2)(Χχ — x). (9.3.19)
a

M ore generally, if  there are vortex loops with winding num bers kx with core 
positions as a function o f  arc length / specified by xa(/), then

m(x) =  ] T  f  d l ^ ^ - l n k ^ i x ^ l )  -  x). (9.3.20)
a

<5<3>(xa(/) — x) is a three-dim ensional delta function. The vector dxa(l)/dl is the 
unit tangent to  the vortex core at /. Because the lines o f  dislocation cores m ust 
either form  closed loops or term inate a t a surface, m m ust be divergenceless 
(V  · m =  0). Alternatively, V  · m =  0 directly from  Eq. (9.3.17). This condition is 
satisfied by Eq. (9.3.20) because dd(3)(xa(Z) — x) /dl  =  —(dx^/dl)  · V ^ (3)(xa — x).

The energies associated with collections o f  vortices and vortex loops can be
expressed in term s o f  the current m ju s t as the magnetic energy can be expressed 
in terms o f  the current J. Taking the curl o f  Eq. (9.3.17), we obtain

V  χ  (V  x vs) =  —V2vs =  V  x m, (9.3.21)

since V  · vs =  0. Thus,

vs =  V  x J  ddxG(x  — x ')m (x'), (9.3.22)

where G(x — x') is the G reen function for minus the Laplacian in d dimensions. 
Using this expression in the equation for the energy, we obtain

E ei =  \ p s J  ̂άχ J  ddx 'm(x)  · G(x — x')m (x')

=  <9·3·23» 

for the elastic energy due to vortices. It is straightforw ard to verify th a t the 
interaction energy between two vortices derived from  this equation is identical to 
Eq. (9.3.11). Because V  hs =  0, one could also introduce the analog o f  the vector 
potential A via hs =  V  x A to obtain the same result (see Problem  9.2).

3 Energies o f  dislocations in crystals

The energies for dislocation lines in solids are similar to  those o f  vortex lines in
the xy-system. The strain «y associated with a dislocation at the origin is o f  order
1 /r  so th a t the energy per unit length o f a dislocation line is o f  order Ini?. The
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detailed calculation o f  dislocation energies is, however, much more com plicated 
because o f  the greater complexity both  o f  the elastic variables and the associated 
elastic energy.

The displacem ent field u is a solution to  the equilibrium  equations 

£  -  — ■
=  - 2 μ % jUij -  XViUkk = 0  (9.3.24)

everywhere bu t in the cores o f  dislocations and disclinations. If  there is a single 
straight dislocation aligned along I with Burgers vector b, then u is a solution to 
Eq. (9.3.24) subject to  the Burgers circuit constraint §  du =  b. In order to satisfy 
this constraint, u m ust have a singular part w =  \>φ/2π, where φ  is an angle in 
the plane perpendicular to  I. To satisfy the condition o f equilibrium, u may have 
an additional nonsingular part u, i.e., u =  u +  w with <f du =  0.

Consider first a screw dislocation with I along the z-axis. In this case,

b =  bez, φ =  XdLXTl (y/x) ,  (9.3.25)

and u =  bφ / 2 π  is a solution to  Eq. (9.3.24), and no additional nonsingular part 
is needed. The com ponents o f  the strain tensor produced by the above u are

1 b (  y  λ b sin 0
=  U,v

2 2,- \ x 2 + y 2 J  4π
1 b x  b cos φ

(9.3.26)
2 2π x 2 +  y 2 4π r 

All o ther strains (e.g. uxx) are zero. Since V  · u =  0, the screw dislocation involves 
only shear, and

a y  =  2 μίΐ^, (9.3.27)

from  which we obtain
" dr

E a/ L  =  μ  J  d2xUijUij =  μ φ / 4π)22(2π) J  ~

=  μ%-  In(R/a),  (9.3.28)
4π

where L  is the length along the z-axis. Thus, the energy o f  a screw dislocation in 
an isotropic solid is identical to the energy o f  a vortex in an xy-model.

For an edge dislocation with I along the z-axis and b =  bex, w =  
bex tan-1 (y /x ) =  bex<£. In this case,

wji =  VjWi =  - ^ d ixe]kVk In r, (9.3.29)

where ejk =  —ekj  is the antisymmetric tensor, leading to  a symmetrized singular 
strain tensor w-j =  (wy +  wjt)/2 th a t is no t a solution o f Eq. (9.3.24):

2/iVjwfj +  AV,-h4 =  - ^ ( μ ^ ν *  +  XexkVi)Vk In r =  /* .  (9.3.30)

It should be noted tha t Vyw,y is no t equal to V^wyy) as it would be if  w were not 
singular.



9.3 Energies o f  vortices and dislocations 533

To satisfy Eq. (9.3.24), we add to u a nonsingular part fi with associated strain 
utj satisfying V7uy =  (V2u,· +  V ,V  · fi)/2. For u =  fi +  w to satisfy Eq. (9.3.24), fi 
m ust satisfy

—2μ ν 2ΰ; -  (1 +  2 μ )ν ;ν  ■ ΰ =  (9.3.31)

This equation is m ost directly solved in Fourier space using the displacem ent 
susceptibility Zy(q) =  T ~ l Gy(q) o f  Eq. (6.4.24):

λ
«Kq) =  Zy(q)/r(q) = (9.3.32)

The coordinate space solution can be obtained from  the function (Problem 9.9)

^ (X) -  J  (2π)2 q* β

=  J - f ( 2 I n r - l ) 5 y + 2 ^ 1  +  const. (9.3.33)
8π L r J

The constant term  evaluated directly from  the Fourier integral diverges as In R  for 
a sample o f  size R. W hen used to  determine fi, however, it depends on boundary 
conditions imposed on fi, and we can choose it to  be zero. The total displacement 
field, including both  singular and nonsingular parts, is 

b f  1Α  +  μ . -  ,
Ux =  2π \  2 Χ +~2μSm )  ’

b (  μ  In r  +  ^ - r -± ^ -  cos 2φ \  . (9.3.34)
y 2π +  2μ 2 1  +  2μ

The associated stress tensor is
sin φ ( 2  +  cos 2φ)  sin φ  cos 2φ

<7χχ =  D , G y y  =  D
r r

„  cos φ  cos 2 φ
Gxy =  Gyx =  D ---------------- , (9.3.35)

where

β - 1 τ 8 % γ · (93M)
These equations apply both  to  a line dislocation in three dimensions and to  a 
point dislocation in two dimensions. In the form er case, D =  μί>/[2π(1 — σ)], 
where σ is the three-dim ensional Poisson ratio  [see Eq. (6.6.17)]; in the latter case, 
D =  b Y j / ^ n ,  where Y2 is the two-dimensional Young m odulus [Eq. (6.6.18)]. The 
energy o f  an edge dislocation is then

=  \ ( ut  ~ ut )  J Μ Σ ; = \ b J a σ =  °^dx

=  ^ T ^ ln(R / a^  (9·3·37)

where, as in the case o f  vortices, Σ  is the cut surface and u+ and u~ are the values 
o f  u on the upper and lower surfaces o f  the cut.
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The displacem ent field produced by an edge dislocation gives rise to  an anti
symmetric part in 5,-uy, or, equivalently, to local ro tations through an angle

Θ = dxuy -  dyux) =  - ^ ^ 2  =  - 2 ^  COS(̂ · (9.3.38)

The integral o f  Θ around a closed loop is zero, indicating, as it should, tha t a 
dislocation is no t a disclination.

In two dimensions, this result can be generalized to an arbitrary  distribution 
o f  dislocations at positions xa with Burgers vectors ba :

O M  1 Y - b« - (x - xa)
_ 2π"  | x - x « p
_ J _  f  2 b ( x O J x - x O  

2n j  | x — x ' |2 ’
where we have introduced the two-dim ensional vector dislocation density

b(x) =  X  ba<5(x — xa). (9.3.40)
a

Equation (9.3.39) tells how dislocations influence bond-angle order. It will be 
used in Sec. 9.5 in our discussion o f  dislocation m ediated melting.

A n expression for the energy due to dislocations analogous to Eq. (9.3.23) for 
vortices is useful when there are m any dislocations. In three dimensions, the 
expression is fairly com plicated because o f the tensor nature o f  the dislocation 
density. In two dimensions, however, it is quite elegant. To define a dislocation 
density, we proceed exactly as we did for vortices. Let wji =  VjUt be the analog 
o f  vs for the xy-model. Then,

£ dui = j> wjidlj = J  ekjV kWjid2x  =  ^  baj, (9.3.41)

where the final sum  is over the Burgers vectors ba o f  all dislocations enclosed by 
Γ. This equation can be reexpressed in term s o f  the dislocation density as

ekjV kwji =  bi(x). (9.3.42)

If  there are also disclinations o f  strength sa, then

f de =  f  V M i  =  J  d 1 x€l]V iVj e =  ] [ > ,  (9.3.43)

where Θ = etjWij/2 is the bond angle. In a hexagonal lattice, sa =  + π /3 . Thus,

eijViVjO =  s(x), (9.3.44)

where

s(x) =  sa<5(x — χα) (9.3.45)
a

is the disclination density. I f  there are both  dislocations and disclinations, then 
it is understood tha t Eq. (9.3.41) is still satisfied, i.e., tha t the line integral o f  du 
around a closed loop does no t pick up a contribution from  disclinations.

We now w ant to  find the energy associated with an arbitrary  distribution o f
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dislocations and disclinations. To do this, we could calculate the nonsingular 
parts o f  the strain field arising from  the singular parts required by Eqs. (9.3.42) 
and (9.3.44). Alternatively, we can seek a stress tensor ay  satisfying Eq. (9.3.24). 
We choose the latter approach. Because ay  is symmetric and satisfies Eq. (9.3.24), 
it can be w ritten as

dij =  eikejiVkVix. (9.3.46)

This equation is the analog o f  Β =  V  x A in magnetism. The function χ  is 
called the Airy stress function. The strain uy is related to  the stress via the 
two-dimensional version o f  Eq. (6.6.13):

UiJ =  2 μ ση ~  4 ( J T 7 ) d^ kk

=  , (9.3.47)

where Y2 =  4Β μ / ( Β  +  μ) is the two-dimensional Young’s m odulus and σ2 =  
(.Β — μ) / (Β  +  μ) the two-dimensional Poisson ratio. Applying e ^ e ^ k S !  to both 
sides o f  this equation, we find

^ ν 4χ = ^etuejiVkViiwi} + wj,)

=  ^ikejiVkViiwij -  Wji) + etkejiWkViwji
=  s(x) -  eikWkbiix) =  s(x), (9.3.48)

where we used (wy — ν/μ)/2 =  ey0, = eki and Eqs. (9.3.42) and (9.3.44).
In analogy with charge in a dielectric, s(x) can be regarded as a total disclination 
density with a contribution  s(x) from  “ free” disclinations and a “polarization” 
contribution  —e^Wkbi from  dislocations which, as indicated in Figs. 9.2.15 and 
9.2.16, are bound disclination pairs.

The energy can be expressed in terms o f  ay  and, in turn, in terms o f the Airy 
function χ:

£  =  2Y 2 J  d2 x(V 2 * ) 2 +  J  rfW j/V fcV H V .zV jz). (9.3.49)

The second term  integrates to  the boundary. It can be im portant, particularly
when the total disclination num ber is nonzero. If, however, we restrict our
attention to situations in which the total disclination num ber and total Burgers
vector are zero, it can be neglected, and the energy expressed in Fourier space
becomes

£ - ^ / ( § ϊ ? 5(",5Η ,)· (93-50) 
This equation predicts tha t the energy o f a single disclination diverges as R 2 in 
a system o f linear dim ension R. W hen the free disclination density s(x) is zero, 
Eq. (9.3.50) becomes an energy for dislocations alone:

1 f  d2q 1
£ = 2 Yi J  (9.3.51)
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predicting a Ini? energy for a single dislocation. N ote th a t this energy depends 
only on the transverse part o f  the dislocation density b(q).

4 Dislocations in smectic liquid crystals

As we have seen, dislocations in smectic liquid crystals are topological excitations 
in which the phase variable u(x) undergoes a change o f  kd in one circuit o f  the 
core. One m ight expect, in analogy with vortices in the xy-model, tha t the energy 
o f  a single dislocation in a smectic should grow logarithm ically with the size o f 
the sample. A  smectic, however, has an additional variable, the director n, which 
can adjust to  lower the energy arising from  the topological constraint on u. As 
a result, as we shall now see, the energy per unit length o f  a dislocation is finite 
ra ther than  infinite, and the interaction potential between dislocations is, except 
for edge dislocations with separation vectors along the z-axis, an exponential 
ra ther than  a logarithm ic function o f  separation (Day, Lubensky, and M cKane 
1983). A n exactly analogous phenom enon occurs in superconductors, where the 
superfluid velocity carries charge tha t couples to the vector potential (Abrikosov 
1957; Fetter and H ohenberg 1969). The vector potential in a superconductor, like 
the director in a liquid crystal, can adjust to  lower the strain energy associated 
with the existence o f a vortex. As a result, vortices in superconductors have a 
finite ra ther than  infinite energy per unit length.

Before deriving a general expression for the energy o f interacting dislocations, 
it is instructive to consider a single screw dislocation for which the Burgers vector 
is parallel to  the equilibrium  director no- In this case, all spatial variations in 
<5n =  n — no and u take place in the xy-plane perpendicular to  no- In this case, 
the smectic elastic energy [Eq. (6.3.1)] in the harm onic approxim ation, valid when 
| <5n |<C 1, can be expressed as the energy per unit length:

F / L  =  i  J d 2 x[D (V u  +  <5n)2 +  K i ( V  · <5n)2 +  K 2( V  x <5n)2]. (9.3.52) 

e equations,

=  - D V  · ( V u  +  <5n) =  0, (9.3.53)

The Euler-Lagrange equations, 
S(F/L)

du
5(F/L)

=  - K i  V (V  · <5n) + K 2 V x ( V x  <5n) +  L>( V u  +  <5n) =  0, (9.3.54)
<5n

minimizing F / L  m ust be satisfied at all points in space outside o f  the core 
region. To solve these equations in the presence o f a single screw dislocation, 
we introduce cylindrical coordinates (p, φ)  for the two-dimensional vector x and 
define v =  V u. The boundary conditions involving v are then

ρ2π

and

<j> v · dl =  J  νψράφ =  d (9.3.55)

lim (v +  <5n) -*  0. (9.3.56)
p— >00
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The first condition, valid for all p  greater than  the core radius a, is the topo
logical statem ent th a t there is a dislocation at the origin, and the second is the 
requirem ent th a t the director n and the layer norm al N  [Eq. (6.3.6)] be parallel 
far from  the dislocation core. In addition, because the director is well defined in 
both the smectic phase exterior to  the core and in the nem atic phase in the core 
interior, it m ust be nonsingular as p  —► 0. To satisfy the condition in Eq. (9.3.55), 
we set

,  =  A  v  (9.3.57)

Then, V  · v =  0 for all p > a. D istortions produced by the dislocation should be 
azim uthally symmetric, implying tha t | <5n | should depend on p  only. From  this, 
and the fact th a t Eq. (9.3.53) implies V  · n =  0 when v satisfies Eq. (9.3.57), we 
conclude tha t <5n is parallel to e^. We can, therefore, define the vector,

Q (x) =  v +  <5n =  Q { p ) ^ ,  (9.3.58)

measuring the difference between n and N. Because V  · <5n =  0 and V2v =  0, we 
have V  χ  (V  x <5n) =  —V2Q. Thus, we can rewrite Eq. (9.3.54) as

V2Q  -  X22Q  =  0, (9.3.59)

or

P2Q" +  pQ' ~  [ ( p / h ) 2 +  1 ]Q =  0, (9.3.60)

where X2 =  {K.2 / D ) x / 2  is the twist penetration depth introduced in Sec. 6.3. Two 
independent lengths, the penetration depth X2 and the core radius a, will enter 
into the dislocation solution. The core radius is o f  order the correlation length 
ξ. Both ξ and X2 diverge as the nem atic to smectic-/! transition is approached. 
Their ratio, however, should be constant.

The solution to  Eq. (9.3.60) is an order one Bessel function o f  imaginary
argument. Since <5n is nonsingular a t the origin, Q νψ =  d/(2np)  as p  —► 0, and
the appropriate solution is

Q(p) = 4 a 2* x{plh) (9-161)
in the no tation  o f  Abram ow itz and Stegun (1972, p. 376). The boundary condition 
as p  —► 0 is satisfied because J f i (y )  —► y ~ l as y  —► 0. A t large y,  J f i (y )  dies off 
exponentially, and

(9·3·62’
Thus, although v dies only algebraically to zero as p  —► oo, Q(p) dies exponentially 
to  zero. Since the energy depends on Q rather than  v alone, it will no t diverge 
with sample size as it does in the xy-model. The dislocation energy, Eq. (9.3.52), 
expressed in term s o f  Q  is
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1 r x
F / L  =  - 2 %K2 J  pdp[X2 2 Q2 +  (V  x Q )2]

=  πΚ 2 Γ ^ [ ( 1 +  ρ2^ 2)β 2 +  2pQQ' + p2(Q')2]
J a  P

/ °° d
dP jp (Q 2 + p QQ’) (9·3·63)

=  - n K 2PQ (Q ! +  j-Q )  |p=a 

=  π Κ 2 [ά2 / ( 2 π λ 2)2] [(fl/A2)jri(fl/A 2)] [-JTo(fl/A2)],

where we used Eq. (9.3.60) and the recursion t f x(y) +  y~l & i ( y )  =  ^ o ( y ) ·  This 
energy is perfectly finite as long as λ 2 is no t infinite. In the limit y  0, 
Jfo (y ) —► — In y  and y J f i(y )  —► 1 so that

d2
F / L & D —  ln(A2/a )  (9.3.64)

4 π
when λ 2 >  a. In this limit, the elastic energy associated with distortions o f  <5n and 
u far from  the core is greater than  the core energy associated with the destruction 
o f  the smectic order param eter ψ. W hen λ 2 and a are com parable, however, the 
core and the far-field energies are com parable, and a complete calculation o f  the 
dislocation energy m ust include the spatial variation o f | ψ  |. N ote tha t F / L  
diverges logarithm ically as λ 2 —► oo. W hen λ 2 becomes o f  order the sample size 
L, the argum ent o f  the logarithm  should be replaced by L/ a ,  and the xy-model 
result is regained.

We now turn  to the more general problem  o f  the edge and screw dislocations 
and their energy o f  interaction. The basic strategy will be to solve for <5n and 
v as a function o f  a dislocation source b(x) analogous to  the vortex source o f 
Eq. (9.3.17). To simplify our analysis, we will set D =  B  in Eq. (6.3.11). This is 
no t an im portan t constraint since we can always rescale lengths to  satisfy this 
condition. As before, we will also assume tha t n never deviates significantly from
n0 so th a t the harm onic form  o f  the smectic free energy can be used. W ith these
assum ptions, the Euler-Lagrange equations arising from  the m inim ization o f  Eq. 
(6.3.11) are

5JL
5u
5F_
drii

- B V  ■ (V u  +  δη) =  0 (9.3.65)

KijSnj +  B(VjU +  dm)  =  0, (9.3.66)

where

K tJ =  - ( K iV i  +  K ,V \ ) e u eLj -  (K2 V2± + K 3 V])etietj

=  - K ±( V ) e ±ie±j -  K t(V ) e tietj, (9.3.67)

where e± and e, are the unit vectors perpendicular to no depicted in Figs. 6.2.7 
and 9.3.3. In the presence o f  dislocations, v =  V u  will have a singular part 
satisfying
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V  x v =  b(x) =  ] T  f  d l ^ j p - d K d M [ x x(l) -  x], (9.3.68)
a

where b(x) is the dislocation source whose form  is identical to  th a t o f  m(x) in 
Eq. (9.3.20) with 2%ka replaced by the Burgers vector com ponent ba =  dkx along 
z. The direction o f  b(x) is along the tangent vectors dxx(l)/dl  to the dislocation
cores ra ther than  along the Burger’s vector, which point along z. In addition, v
will have an analytic longitudinal part V/i. Thus, in Fourier space, we have

v(q) =  +  ϊΦ·  (9.3.69)
<?2

From  Eq. (9.3.65), q2h =  —iq · <5n and

q2 q2

Using this expression for v in Eq. (9.3.66), we can solve for δη±  and 5nt in terms 
o f  b:

* / \ . tj /^q χ  b>\  l<5n,(q) =  - i B
Q2 J t K t(q) +  B

<5n±(q) =  ^  x * , , , · (9.3.71)
V <12 J ± K ±(q) +  B(q]]/ q ) 2 K

We now have expressions for v and <5n in term s o f  b. These can be used in
Eq. (9.3.52) to obtain the dislocation energy as a function o f  b. To cast our final
result in its m ost useful form, we use the fact tha t q · b =  0 and introduce the
com ponents o f  b perpendicular to q. Let

-  _  x e' _  4-i-_no _  i [ e± (9.3.72)
| q x e, | q q 

The vectors no, ep, e± and e, are shown in Fig. 9.3.3. The vectors e, and ep span 
the space perpendicular to q, and we can decom pose b as

b(q) =  eA (q ) +  ePbP(q). (9.3.73)

It then follows tha t

^ 5 1  =  epbt(q) -  etbp(q). (9.3.74)

The com ponents bp and bt measure, respectively, the screw and edge com ponents 
o f  b. This can be seen as follows: For a screw dislocation, b is parallel to no, and 
all spatial variation is in the plane perpendicular to  no- In this case, q · no =  0, 
ep =  no and b =  bpep =  bpno- For an edge dislocation, b is perpendicular to no, 
and q (specifying the direction o f  spatial variation) is perpendicular to b. Thus, b 
m ust be parallel to  e,, or b =  btet.

We can now use Eqs. (9.3.65), (9.3.66) and (9.3.70) to solve for u(q) in the 
presence o f  dislocation sources. For example, if  there is a single unit strength 
edge dislocation at the origin, b(x) =  dey5(x)5(z)  if  no is along the z-axis. In 
this case, q\\ =  qz, q± =  qx, and, from  Eq. (9.3.65), q2u =  —iq±5n±.  Then, using
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t i n n 0 - e p  > b n A

(b)

Fig. 9.3.3. The vectors no, e(, ej. and ep (a) for general q, (b) for a screw 
dislocation with b parallel to no and q perpendicular to no, and (c) for an 
edge dislocation with b parallel to e, and perpendicular to no and with q 
perpendicular to b.

Eq. (9.3.71) for δη±,  we obtain
W ±  dBu(q) =

q2 q ^ K t f l + K i q h + B q 2

~  d ~  2 Λ τ τ » (9·3·75)q± q2 +  k \ q \

where X\ =  { K \ / B ) [/1. The final form  o f this equation provides the dom inant 
large | χ  | (| χ  |>  I 3) limit for u(x). Using this form  to calculate u(x), we find

Vxu(x) =  δηχ(χ) =  ^  ^  ^ 1/2sg n (z )ex p (-x 2/(41i I z |)) (9.3.76)

for an edge dislocation at the origin. The strain is a m axim um  along the parabolas 
ζ =  + λ \ χ 2 /Α, as shown in Fig. 9.3.4.

The general expressions for δη in terms o f b perm it us to  calculate the disloca
tion energy. After some tedious bu t straightforw ard algebra, we find

F  =  I J  d3 x d 3 ^ b t(x)Uij(x -  x ')fy(x') +  Ee, (9.3.77)

where E c is the core energy proportional to the total length o f  dislocation lines 
and

f i ,

with

Uij(*) =  J  ^ 3 ^ (q)e‘q X (9·3·78)

T J  I \ _  o f ___ ^μ(<?±Α?||)2 +^3
y(q) ~~ V [̂ 1 ( « χ / « ι ι  ) 2  + w  + B  e"e'7

1 K 2 q ± + K 3q^ \

+  ̂ ( K 2 q l + K 3q2) +  B e±ie±]J  

=  Ue(x)etietj +  Us(x)e±ie±j . (9.3.79)
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(a) (b)

Fig. 9.3.4. (a) An edge dislocation in a smectic liquid crystal showing the 
parabolic regions of maximum strain, (b) A pair of edge dislocations in a 
smectic. When their cores are separated along the z-direction, their regions 
of maximum strain overlap and their interaction energy is the greatest.

The functions t /e(x) and  t /s(x) are, respectively, the interaction potentials for 
edge and  screw dislocations.

Eq. (9.3.79) gives bo th  the elastic energy o f  a single dislocation and the in
teraction energy between dislocations. Consider, for example, the single screw 
dislocation discussed a t the beginning o f this section. In  this case, b(x) =  no<52(x±), 
and

y i :
/ L  =  i«P  I  ^ U . U h  =«,<IL>

2  Jo (2 π )2 q \  +  λ2
-d B  )

=  ~  ln (λ2 /α),  (9.3.80)

where in the last equation we took λ 2 >  a. This result agrees with our previous
calculation [Eq. (9.3.64)] (recall th a t we set B =  D). A similar analysis for
the edge dislocation yields the same result provided A3 =  (K 3 / B ) 1 / 2 >  a. The 
interaction potential for parallel screw dislocations dies off exponentially for 
separation I χ  I »  λ2\

Us(p) =  d2B J f 0( p ^ 2), (9.3.81)
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where p  is the distance between dislocations. The interaction energy between edge 
dislocations has a m ore interesting form. For large x, it dies off only algebraically 
for x parallel to n0:

l /e(x) *  \ β ά 2 (-A -Λ '  exp , (9.3.82)
4 \ π  | z | /  \  41i | z _

where z is the com ponent o f x parallel to n0 and  x is the com ponent o f x 
perpendicular to  n0. Thus, the interaction between edge dislocations whose 
separation vector is parallel to no is m uch stronger than  between those whose 
separation vector is perpendicular to  no- This is because each dislocation produces 
a m axim um  strain along z, as shown in Fig. 9.3.4.

9.4 Vortex unbinding and the Kosterlitz-Thouless 
transition

1  Vortices and  the spin-wave stiffness

We have seen tha t vortices are topologically stable excitations o f the ordered
phases o f systems with a continuous 1/(1) symmetry. These excitations are 
distinct from  spin-wave excitations in which the phase o f the superfluid velocity 
vs rem ains longitudinal (i.e., proportional to  the gradient o f a scalar function). 
The m agnitude | ψ | o f the order param eter goes to  zero a t the core o f a vortex. 
Thus, vortices represent a type o f am plitude fluctuation reducing the average
m agnitude o f the order param eter. A sufficiently large num ber o f vortices can
destroy long range order altogether, and  a therm ally activated proliferation of 
vortices can lead to  a phase transition to the high-tem perature disordered phase. 
Because there is always a positive energy cost Ec associated with the creation of 
the core o f the vortex, therm ally excited vortices in therm al equilibrium  always 
contribute term s proportional to  exp(—Ec/ T )  to the partition  function. These 
terms, in contrast to  those arising from  spin waves or am plitude fluctuations in 
the field theories of C hapter 3, have essential singularites in a t T  =  0.

Vortices reduce the spin-wave stiffness as well as the order param eter amplitude. 
They are mobile degrees o f freedom  tha t arrange themselves so as to minimize 
the free energy o f  any im posed m acroscopic gradient o f the phase o f the order 
param eter: they screen and  reduce the energy o f elastic distortions. To see how 
this comes about, we will calculate the free energy o f an  xy-model with vortices in 
which the phase θ(χ) o f the average order param eter (tp) has a uniform  gradient. 
Let 9(x) be the phase o f the fluctuating field ψ (this is the no tation  o f Sec. 6.1). 
The partition  function for a system in which 0(x) is spatially uniform  can be 
calculated by im posing boundary  conditions th a t 9(x) be zero a t the edges o f the 
sample. Thus, though 9(x) fluctuates, its volume averaged gradient is ze ro :

Ω-1 J  ddx {V 9 (x ) )  =  Ω-1 J  dS{9(x)) =  0, (9.4.1)
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where the final integral is over the surface o f the sample and Ω is the volume o f 
the sample. To calculate the energy associated with a spatially uniform  gradient o f 
Θ, we let 9(x) =  9'(x) +  v · x, where S' is constrained to  be zero on the boundaries. 
Then,

V 0  =  Ω-1 J  Λ (  V S '(x) +  v) =  v. (9.4.2)

The m acroscopic spin-wave stiffness p f  renorm alized by vortex and  other fluc
tuations is the difference in free energy between the system with v Φ 0 and  tha t 
with v =  0:

F ( v ) - F ( 0 )  =  ^ 2 p sV .  (9.4.3)

A t low tem peratures, the xy-H am iltonian t f  is a function o f  the “velocity” 
vs =  V 9(x). The microscopic angle variable 5 can be decom posed into an 
analytic p art 9a and a singular part 9sjng arising from  vortices. Then the velocity 
can be written as the sum o f a longitudinal part v| =  V 9 a and a transverse part 

=  V 5 sjng determ ined by the density o f vortices via [Eq. (9.3.17)]:

vs =  v|  +  v f ,  V  x v]J =  0, V  · v f  =  0. (9.4.4)

t f  consists o f a “kinetic energy” part (Eq. (6.1.1) with vs replacing V 0(x)) 
quadratic in vs and  a p art independent o f vs. W hen a uniform  average gradient is 
imposed, vs =  vf +  v +  v^, where it is understood tha t the angle 9a(x) determ ining 
v! is zero on the boundaries so th a t the spatial average o f vf is zero in every 
configuration o f the system. The free energy o f a system with a uniform  gradient 
o f the m acroscopic phase is

F(v) =  - T ln T r e x p [ - J f ( v ) /T ] ,  (9.4.5)

where

=  \p *  J  ddx(vl +  v +  v f ) 2 +  t f ' .  (9.4.6)

H ere p s is the bare spin-wave stiffness unrenorm alized by vortices, and  H'  is 
independent o f vs. Thus, ignoring t f " ,

F(v) =  ^ Ω ρ &\ 2

- T l n T r e x p [ - J f ( v  =  0 ) / T ] e x p | - ( p s/T )  J  Λ [ ν · ν 5( χ ) ] |

=  ^ p sv2 - l ( p s2/T )  J d dxddx ' (vsi(x)vsj (x ,))vivj (9.4.7) 

+F(  0) +  0 (v 4).

As discussed above, the boundary conditions we have im posed imply th a t the 
spatial average o f vf is zero for every configuration appearing in the partition  
function trace. Thus, the longitudinal part o f vs does no t contribute to the integral 
in Eq. (9.4.7). Then, using l i m ^ o i v i i q ) ^ —q)) ~  Sy — qfij ,  we obtain
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(see A ppendix 9A for further details). This equation shows tha t therm ally excited 
vortices, which are responsible for a nonvanishing transverse part o f  vs, lead to 
a reduction in the m acroscopic spin-wave stiffness psR. It can be reexpressed in 
term s o f the vortex source function m(x) using Eq. (9.3.22):

p f  =  P s ~  ( J I T f )  T ~ l p s2 ^ ( m ( q )  · m (-q )) , (9.4.9)

where we used the fact th a t q · m(q) =  0. Finally, it should be rem em bered 
th a t vj ■ =  0  so th a t vj and  are completely decoupled in Thus,
(v|(q) · vj (—q)) =  T / p s independent o f  the density o f vortices. Thus, Eq. (9.4.8) is 
often written as

p f  =  γ  J d dx  ^(g"(x) · g"(0)) -  ' g^O ))^  , (9.4.10)

where g(x) ξ  p svs(x). The dem onstration th a t the spin-correlation function is 
controlled by this renorm alized p f  appears in Appendix 9A.

2 Vortex unbinding in two dimensions -  the 
Kosterlitz- Thouless transition

As we saw in C hapter 6, systems with a broken continuous symmetry in two 
spatial dimensions do no t have long-range order. O rder param eter correlation 
functions a t low tem perature in systems with xy-symmetry do, however, die off 
algebraically ra ther than  exponentially, as they would in  completely disordered 
high-tem perature phases. One can, therefore, ask w hether there can be a transi
tion from  an algebraically ordered low -tem perature phase to a disordered high- 
tem perature phase in xy-models, i.e., a transition from  quasi-long-range order 
to  disorder. The renorm alization group applied to  the nonlinear sigma model 
(Sec. 6.7) predicts tha t the transition  tem perature o f «-com ponent Heisenberg 
models tends to  zero as d —> 2 for all n >  2. Thus, these models are completely 
disordered (exponential decay o f order param eter correlation) in two dimensions 
except a t T  =  0. The nonlinear sigma model gives an indeterm inate result for 
the transition tem perature o f the tw o-com ponent xy-model in two dimensions. In 
addition, there are topological point defects in  two-dimensional xy-systems but 
no t in Heisenberg systems with n >  3. It is thus natural to investigate whether 
therm ally excited vortices m ight be responsible for a transition from  algebraic 
order to disorder in two-dimensional xy-systems.

A simple heuristic argum ent due to  Kosterlitz and Thouless (1973) indicates 
how vortices can lead to a second-order phase transition  in the xy-model and  to  a 
rem arkably accurate estim ate o f the transition tem perature. We calculated in the 
preceding section th a t the energy o f a single vortex o f unit strength in a sample 
o f linear dim ension R  is π ρ8 ln(J?/a), where a is a short distance cutoff o f order 
the core radius. The core can, o f course, be anywhere in  the sample. It therefore

p f  =  Ps -  { d P̂ \ )T  j  d*x(vH x) · v^O)) (9.4.8)
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carries an  entropy \n{R/a)2. The free energy o f an xy-system with a single vortex 
is, thus,

W hen T  < n p s/2,  F  is clearly minimized if  there is no vortex; if  T  > n p s/2,  F  
is m inimized when there are vortices. Since vortices destroy phase rigidity, it is 
reasonable to identify the tem perature,

at which it is first favorable to  produce vortices with the transition tem perature 
from  the algebraically ordered to the disordered phase. In fact, as we shall see, 
this is the equation for Tc provided tha t ps is the fully renorm alized spin stiffness 
a t Tc.

We will now turn  to  a m ore detailed analysis o f the two-dimensional xy-model. 
We begin by recasting the vortex energy o f Eq. (9.3.23) in a form  m ore convenient 
for the special case o f two dimensions. The contours enclosing vortices m ust be 
in the two-dimensional xy-plane so tha t the source function m m ust po in t in the 
direction ez norm al to the xy-plane. We can, therefore, define a scalar vortex 
density nv(x) via

where it is understood th a t x is a vector in the xy-plane. The Laplacian G reen 
function in  two dimensions is

where C is a constant (see Eqs. (6.1.24)-(6.1.26)). The first term  in this equation 
diverges with the sample size. It leads to  a contribution,

to the vortex energy o f Eq. (9.3.23). Thus, in an  infinite sample, there is an infinite 
energy cost associated with deviations o f the total vorticity, Σ  Κ., from  zero, and 
one need only consider states in which the total vorticity is zero. In this case, the 
H am iltonian becomes

is the spin-wave part o f the reduced H am iltonian arising from  the longitudinal 
p art o f vs with K  =  ps/ T ,  and

F =  E — T S  =  (nps -  2T) \n(R/a) . (9.4.11)

Tc =  n p s/ 2 , (9.4.12)

m(x) =  2πβζην(χ), (9.4.13)

(9.4.14)

(9.4.15)

(9.4.16)

where

(9.4.17)

yjk
高亮
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is the vortex p art o f the reduced Ham iltonian. The last term  in this expression
is the core energy. The integral over positions in Eq. (9.4.18) contains a short
distance cutoff preventing two vortices from  occupying the same position in 
space. Since there is a m inim um  distance between vortices, it is often convenient 
to  restrict the vortices to lie on a lattice with lattice param eter a. In this case, 
J t v / T  becomes

t f v / T  =  - π Κ  ]Γ /ί,/ί,, ln(|R, -  R r | /a)  +  (Ec/ T ) J 2 kl  (9-4.19)
U' i

where Ri are vectors in the lattice. A part from  the core contribution, J f y  
is identical to the H am iltonian o f a two-dimensional Coulom b gas with point 
charges o f charge ka and charge density nv(x). The constraint Y ^ k a =  0 is thus 
the constraint o f charge neutrality.

The equation for the reduced renorm alized spin rigidity K R =  p sR/ T  can be 
expressed in term s o f the vortex density using Eqs. (9.4.8), (9.4.9) and (9.4.13) as 

K R =  K -  (2π)2 Κ 2 lim (nv(q)nv(—q ))/q 2
q-> 0

=  lim K R(q). (9.4.20)
q -> 0

The ratio  o f K R(q) to K  is the inverse wave num ber dependent dielectric constant 
for the C oulom b gas described by Eq. (9.4.19):

e_1 (q) =  (9.4.21)

The last two equations will be o f  prim ary use in w hat follows.
A t low tem peratures, when the core energy is large com pared to  T,  the num ber 

o f vortices will be small, and  physical properties can be calculated in a power 
series in the small fugacity

y  =  e~EJT. (9.4.22)

In  particular, the vortex density correlation function appearing in Eq. (9.4.20)
can be calculated in a power series in y. We first observe tha t limi _o nv(q) =  0 
because o f the constraint o f charge neutrality. Thus,

(M q )M -q ) )  =  q2 C2 +  0 ( q 4), (9.4.23)

where

C2 =  — lim -1 - [  d2 xd 2 x , (nv(x)nv(x,))(x — x ')2
q->0 4 Ω  J

=  - ^ E ( R i - R i ' ) 2(fci/ii'>; (9.4.24)

we have employed the no tation  o f the lattice H am iltonian in the last equation.
The charge correlation function in  this equation is easily evaluated as a power 
series in  y  using t f v . To lowest nontrivial order in y, there is a single +  vortex 
pair. The only two-vortex term s th a t contribute to (kikv) are those with /q =  +1, 
ky =  — 1 or k\ =  —1, kv =  +1 and vorticity zero a t all o ther sites in bo th  cases. 
Thus, to lowest order in  y,
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(kikv) =  —2y2[| R, — R,< | /α]~2πΚ (9.4.25)

This expression can now be used in Eq. (9.4.20) for K R. Since we are interested 
in low tem peratures where K  is large, we will express this result in term s of 
K ~ l ~  T  rather than  K.  Keeping only the lowest order term  in K ~ l , we obtain

This expresses the renorm alized spin rigidity in  term s o f the unrenorm alized 
stiffness K ,  the vortex fugacity y and  the short distance cutoff a. A t low 
tem peratures, when Κ  >  2 /π , the integral on the right hand  side converges and 
there is a correction to K j 1 o f order y 2 =  e~2Ec/T. W hen, however, Κ  <  2 /π , the 
integral has a large r  divergence, and  perturbation theory breaks down.

The difficulty associated with the divergence a t small K  can be overcome by 
employing a renorm alization procedure first used by Jose et al. (1977). The 
integral in Eq. (9.4.26) is broken up into two p a r ts :

The non-singular small-r part o f this integral is evaluated and incorporated 
into the constant K ~ l . This procedure can be carried out order by order in  a 
perturbation  series in y even though the coefficient o f y 2 is formally divergent. 
This leads to  a new equation for K R,

Finally, the cutoff in the rem aining integral can be rescaled (aesl —> a) to yield an 
equation for K ^ 1 identical to Eq. (9.4.26) bu t with shifted and  rescaled param eters 
K  and  y :

The exponent in the integral in Eq. (9.4.30), ra ther than  being proportional to  K  
as simple algebraic m anipulations would suggest, is proportional to  K' .  It can be 
shown th a t y4 corrections to the equation for K R lead to this replacement. The 
above equations are valid for arb itrary  rescaling factors esl and, in particular, 
for δ I —* 0. The equations for K '  and y'  can thus be converted to  differential 
renorm alization equations,

(9.4.26)

(9.4.27)

(9.4.28)

where

(9.4.29)

'°° dr /Γ\3-2πΚ '
(9.4.30)

where
y  =  e (2- π Κ ) δ Ι (9.4.31)

^ = 4  Tr3y2(/) +  0 [y 4(/)], (9.4.32)

yjk
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Fig. 9.4.1. A 5 x 5 array of spins containing a Λ— vortex pair. At the length 
scale a of the lattice spacing, the reduced rigidity is K.  At a length scale of 
5a, the effective rigidity K  (5a) has been reduced by the vortices.

=  [2 -  nK(l)]y(l) +  0[ y \ l ) ] .  (9.4.33)

The completely renorm alized reduced stiffness can, by construction, be expressed 
in term s o f K(l)  and  y(l):

K R[ K , y ] = K R[K(l),y(l)]. (9.4.34)

This equation expresses the observable K R in term s o f rescaled param eters and 
is precisely a realization o f the scaling relations discussed earlier in C hapter 5.

Before analyzing the recursion relations, Eqs. (9.4.32) and (9.4.33), let us 
consider w hat physics they represent. The cutoff a is the m inim um  distance 
between vortices and also the lattice param eter o f our lattice model. By increasing
a, we increase the m inim um  distance between vortices and in effect thin degrees of 
freedom  in a m anner analogous to the real space renorm alization group discussed 
in C hapter 5. Consider the configuration o f spins shown in Fig. 9.4.1. A t the 
center o f this 5 x 5  array  o f spins, there is a vortex-antivortex pair. The reduced 
stiffness K  =  K( l  — 0) is tha t m easuring the energy o f angle differences between 
nearest neighbor sites separated by a distance a. The stiffness a t length scale 5a 
is reduced because o f therm ally excited vortex pairs with separations less than 
5a. This explains the increase in  K ~ l(l) with increasing I. The vortex pair present 
a t length scale a is no longer present when the system is viewed a t length scale 
5a. The line integral o f vs around  the perim eter o f the 5 x 5  configuration is 
zero. Thus, if  vortices exist in closely bound pairs, the density o f vortices a t the 
longer length scale is less than  it is a t the shorter length scale. This explains the 
decrease in y(l) with increasing I when K(l)  >  2 /π . W hen K(l)  >  2 /π , y(l) grows.
This can be explained by the presence o f unbound vortices distributed uniformly
throughout the sample. W hen vortices are unbound, their presence continues 
to  be felt when the length scale is changed. In the C oulom b analogy, unbound

yjk
高亮

yjk
高亮
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Fig. 9.4.2. Renormalization flows for the Kosterlitz recursion relations. The 
dashed line is a line of initial conditions as a function of T. The critical 
temperature is determined by the crossing of the dashed line and the 
separatrix terminating at π/2. The flow originating at the dot on the dashed 
line is for a temperature T  > Tc.

vortices becom e free charges. Thus, the transition from  decreasing vortex fugacity 
y(/) to increasing y(/) th a t occurs a t K(l)  =  2 /π is a transition from  an insulating 
state with charges bound in “molecules” (vortex pairs) to  a conducting plasm a 
with mobile charges bu t charge neutrality.

The equations for K(l)  and y(/) can be integrated analytically (see A ppendix 
9A) in the vicinity o f the fixed point K * =  2 /π , y* =  0 and numerically away 
from  the fixed point. The resulting flows are shown in Fig. 9.4.2. For small y, and 
K ~ l <  π /2 , all flows are towards y(l) =  0 and a finite value o f K ~ l , i.e., toward 
a state with a finite renorm alized rigidity and  no unbound vortices a t the longest 
length scales:

K R =  lim K R[K(l),y(l)] =  lim K(l).  (9.4.35)
/—>00 /—>00

There is a separatrix passing through the critical po in t y(l) =  0, =  π /2 .
Points above this separatrix flow towards large values o f /C-1 and  large values of 
y, i.e., tow ard the phase with unbound vortices. Points exactly on the separatrix 
with /C-1 <  π /2  flow to the critical point. The starting point o f flows is on 
the line y =  exp(—Ec/ T )  =  exp(—E cK / p s). The transition tem perature is then 
determ ined by the intersection o f this line with the separatrix. Since the flow for 
T  < T C is towards the line y =  0, spin correlations at the longest wavelengths are 
described by the simple spin-wave theory o f Sec. 6.1, and we conclude th a t the 
spin correlation function dies off algebraically,

with η(Τ )  =  (2nKR(T))~ l , and  that

G(x) ~ | χ  Γ "(τ), (9.4.36)

lim K R =  2 /π . (9.4.37)
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Fig. 9.4.3. Specific heat of an xy-model. There is an unobservable essential 
singularity at Tc and a nonuniversal maximum above Tc associated with the 
entropy liberated by the unbinding of vortex pairs.

Thus, the exponent η(Τ)  in the power law for G tends to a universal value as 
T  -*  T~:

lim η(Τ)  =  \ .  (9.4.38)
τ->τ~ 4

Exactly a t T  =  Tc, there is a logarithm ic correction to  this result (see Appendix 
9A):

(9.4.39,

Experim ental observation o f such a logarithm ic correction would be difficult.
The solution o f the Kosterlitz recursion relations for T  near Tc yield an 

exponentially divergent correlation length,
ξ ( Τ ) / α  ~  ei,'/ l7 '-rc|1/2̂ (9.4.40)

and  corrections to p sR,

PsR(T)  «  PsR(77)[1 +  b(T  -  Tc)1' 2}. (9.4.41)
The coefficients b and  b' are nonuniversal; their product bb' =  2π is, however, 
universal. The correlation length sets the scale for the density o f unbound vortices 
o f a given sign in the high-tem perature phase and  for the free energy density:

(n„+(x)) ~  Γ 2, /  ~  Γ 2· (9.4.42)

N ote the essential, ra ther than  power-law, singularity in bo th  of these quantities. 
The specific heat obtained from  the above free energy also has an essential 
singularity:

c t Dg ~  Γ 2· (9.4.43)

This singularity is very weak and is essentially unobservable. There is however, a 
large nonuniversal peak in the specific heat associated with the entropy liberated 
by the unbinding o f bound vortices above the Kosterlitz-Thouless tem perature, 
as shown in Fig. 9.4.3.
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Above Tc, there are free mobile charges interacting via a C oulom b potential. 
W hen the density o f these charges is sufficiently high, the properties o f the 
Coulom b gas o f m obile charges can be calculated quite accurately using mean- 
field theory for the lattice H am iltonian o f Eq. (9.4.19) (which is a type of 
Debye-Hiickel theory discussed in  Sec. 4.8 (Problem 9.7)). The vortex density 
correlation function in this approxim ation is

C"  4  ( " ' ( * ' ( " ' ) > - B T H i W ? '  (9A44)
where

B 1 =  ^ 2 k 2 {nvk) =  {k2} 
k

V , k 2 e~Eck2/T T  
^  e~Eck2/T ~  Y c- (9A45)

The simple high tem perature final form  for B  is valid when there are unbound 
vortices with all vorticities. This equation implies that, in the high-tem perature 
limit, vortex correlations can be described by treating nv(x) as the independent 
fluctuating field in t f  v '■

t f v / T  = \  J  7 ^ 7  &  +  (4n2K / q 2)]nv(q)nv(-q )·  (9.4.46)f̂ —3 —  TR -L- ( Α π 2 ^  t » 2

{ In ) 2
Using Eqs. (9.4.44) and (9.4.20), we obtain a q-dependent stiffness:

K M  =  b v ) + Z k v - ) \ ^ Y  (9A47)
where Γ is an  appropriate m atching point well into the high tem perature end of 
the renorm alization group trajectory. This relation implies th a t the wave num ber 
dependent dielectric constant for the two-dimensional Coulom b gas is

^ T » = ^ r )  =  i n k ? ·  (9A48)
where λ 8 ~  ξ is the screening length. This dielectric constant leads to  the screened 
C oulom b potential V(q)  =  1 /[q2 e(q)] =  l / ( q 2 +  / 2), characteristic o f a m etal with 
mobile charges.

3 Superf luid helium f i l ms

Superfluid helium is one o f the cleanest examples o f a system with xy-symmetry, 
and  helium  films should undergo a Kosterlitz-Thouless transition from  the super
fluid to the norm al fluid state. A slight m odification o f the results just derived 
is necessary before they can be applied to helium. The superfluid velocity vs is 
equal to  (7i/m)V0 rather than  simply V 0. W ith this definition, vs has units o f 
velocity, and the rigidity m odulus p s has units o f mass per unit volume (or area 
in two dimensions) and is called the superfluid density. The elastic energy is thus

* - i /  ddx p sv2 =  1p s(h /m )2 J  ddx (V e )2, (9.4.49)

yjk
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Fig. 9.4.4. (a) Schematic representation of the superfluid density ps{T) as a 
function of T  for films of varying height, substrate, etc. All curves terminate 
on a universal line with slope given by Eq. (9.4.49). (b) ps(T~) as a function 
of T~ as determined by third sound and torsion oscillator measurements. 
[D.J. Bishop and J.D. Reppy, Phys. Rev. Lett. 40, 1727 (1978).]

and  the predictions o f  the Kosterlitz-Thouless theory derived above can be applied 
to helium  films provided ps is replaced by p s(h/m)2. The m ost striking prediction 
o f the Kosterlitz-Thouless theory is the universal value o f K r (T~ )  [Eq. (9.4.37)]. 
W hen applied to helium films (Nelson and Kosterlitz 1977), this relation becomes

Ps(Tc ) =  =  3.491 x lO -’gcm -2* : - 1, (9.4.50)
Tc nh kg

implying that, though the values o f ps a t T  =  0 m ight have widely different 
values in different films, the curves p s(T )  should all term inate at Tq on a line 
with universal slope, as shown in Fig. 9.4.4a.
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The best determ inations o f ps( T )  come from  m easurem ents o f velocity o f third 
sound and  from  the response o f torsion oscillators in which helium coats the 
surface o f m ylar films. Both o f these m easurem ents are done a t nonzero frequency 
ω and  m easure a frequency dependent superfluid density ρ %(Τ,ω) ,  ra ther than  the 
zero frequency density we have been discussing. Thus, these m easurem ents m ust 
be extrapolated to  ω =  0 to  yield the results shown in Fig. 9.4.4, which show a 
slope o f p s(T ~)  versus T ~  equal to 0.96 o f the value predicted by the Kosterlitz- 
Thouless theory. The theory o f the dynam ics o f two-dimensional helium films is 
discussed in  detail by A m begaokar et al. (1980).

Third sound is a propagating m ode (Atkins 1959; A tkins and  Rudnick 1970) 
in superfluid helium  films arising from  the coupling between fluctuations in 
the two-dim ensional mass density p 2 and  the superfluid velocity vs. The mass 
density p 2 =  pd  is the product o f the three-dim ensional mass density p  and 
the thickness d o f the film. The film is essentially incompressible, so th a t p 
is a constan t and  density changes are controlled by changes in thickness. The 
hydrodynam ic equations governing the propagation  o f third sound are easily 
derived on following the procedures discussed in C hapter 8. Because the substrate 
can absorb  m om entum , the m om entum  o f the film is no t conserved. Thus, only 
the energy and mass o f the film are conserved variables. In the superfluid phase, 
the superfluid velocity is a broken-sym m etry elastic variable, and  the fundam ental 
entropy relation is

where s is the entropy per unit area, e is the energy per unit area, and  h =  
p sys. Both the chemical potential per unit m ass a and  the superfluid density ps 
depend on film thickness. The dom inant d dependence o f a in thin films arises 
from  the van der W aals attraction  o f the helium  atom s to  the substrate. As a 
result α =  a0 — Hd~3, where ao is the chemical potential o f the bulk and  H  is 
the H am eker constant. As in  bulk helium, the reactive part o f the “curren t” 
associated with vs is V a. The therm al coupling between the substrate and the 
film is such th a t processes are essentially isotherm al, implying th a t the energy 
conservation equation can be ignored. The rem aining hydrodynam ical equations 
are

where Γ  and  γ are dissipative coefficients. N ote tha t the m om entum  density g 
has a dissipative p art —T V S  no t perm itted when m om entum  is conserved. These 
equations lead to  a propagating m ode with velocity

Td s  = de — adp2 — hs · dvs, (9.4.51)

J j l  =  -  V  ■ g =  -  V  ■ hs +  T V 2S, 

^  =  — V S  +  y V V  ■ hs, (9.4.52)

(9.4.53)
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where χ 1 =  da/dpi  =  3 H / p d 4. Thus, the velocity o f third sound is determ ined 
by p s(T).  Above Tc, thickness fluctuations are diffusive with frequency ω =  
- ϊ Γ χ - ν  =  (3Γ Hd~4 )q2.

The hydrodynam ic equations [Eqs. (9.4.52)] are valid a t the longest wavelengths 
and  lowest frequencies. A t wavelengths com parable with the average spacing 
between vortices in  bound pairs, ρ &(ω) will depart significantly from  its static 
value. The detailed dynam ical theory (A m begaokar et al. 1980) shows that 
ρ %( Τ ,ω )  =  p s(T )/e(T ,co), where ε ( Τ ,ω )  is the frequency dependent dielectric 
constant o f the C oulom b gas o f vortices. The im aginary p art o f e(T,co) grows as 
T  —> T~ ,  m aking it difficult to m easure the third sound velocity determ ined by 
the real part o f  p s( T , ω) near Tc.

In torsion oscillator experim ents (Bishop and  Reppy 1978), a m etal cylinder of 
radius R  is w rapped with m ylar sheets th a t form  the substrate for the helium  film. 
There are m any layers so th a t the total film surface area A  is quite large. The 
cylinder is attached to  a torsion rod th a t is externally driven with a torque τ(ω) 
a t frequency ω. The com bined mass o f the cylinder and  the helium  film is M.  
The am plitude and phase o f the angular displacem ent Θ (ω) are detected. Only 
the norm al com ponent o f the superfluid contributes to  the m om ent o f inertia,

Ι ( Τ , ω )  =  R 2[M — A p s(T,a>)], (9.4.54)

o f the cylinder. The dynam ic response function o f the cylinder-helium system is 
thus

χ ίω ) =  ®i °.i = ---------------- \----------------  (9 4 55)
Ά  ’ τ(ω) [ -c o2 I(a>) + i ( o y + k R 2y  ( ’

where k R 2 is the torsion constant o f the torsion rod. The resonant frequency ω κ 
and  dam ping γϋ(ω)  are determ ined, respectively, by the real and im aginary parts 
o f the complex frequency a t the pole o f this function (see Sec. 7.2). If  we assume 
M  »  p sA,  the shift in period P =  2π/ωκ  due to the presence o f the superfluid is

Δ Ρ  =  ω |ο  -  ω 2 =  ^  {T)Re[e- l { T  (ORo)l (9 4 56)
P0 2cozro M

where coro =  ( k / M ) 1 / 2  is the frequency o f the oscillator when all o f the helium 
rotates. The change in  the inverse quality factor, QTl =  γ κ(ω) /ωΙ(ω),  is

AQT 1 =  QT1 -  Qo1 =  ^ P s ( T ) l m [ e - l (T,a>)], (9.4.57)

where Qo =  {coMR2)/y  is the quality factor when all o f the helium  is norm al. The 
period shift and  quality factor for a helium  film with a transition tem perature of 
1.215 K  are shown in Fig. 9.4.5 along and  com pared with the dynam ic theory of 
A m begaokar et al. (1980). N ote th a t A P  is a sm ooth function near Tc and  goes 
to  zero a t a higher tem perature than  the zero frequency superfluid density.
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Fig. 9.4.5. The reduced period shifts and inverse quality factor for a 
superfluid film with transition temperature 1.215 K [D.J. Bishop and J.D. 
Reppy, Phys. Rev. Lett. 40, 1727 (1978)]. The solid lines are fits using the 
dynamic theory of V. Ambegaokar, B.I. Halperin, D.R. Nelson, and E.D. 
Siggia [Phys. Rev. Lett. 40, 783 (1980)], and the dashed curve is the result of 
a static theory.

9.5 Dislocation mediated melting

As we have seen in C hapter 6 and  in this chapter, two-dimensional xy-models 
and solids have m uch in common. They bo th  have fluctuation-induced quasi- 
long-range order (QLRO) rather than  true long-range order, and  they bo th  have 
topological defects —  vortices and  dislocations —  which can reduce local rigidity. 
I t is, thus, natural to  expect two-dimensional solids to exhibit a second-order 
dislocation unbinding transition, analogous to the vortex unbinding transition 
o f the xy-model, a t which the shear m odulus vanishes. We should, however, 
expect differences between the two systems arising from  the vector nature of 
the displacem ent field u. O ur experience from  three dimensions is tha t solids 
are quite different from  xy-models. The form er undergo first-order transitions 
to hom ogeneous and  rotationally  isotropic liquids whereas the latter undergo 
second-order transitions to  the disordered phase. Indeed, mean-field theories and 
their fluctuation generalizations indicate tha t the direct solid-to-liquid transition 
is always first order. How then can there be a continuous transition out o f the
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Fig. 9.5.1. Possible pressure-temperature phase diagrams for spherical matter 
in two dimensions interacting via an attractive potential with a repulsive 
core. Solid, liquid, gas and hexatic phases are shown. Second-order 
transitions are represented by lines and first-order transitions by double lines. 
In (a), the transition from the solid to the hexatic phase is always continuous, 
whereas in (b) it is discontinuous at high pressure and continuous at lower 
pressure. In (c), there is no hexatic phase at all, and, as in three-dimensional 
systems, the transition from the solid to the liquid phase is always first order. 
[Adapted from D.R. Nelson, in Phase Transitions and Critical Phenomena, 
eds. C. Domb and J.L. Lebowitz (Academic Press, New York, 1983).]

two-dim ensional solid phase? The answer is tha t if  the transition from  the solid 
phase is continuous, it will be to  a hexatic liquid-crystalline phase with local 
six-fold bond-angle order ra ther than  to  an  isotropic fluid. The hexatic phase, 
like the the low -tem perature phase o f the xy-model, has Q LR O  and  melts to  the 
isotropic fluid phase via a disclination unbinding transition. Thus, the transition 
from  the solid phase to  the liquid phase can occur either directly via a first-order 
transition  or via a two step process with an intervening hexatic liquid-crystalline 
phase. The transitions from  the hexatic phase to the isotropic fluid and  from  the 
solid to the hexatic phase can bo th  be continuous. Possible pressure-tem perature 
phase diagram s are shown in Fig. 9.5.1. In  this section, we will outline the 
theory o f  dislocation m ediated m elting o f  two-dimensional solids. This theory is 
a generalization o f the Kosterlitz-Thouless theory due to H alperin  and Nelson 
(1978, 1979) and to  Young (1979), and is usually referred to as the K T H N Y  
theory.

Using generalizations o f  the techniques discussed in the preceding section, we
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can derive an  expression, analogous to Eq. (9.4.19) for the energy o f interacting 
dislocations (see Problem 9.8):

* « « ι τ  -  ~ Σ
8π

Kibi ■ by ln(| Ri -  R,/ | /a)  (9.5.1)

b, · (Ri -  Rr)br · (R, -  R,,)
—k 2------ +  y E l b'| R | - R f

where a is the lattice spacing and  bi is a dimensionless Burgers vector o f the form 
/qai +  mia2, where /q and  mi are integers and  ai and  a2 are primitive translation 
vectors o f the lattice. The coupling constants K \  and K 2 are equal to  K ,  the 
unitless Young’s m odulus for a two-dimensional solid [Eqs. (6.6.18) and  (9.3.51)]:

Κ ι - Κ 2 =  Κ =  ^ ή ί !±i>. ,9.5.2)
Τ  2μ +  λ

This energy differs from  the vortex energy o f Eq. (9.4.19) because b is a vector 
and because there is a second interaction term  depending on the angle between 
bi and Ri — R^.

Recursion relations for K(l)  and the dislocation fugacity y(l) can be derived 
by generalizations o f  the procedures outlined in the previous section. These 
equations lead to  flows similar to  those for the xy-model depicted in Fig. 9.4.2. 
The fugacity y(/) flows to zero for all K ~ l (l) <  1/(16π) and away from  zero for 
K ~ l (l) >  1/(16π). Thus, the melting tem perature TM is determ ined by

K ( T M) =  —  ■ (9.5.3)
71

T hroughout the solid phase, there will be a power-law decay o f spatial correlations 
according to Eq. (6.4.34) and (6.4.35). The decay exponent ηα depends on a 
different com bination o f Lam e coefficients λ  and  μ  than  does K.  Thus, recursion 
relations for λ  and  μ  are needed to  determ ine ηα· These depend only on K(l )  and 
y(/) and  can be integrated. Eqs. (9.5.3) and (6.4.35) imply tha t

n c ( T M) =  ^ 2  + σ2(7’) ] [3 -σ 2 (7 ’)], (9.5.4)

where σ2 =  λ / ( λ  +  2μ) =  (Β — μ ) / ( Β  +  μ) [Eq. (6.6.18)] is the two-dimensional 
Poisson ratio. Thus, ηα(Tm),  unlike the exponent η for the xy-model, is not 
a  universal quantity. The function (1 +  σ2)(3 — σ2) has a m axim um  value of
four a t the m axim um  value o f σ 2 =  1 perm itted by therm odynam ic stability.
The m axim um  value o f ηα(T m ) a t the first reciprocal lattice vector is, therefore, 
one-third. The tem perature dependences o f the shear m odulus for T  < TM and 
for the correlation length for T  > TM are similar to  those o f the helicity m odulus 
and  correlation length in the xy-m odel:

μ ( Τ )  =  μ( Τ Μ)( 1 + b \ T  — TM ?)  if  T  < TM,

ξ (Τ )  =  exp(b1 | T - T M Γ )  if  T  < TM,
(9.5.5)

where
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ra ther than  0.5 predicted for the xy-model.
Above the melting transition, there are unbound dislocations whose correlations 

can be described by a Debye-Hiickel theory, like tha t discussed in the preceding 
section, in  which the vector “charges” are treated  as a continuous vector field. 
W hen K i  =  K 2, the dislocation energy o f Eq. (9.5.1) in this approxim ation can 
be written as

v =  0.36963477... (9.5.6)

• ^ / Γ - ά Σ
q

2Ω ^ ' ) +  T  3ij Η Φ Α - ι ) ,  (9·5·7)

where qi =  qi/q and Ω is the sample area. The dislocation correlation function in 
the Debye-Hiickel approxim ation is

“  K t f  + 2 ~  +  2 ^ " '  (9 5 8)
Dislocations perturb  the bond angle field according to  Eq. (9.3.39), which in 
Fourier space is

0(q) = ■  b(q). (9.5.9)

N ote th a t only the longitudinal p art o f b contributes to  Θ. The contribution to 
J f  disc from  the longitudinal part o f b is

^disc =  ^ 2 ^ ^ ( T ) q 2 |0 ( q ) |2
q

=  d2 x K A( T ) ( V 0 ) 2, (9.5.10)

where

K A( T ) ™ 2 E ca2. (9.5.11)

Thus, the phase form ed by the unbinding o f dislocations in a two-dimensional
hexagonal solid has bond angle rigidity. I t is a hexatic liquid crystal with Q LRO  
in the bond angle order param eter ψ =  exp(6ίθ):

(V*(X)V(0)) H  x Γ 6(Τ), (9.5.12)

where
18 T

’l«( T ) - S 7 r ) '  ,9 '5' 13»
The hexatic phase can now melt via a disclination unbinding transition  identical
to  the vortex unbinding transition discussed in the preceding section.

1  E f fec ts  o f  a substrate

As we saw in Sec. 6.4, rare gas atom s such as K r or Xe adsorbed on graphite 
can form  a two-dim ensional solid. The coupling between the substrate and  the 
adsorbed atom s can be sufficiently weak such th a t the adsorbate lattice has a 
lattice param eter incom m ensurate with th a t o f the substrate. The adsorbate lattice
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will, however, always have a preferred orientation relative to tha t o f the substrate. 
This gives rise to  a term  in the adsorbate elastic free energy proportional to  the 
square o f Θ =  (dxuy — dyux)/2:

JC ei
- U '

x[luf; +  2/xu?· +  y(dxuy -  dyux)2]. (9.5.14)

The dislocation energy resulting from  this modified elastic free energy is identical 
to  Eq. (9.5.1) with

K i =

K 2 =

4a2
~T
4a^
T

μ(μ +  λ)
2/i +  λ  

μ(μ +  λ)

+ μ ι  
μ  +  

μγ
(9.5.15)

2 μ  +  λ  μ  +  λ
Again, recursion relations for K\(l),  K 2 (l) and  y(l) can be developed. The result 
is th a t the exponent v is a continuous function o f the ratio  ζ =  K 2( T μ ) / Κ χ (Τ m) 
equal to 2 /5  a t ζ =  0 and to 0.369... a t ζ =  1. The disordered phase above TM has 
bond angle oriented along the substrate determ ined preferred axis. The transition 
to  the disordered fluid breaks a discrete symmetry and is Ising-like.

2 Exper ime nts  and numerical  simulation

There are a num ber o f two-dimensional systems tha t m ight be expected to  exhibit 
the K T H N Y  melting transition. These include

•  free standing liquid crystal films such as those discussed in Sec. 9.2,
•  electrons on the surface o f liquid helium,
•  rare gases adsorbed on the surface o f graphite, discussed in  Secs. 2.9 and 6.4,
•  colloids o f micro-size polystyrene spheres or “polyballs”.

It has proven quite difficult to  establish unam biguously the existence o f a continu
ous solid-to-hexatic K T H N Y  transition  in  any o f these systems. Nevertheless, the 
observed transitions from  the solid phase on heating are often no t inconsistent 
with the K T H N Y  theory.

Thick liquid crystal films have bo th  three-dim ensional crystalline solid and 
hexatic phases (Sec. 2.7) and  transitions between them. Two-dimensional crys
talline phases with Q LR O  have been identified in X-ray scattering experiments 
(M oncton et al. 1982). Electron scattering also identifies a hexatic phase, as 
discussed in  C hapter 6. The transition from  the crystalline phase in two-layer 
films o f the m aterial 14S5 is, however, ab rup t and  strongly hysteretic, indicating 
a first-order transition.

A single layer o f electrons can be confined about 100 A above the sur
face o f  superfluid H e4 by the application o f an electric field norm al to the 
helium surface (Grimes and  A dam s 1979). The surface density ns is low enough 
( «  108 — 109cm~2) th a t the electrons behave alm ost completely classically. They 
repel each other with a 1/i? potential, and their properties can be characterized
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by a unitless param eter Γ  =  (e2 ^JnrQ/T). For Γ  above a critical value (i.e., 
a t sufficiently low tem perature or high density), the electrons form  a hexagonal 
W igner lattice. In  this crystalline phase, there are dynam ical modes which couple 
longitudinal phonons o f the electron lattice and  surface waves (ripplons) o f the 
helium  (Fisher, H alperin, and  Platzm an 1979). These m odes give rise to reso
nances in experim entally m easurable response functions. While these resonances 
appear rapidly as the system is cooled, there is no discontinuity in their frequency 
and  am plitude. In addition, no hysteresis is observed. These observations are 
consistent with a continuous m elting transition. The tem perature where the in
tensity o f  the phonon-ripplon resonance grows strongly corresponds to  a value 
o f Γ  =  Γ Μ =  137 +  15, which is consistent with th a t predicted by the K T H N Y  
theory.

X enon adsorbed on graphite was discussed in Sec. 2.9. X -ray scattering data  
from  the solid phase show a power-law peak in S(q) and  an  exponent ηο  
(Fig. 6.4.5) tha t is consistent with the K T H N Y  theory. The correlation length 
in the orientationally ordered fluid above the melting tem perature also agrees 
with the predictions o f  the K T H N Y  theory. Therm odynam ics m easurem ents 
(Jin, Bjurstrom , and  Chan 1989), however, show unam biguously th a t there is a 
first-order crystal-to-fluid transition with no intervening hexatic phase.

Polystyrene spheres (“polyballs” ) with a diam eter o f order 0.3 μτα form stable 
colloidal suspensions in solutions with the proper pH. W hen confined between 
two glass plates with separations from  1 to 4 /xm, these polyballs form a regular 
two-dimensional hexagonal lattice tha t can be seen under a microscope (M urray 
and  Van W inkle 1987). Digitized images o f the two-dim ensional system can 
be obtained and Fourier transform ed to produce a two-dimensional structure 
function S(q). Different diffraction patterns are obtained a t different positions 
along a wedge sample in which the spacing between the glass plates changes 
linearly from  1 μτα to  4 μια. A t the large spacing end o f the wedge, where the 
polyballs are close together, the diffraction pattern  is tha t o f a two-dimensional 
solid with well-developed hexagonal peaks. A t the opposite end, the diffraction 
pattern  is tha t o f a two-dim ensional fluid with a ring o f constan t intensity. 
In  the interm ediate region, the diffraction pattern  shows hexagonal m odulation 
analogous to  th a t observed in three-dim ensional or finite-size two-dim ensional 
hexatics. Though the visual da ta  provided by these experiments would appear to 
support a continuous crystalline-to-hexatic transition as a function o f chemical 
potential (varied by the separation o f  the glass plates), there are m any unanswered 
questions regarding the establishm ent and  the nature o f therm al equilibrium  in 
the inhom ogeneous cell used in the experiments.

N um erical sim ulations o f spherical particles interacting in two dimensions via 
a variety o f potentials have been carried out (S trandburg 1988). They tend to 
yield strongly first-order solid-to-liquid transitions. They are, however, plagued 
by problem s associated with finite-particle num ber and com puter time insufficient 
to  ensure therm al equilibrium o f all degrees o f freedom.
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T hroughout this chapter, we have seen how topological defects disrupt order. 
Therm ally excited vortices can destroy the rigidity o f a two-dimensional superfluid, 
and therm ally excited vortex loops can destroy long-range order in  a three- 
dim ensional superfluid. Similarly, therm ally excited dislocations can destroy 
crystalline order. In this section, we will investigate a rem arkable phase o f  m atter 
in  which topological defects, by arranging in  a repeated spatial pattern, create 
a new symmetry ra ther than  simply destroy an  old one. This phase occurs in 
some chiral liquid crystals (G oodby et al. 1988) and is characterized by an array 
o f equally spaced twist-grain boundaries (Fig. 9.2.23) in  a smectic liquid crystal 
as shown in Fig. 9.6.1. For obvious reasons, it is usually called the twist-grain- 
boundary ( T G B )  phase (Renn and Lubensky 1988). However, because it is a 
chiral smectic, it is sometimes called the smectic-/!’ phase. As is clear from  
Fig. 9.6.1, the TG B  phase has an  average director twist like a cholesteric and 
regions o f  regularly spaced m olecular planes like a smectic. One could, therefore, 
reasonably expect it  to appear between the cholesteric and  smectic-/! phases in 
phase diagrams.

In w hat follows, we will first describe the structure o f the TGB phase in some 
detail. N ext we will show tha t it can have a lower energy than  either the smectic-/! 
or cholesteric phases. Then, we will describe its unusual X -ray scattering profile. 
Finally, we will discuss briefly its relation to  the A brikosov vortex lattice phase 
in  superconductors (Abrikosov 1957).

As we saw in Sec. 6.2, m olecular chirality converts the nem atic phase into a 
twisted nem atic or cholesteric phase, Ν ' ,  with an  equilibrium  director

where we have chosen the pitch axis to lie along the x-direction. This director 
field has a spatially uniform  twist

and  is incom patible with uniform  smectic layering. Twist o f smectic layers can, 
however, be produced by grain boundaries, as we saw in Sec. 9.2. If  we set

1 S tructure  o f  the T G B  phase

nc =  (0, sin kox, cos kox), (9.6.1)

nc · (V  x nc) =  k0, (9.6.2)

n(x) =  (O ,sin0(x),cos0(x)),

for which

(9.6.3)

(9.6.4)

then [Eq. (9.2.15)] 0 will change by an am ount 

<50 =  2 t a n - \ d / 2 l d) ~  d / ld (9.6.5)
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grain boundary

smectic slab

Fig. 9.6.1. Schematic representation of the TGB phase. There are smectic 
slabs with layer spacing d and length k- Between each pair of smectic slabs is 
a twist-grain boundary consisting of parallel screw dislocations separated by 
a distance Ij. The angle between dislocation cores in adjacent grain 
boundaries or, equivalently, between layer normals in adjacent smectic slabs 
is 2πα = δθ = 2  tan-1 (d/2/,;). If a is irrational, then no two slabs have 
identical layer normals, and there is an incommensurate TGB phase. If 
α =  P/Q  (with P and Q relatively prime integers) is a rational number, then 
there is a quasicrystalline TGB phase.

across each grain boundary com posed o f  parallel screw dislocations separated by 
a distance Id- The TGB phase consists o f smectic slabs o f  length k  separated by 
grain boundaries. In  the smectic regions, θ{χ) is approxim ately constant. W ithin 
a distance o f order the twist penetration depth λ 2 (Secs. 6.2.1 and 9.3.4) o f each 
grain boundary, θ(χ) changes by an am ount δθ. Thus, θ(χ)  in the TG B phase 
has an average slope produced by a series o f steps, as shown in Fig. 9.6.2, which 
contrasts this behavior with the uniform  growth o f θ(χ) in the Ν '  phase. The 
spatial average o f the twist in the TGB phase is nonzero:

1
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Fig. 9.6.2. Behavior of the director angle θ(χ) in the cholesteric and TGB 
phases. In the cholesteric phase, άθ(χ)/άχ is a constant. In the TGB phase, 
θ(χ) has an average linear growth produced by a series of steps across grain 
boundaries of height δθ and width λ2. In general, the spatial average of 
άθ/d x  diminishes in a transition from the cholesteric to the TGB phase.

where V  is the sample volume and L is the length along the x-axis. In  general, 
the average twist ko in the TG B is less than  the twist ko in a neighboring Ν '  
phase.

Both the Ν '  and TGB phases have a nonvanishing director twist. The two 
phases, however, have different space group symmetries. The Ν '  phase has a 
continuous screw axis: it is invariant under an arbitrary  translation x  followed 
by a ro ta tion  through Θ =  kox. The TGB phase only has a discrete screw axis: it 
is invariant under translation by nib followed by a ro tation  through θ =  ηδθ  and 
possibly a translation in the yz-plane where n is an integer. Detailed symmetry 
properties o f the TG B phase depend on whether 

δθ  d
“  -  2 Ϊ  *  (9'6 7) 

is rational or irrational. I f  a is irrational, then all angles Θ between 0 and 2π 
occur with equal probability, and no two smectic slabs will have exactly the same 
norm al. This is the incommensurate TGB phase. If  a is a rational num ber P /Q ,  
with P  and Q relatively prim e integers, then there is a Q-fold screw axis. If  Q is an 
integer o ther than  one, two, three, four, or six, there is a quasicrystalline symmetry 
(see Sec. 2.10) with, as we shall see, a diffraction pattern  with crystallographically 
disallowed Bragg (or quasi-Bragg) peaks.

The smectic slabs shown in Fig. 9.6.1 have a smectic-/! structure with the 
director n parallel to  the layer norm al N. There are m aterials in which these 
regions have a smectic-C structure with a nonzero angle between n and N. W hen
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h h

T T

(a) (b)

Fig. 9.6.3. Phase diagram in the h-T  plane for (a) type I smectics and (b) 
type II smectics. In type I systems, there is a first-order transition from the 
Ν '  to the Sm-Λ phase at the thermodynamic critical field hc. In type II 
systems, there is a second-order transition from the Sm-,4 to the TGB phase 
at the lower critical field hcl and a second-order transition from the TGB to 
the Ν '  phase at the upper critical field hc2. The TGB phase shown in this 
diagram may contain many distinct incommensurate phases and 
commensurate phases with quasicrystalline symmetry.

there is possible confusion, these two phases are denoted, respectively, by TGB^ 
and TG B c.

2 The  thermodynamic  critical f i e ld  

We saw in Sec. 6.2 tha t m olecular chirality leads to  an additional term,

in the F rank  free energy and converts the nem atic phase to  a chiral nem atic phase 
Ν '  with twist ko =  h / K 2. Smectics can be characterized by the ratio  κ =  λ 2 / ξ  
o f the twist penetration depth k2 to  the smectic coherence length c. In type I 
smectics, κ  <  \ / ^[2, and in type II smectics, κ > 1 /  ̂ J2. As we shall verify below, 
in type I systems, there is (at least in the mean-field theory we consider here) a 
first-order transition between the Sm->1 and the Ν '  phases a t h =  hc, whereas 
in type II systems, the TGB phase intervenes between the Sm-Λ and Ν '  phases 
with a second-order Sm -zl-TG B transition at hci and a second-order TGB-JV* 
transition at hc2. Fig. 9.6.3 shows phase diagram s in the h — T  plane for type 
I and type II systems. In  the language o f  superconductors, the field hc is the 
thermodynamic critical field, hci is the lower critical field, and hc 2 is the upper 
critical field.

(9.6.8)
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To calculate the field hc, we m ust com pare the free energies o f  the N ’ and 
Sm-A phases. The free energy density o f the Ν '  phase relative to the nematic 
phase is

/ » ■ = — ■ <9-6-9 » 

In the smectic phase, the director n(x) is spatially uniform, and the F rank  and 
chiral free energies are zero. The mean-field free energy o f the Sm-A phase, 
therefore, comes entirely from  the smectic order param eter ψ. Using Eq. (6.3.21) 
for the smectic free energy, we find

fA =  - γ  (9.6.10)

for the smectic free energy density. Equating / N· and f A, we obtain the critical 
field hc a t which the transition from  the Sm-A to the Ν '  phase takes place on 
increasing h :

hc = ( K 2 r2 /g ) 1/2. (9.6.11)

This is the therm odynam ic critical field since it determines when the Sm-/1 phase 
becomes absolutely unstable to the Ν '  phase and vice versa. Alternatively, 
Eq. (9.6.11) gives the tem perature at which a transition from  the Ν '  phase takes 
place on lowering the tem perature: rc =  a ( T  — Tc) =  (gh2 / K 2)l/2.

3 The  lower critical f i e ld

If, upon increasing h, the Sm-Λ phase becomes unstable to the form ation o f the 
TGB phase before it becomes globally unstable to the Ν '  phase, then there will 
be a transition, which can be second order from  the Sm-A to the TGB phase. 
The chiral energy, which for the director n(x) in Eq. (9.6.3) is

f a  =  ψ  -  - *  „  -  “ , ,9.6.12)

clearly favors twist and the form ation o f grain boundaries in the smectic phase. 
However, grain boundaries are com posed o f dislocations, which cost energy to 
create. In addition, dislocations repel each other, and there is a positive interaction 
energy associated with any array o f  dislocations. We saw in Sec. 9.3 th a t the 
interaction energy between screw dislocations in a smectic dies off exponentially 
with separation over k2. Thus, if  U and lb are m uch greater than  λ2, we can 
neglect interaction energy com pared to creation energy. The energy associated 
with the creation o f dislocations is Fdisc =  ^disc^ where e is the energy per 
unit length o f a dislocation [Eqs. (9.3.63), (9.3.64), and (9.3.81)] and Ldisc is 
the total length o f dislocation in the sample. In  the model structure shown 
in Fig. 9.6.1, there are N d =  L ± / l d dislocations o f length L±  in each square 
section o f  grain boundary  o f  side L±  and Nb =  L/lb  grain boundaries in a 
length L. Thus Ldisc =  N dNbL± =  V / ( ldlb), where V =  L 2±L  is the volume, and
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/ disc =  Fdisc/V =  e/(ldh)·  The free energy o f the TGB structure (when dislocation 
interactions are ignored) com pared to tha t o f the untwisted Sm-A phase is then

δ / tg b  =  ] ^ ( e -  hdy  (9·6·13)

The TG B phase has lower energy than  the Sm-A phase when h >  hc 1 , where 

f e  -  ί

*  ^ - \ η ( λ 2 / ξ ) = - % - \ η κ ,  (9.6.14)
^J2 k

where, in the second line, we used Eq. (9.3.64) (with D =  B)  for the dislocation 
energy in extreme type II systems (κ »  1) with the core radius equal to the
coherence length ξ. hci is the lower critical field. It is certainly less than  hc for
sufficiently large κ. In  this case, the TG B phase is favored over either the Sm-A 
or the Ν '  phases.

In  the smectic phase, Zf, and Id are infinite. A t h =  hci, it becomes favorable for a 
single dislocation to  penetrate the smectic. As h increases beyond hci, l^ 1 and I j 1 
increase continuously from  zero in a way th a t depends in  detail on the interaction 
energy between dislocations. We can get an idea o f how these two inverse lengths 
grow for h > hci by setting ld =  h =  / and assuming the interaction energy 
per unit volume is o f the form  we~ιΙλι, Then Δ/ tg b  *  l~2 d(hci — h) +  we~,//;'2. 
M inim ization over Z then yields Ζ ~  \n[wkl/2d(h — hci)]. F rom  this we can see 
th a t Z~* tends to zero as h —* h^v

4 The  upper critical f i e ld

A t large values o f h, the Ν '  phase is favored over the TG B phase because it 
can have a larger twist favored by h. As h is lowered in  type II systems, the 
Ν '  phase becomes unstable with respect to  the form ation o f the TGB phase 
at the upper critical field ftc2- To calculate hc2, we need to  determ ine when 
the cholesteric phase becomes unstable with respect to  the establishm ent o f a 
non vanishing smectic order param eter ψ(χ), i.e., we need to  determine when 
the inverse order param eter susceptibility SF/Syj(x)Sxp'(x')  ceases to be positive 
definite. To describe the energy associated with the developm ent o f smectic order 
in an Ν '  phase with a nonuniform  equilibrium  director, we need to modify 
slightly the de Gennes free energy o f  Eq. (6.3.21), which was set up to describe 
the developm ent o f  smectic order from  a spatially uniform  nematic. We express 
the mass density as

p(x) =  po +  ψ(χ) +  ψ* (x), (9.6.15)

where ψ(χ) does no t have a Fourier com ponent at zero wave num ber. ψ (χ) is
related to the usual smectic order param eter ip(x) introduced in Eq. (6.3.1) via

ψ(χ)  =  eiqoΧψ(χ)  (9.6.16)
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where qo =  <701*0 with no the spatially uniform  equilibirum  director o f the nem atic 
phase. The de Gennes free energy for smectic order is now

Ρψ =  J d ? x [r \ i p \2 +  C |(V  -  ί<ζ0η)ψ |2 +  ^g\y>\4], (9.6.17)

where, for simplicity, we have chosen an isotropic energy by setting bo th  cy
and c_i_ of Eq. (6.3.21) equal to C. If  n(x) =  no, this energy is minimized with
ψ(χ) =  e,qoBo'xip with ψ =  (—r / g ) 1/2. The complete free energy for the developm ent 
o f smectic order from  a cholesteric is

F =  Fjj, +  F„ +  Fch, (9.6.18)

where F„ is the F rank  free energy o f Eq. (6.2.3).
To determ ine the linearized stability o f the Ν '  phase with respect to ψ(χ), we 

set n(x) =  nc(x) [Eq. (9.6.1)] in Eq. (9.6.17) and calculate
<5F-

=  j i - ,  Λ  A (9·6·19)<5ψ(χ)ψ(χ')

=  [—CV2 +  2iq0nc(x) · V  +  C<2q +  r]<5(x — *')·
The condition V  ■ nc(x) =  0 was used in the derivation o f this equation. Unlike 
other inverse susceptibilities we have encountered, Μ (χ ,χ ')  is no t a function o f 
x —x' only. I t depends no t only on χ χ  — χ'±, where χ χ  =  (0,y,z), bu t explicitly on 
the coordinates x  and x  — x'. Μ (χ ,χ ')  cannot be diagonalized by plane waves and 
inverted by Fourier transform ation. It is useful to think o f Μ (χ ,χ ')  as the x — x' 
m atrix elements o f  an operator Μ :  Μ (χ ,χ ')  =  (x |M |x '). The wavefunctions tha t 
diagonalize M  (i.e., eigenfunctions o f M )  are o f the form

Φ(χ) = ^ q±(x)eiq±x\  (9.6.20)

where

q± =  <Z±(0, sin η, cos η) =  q±nc^ /k o ) .  (9.6.21)

W hen acting on states with this plane-wave dependence on transverse com ponents 
o f position, M  reduces to the M athieu operator:

M  =  —cd\ +  c(q± — q0 ) 2 +  r +  2cq0 q±[i — cos(kox — »/)]. (9.6.22)

This is the Schrodinger operator for an electron in a cosine potential o f period 
2 n/ko  with equivalent m inim a a t positions χ ηj  =  (2πΐ +  f/)/fco for every integer /. 
In  the vicinity o f each o f these minima, the cosine potential can be approxim ated 
by a harm onic oscillator potential, and M  becomes

M  =  — Cd\ +  C(q± — q0 ) 2 +  r +  Cq0 q±ko(x — χ η,ι)2. (9.6.23)

The eigenfunctions o f this equation are harm onic oscillator wavefunctions Α ^ ( χ )  
centered at x nj. The lowest energy norm alized wavefunction is

p 4 j V ^ ~ l? "2<X~X'"')2 Ξ  A °(X ~  (9·6·24)
where

? - 2 =  (qoq±)1/2ko *  q0k0. (9.6.25)
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The distance between m inim a o f the cosine potential is 2n/ko,  so the am plitude 
o f A°(x — χ η>ι) evaluated at a nearest neighbor site with x =  x nj  +  (2n/ko)  is 
(2 π ξ 2 )~l/2 e~27l2{q°/ko>. In  typical systems qo ~  2π/(3θΑ ) and k0 ~  2π/(3000Α ) so 
th a t (qo/ko) >  102 and the overlap o f wavefunctions centered on neighboring sites 
is vanishingly small. Thus, the m atrix  elements o f M  coupling A n(x — x nj)  with 
A n(x — χ η̂ )  with l φ  k  can be neglected, and the eigenvalues o f the operator M  
are simply harm onic oscillator energies:

en(ko,q±) =  c[(2n +  1)? 2 +  (q± -  q0 ) 2 +  r/c], (9.6.26)

N ote tha t these eigenvalues depend only on the m agnitude o f qx and no t on its 
direction. We are particularly interested in  these energies in  the vicinity o f their 
minimum. The value o f q± th a t minimizes en is

1
q±n =  Qo 1 -  ^ (2 n +  l)(k0 / q 0) +  0 (k l /q l ) (9.6.27)

The ground state energy eo(ko,q±) passes through zero for r <  0 when

Γ 2 =  \r\/c =  Γ 2 (9.6.28)

or, equivalently, when h =  K 2ko =  hc2 with

hc2 =  K 2 q o H - r / c ) [ l  +  O(k0 / q 0)] =  j 2 Khc[ 1 +  O(k0 / q 0)]. (9.6.29)

Thus, hc2 is greater than  hc, and the Ν '  phase becomes unstable to the TGB
phase before it becomes globally unstable to  the form ation o f the uniform  smectic 
phase, provided κ > 1 /^/2  to  lowest order in ko/qo- 

The energies, Eq. (9.6.26), can now be expanded about /c0 =  k c2 =  hc2 / K 2 and 
q± =  q±n. The lowest energy is

eo(ko,q±) =  c ^ 2{[(/c0 -  kc2 ) / k c2] +  £2(<z± -  q0)2}

= οξ2 2[1 +  ξ & ± -  q0)2], (9.6.30)

where

£2 =  £ [ ( f t - M A C2]1/2 (9-6.31)
is the twist lattice correlation length tha t diverges as h —> hc2-

5 X - r a y  scattering

X -ray scattering profiles from TGB phases are quite unusual. They can be 
understood as a superposition o f scattering intensities from an array o f  rotated 
smectic slabs consisting o f N  layers o f  length Zf, along x and width L »  Zf, along y, 
as shown in Fig. 9.6.4. The scattering intensity o f one such slab with layer norm al 
along the z-axis is proportional to (sinqxlb/qx)S(qy)[S(qz — qo) +  δ (qz +  qo)], as 
shown in Fig. 9.6.4. Thus there are delta-function rods o f length 2π / h  parallel 
to  the x-axis and centered at qx =  qy =  0, qz =  ±qo- In  an incom m ensurate 
TGB phase, slab norm als point with equal probability in  all directions, and the 
scattering am plitudes from  different slabs add incoherently. The resulting pattern  
is a Bragg cylinder o f radius qo and height 2π /lb- In  a com m ensurate smectic,
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Fig. 9.6.4. (a) A smectic slab and its corresponding X-ray intensity. The 
latter is a pair of Bragg rods whose height is inversely proportional to the 
slab length lb. These rods are perpendicular to the slab normal n (for a 
smectic-,4 slab) and are displaced from the pitch axis (the x-axis) by ±<jon. 
(b) A stack of smectic slabs in the TGB phase with corresponding order 
parameter profile, |ψ(χ)|. Near hc2, this profile is the Gaussian eigenfunction 
[Eq. (9.6.24)] of M. (c) X-ray scattering intensity from an incommensurate 
(top) and a commensurate or quasicrystalline (bottom) TGB phase. In the 
incommensurate TGB phase, the intensity is simply an in-plane powder 
average of the rods shown in (a). In commensurate TGB phases with 
a =  P /Q ,  intensities from every Qth slab add coherently, and there are Q 
Bragg spots for Q even and 2Q Bragg spots for Q odd on a series of rings at 
different values of qx but with intensity decreasing with q2x. In the figure,
2  =  5.

with a =  P / Q ,  every Qth  slab is identical, and their scattering adds coherently. 
The result is tha t there will be Bragg spots with 2 -fo ld  symmetry ra ther than  a 
Bragg cylinder, as shown in Figs. 9.6.4 and 9.6.5.

The X-ray scattering intensity in  the cholesteric phase is simply a broadened 
cylinder o f radius qo, height q n / h ,  and radial w idth proportional to  the inverse
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Fig. 9.6.5. Experimental scattering intensity from a quasicrystalline TGB 
phase showing 18 Bragg peaks around a ring. This material is a TGBC 
phase, in which the smectic slabs are smectic-C slabs in which the director is 
not parallel to the layer normal. It has either 9- or 18-fold quasicrystalline 
symmetry. [L. Navailles, P. Barios, and H. Nguyen, Phys. Rev. Lett. 71, 545 
(1993).]

coherence length ξ γ 1. This intensity near hc2 in  mean-field theory is the inverse 
o f the operator in, which we can represent in term s o f the wavefunctions A^l (x ) 
and energies e„(ko,q_i) as

χ (χ ,χ ')  =  (ψ(χ)ψ*(χ')>

=  V  ί d2q± A <l ^X Â^ X *ciq±-(x-x') (9 6 32)
Z - f J  (2π)2 en(ko,q±) ( j

N ear hC2 , the n =  0 m ode dom inates, and we obtain
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M e l  
/ n C  [1 +  ί Κ ί χ - ί ο ) 2]

As a function o f q± a t constant qx, the X -ray scattering profile is a Lorentzian 
centered at q± =  qo with halfw idth c ^ 1 tha t tends to zero as h —* hc2 · As a 
function o f qx a t constant q±, the profile is a G aussian with w idth ξ 1 tha t 
rem ains finite as h —► hc2 ·

6  Ana lo gy  wi th superconductivi ty

We have alluded several times to  the analogy between the de Gennes free energy 
for the nem atic-to-sm ectic-/l transition  and the Landau-G inzburg free energy for 
a superconductor. This analogy is so precise th a t there is a one-to-one correspon
dence between virtually all properties o f superconductors and properties o f the 
nem atic or smectic-/I phase o f liquid crystals. The m ost striking correspondence is 
between the TG B phase in liquid crystals and the A brikosov vortex lattice in su
perconductors, whose theoretical prediction and experimental discovery predated 
by m any years those o f  the TG B phase.

Because o f the im portan t role the analogy with superconductivity plays in the 
developm ent o f our understanding o f  liquid crystals, we will very briefly review 
here the L andau-G inzburg theory for superconductors. A  superconductor, like 
a superfluid, has a complex order param eter ψ.  In a superfluid, there is a mass 
current associated with the gradient o f the phase o f ψ,  as we saw in Sec. 8.5. 
In a superconductor, gradients in the phase o f ψ lead to  electric currents, which 
couple to  the electrom agnetic field. These currents and the free energy m ust be 
invariant under gauge transform ations. The Landau-G inzburg free energy for 
a superconductor is the gauge invariant generalization o f the superfluid energy 
with the addition o f the m agnetic field energy:

- / ■
F l g  =  /  d ? x

ί  2 ie Λ 2 1 4Ir\ip\2 +  C +  2 ^ Μ (9.6.34)

+ -J —  f  i/3x (V  x A ) 2 - |  [  d*x H  ■ (V  x A), 
8πμ0 J  An J

where A is the vector potential, e is the electron charge, c is the velocity o f light, 
h is Planck’s constant, μο (=  1 in the cgs units we are using) is the m agnetic 
perm eability o f free space, and H  is the m agnetic intensity whose source is external 
currents. The local m agnetic field is Β =  V  x A. M any o f the superconductor- 
liquid crystal analogies are im m ediately clear from  Eqs. (9.6.34), (9.6.17), and
(9.6.18). The vector A, the m agnetic intensity H, and the m agnetic field B are, 
respectively, the analog o f the director n, the chiral field h, and twist ko =  η·( V  x n) 
and bend η χ  (V  x n) in liquid crystals. The inverse perm eability (4πμο)-1 is the 
analog o f the twist and bend elastic constant K 2 and K 3 .

The im portan t properties o f superconducting and norm al phases can be de
term ined directly from  F Lg and our already extensive investigations o f liquid
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crystals. For r >  0 and H  =  0, there is a norm al-m etal phase with ψ =  0 and
V  x A =  0. This is the analog o f the nem atic phase in liquid crystals. For 
r > 0 and Η  φ  0, ψ =  0, and Β =  μοΗ. This norm al m etal in a magnetic 
field with nonvanishing H  and B is the analog o f the cholesteric phase with 
nonzero h and twist ko =  h /K j -  For r < 0, there is a superconducting phase 
with ψ =  {—r/g ) l/2. This is the analog o f the smectic phase obtained from  a 
nematic. M agnetic fields are expelled from  a superconductor with a penetration 
depth λ  =  (fc2c2/ 167re2C |ip |2)1/2 =  (fc2c2g / 167re2C |r |)1/2, ju st as twist and bend are 
expelled from  a smectic with penetration depths k2 and A3. The ratio  κ =  λ / ξ  
o f the penetration depth to the correlation length in a superconductor is called 
the G inzburg param eter. In type I systems, κ  <  1/^/2, and in type II systems, 
κ >  1 / ^ /2 .

There are vortices in superconductors in  which the phase o f  ψ changes by 
2π in  one circuit around a core. The vector potential, like the director in a 
smectic, can adjust to  lower the energy associated with gradients in  the phase of 
ψ  im posed by topological constraints o f  the defect. The calculation o f  A and the 
energy o f a superconducting vortex are identical to the analogous calculations 
for the screw dislocations presented in  Sec. 9.3. One only has to exercise care 
to identify — q0u with the phase φ  o f  the superconducting order param eter and 
qo with 2e/hc.  These calculations imply tha t a superconducting vortex carries 
quantized flux. This follows because V 0  — (2e/hc)A (the superconducting analog 
o f qoQ =  <?o(Vu +  <5n) in Eq. (9.3.58)) dies exponentially to  zero with distance 
from  the vortex core. Thus,

is the quantum  o f flux carried by a single unit strength vortex in a superconductor.

We can now discuss the appearance o f the Abrikosov phase in an external 
m agnetic field. The external field superconducting order favors nonzero V  x A 
and penetration o f m agnetic flux, ju st as m olecular chirality favors nonzero 
η (V  x n) and penetration o f twist. Superconducting order expels m agnetic flux, 
and smectic order expels twist. In type I superconductors, there is a first-order 
transition between the M eisner phase with expelled flux and the norm al metal 
in  a field a t H  =  H c =  {Αημ^ν2 / g ) l / 1  when the energies —r1  j i g  and —H 2j 8πμο 
o f the two phases are equal. In type II systems, we can calculate when it is first 
favorable for a vortex to  penetrate the superconductor by neglecting interactions 
am ong vortices. In superconductors, vortices are all parallel to the m agnetic field. 
I f  there are N  =  nA vortices in an area A,  then the energy due to vortices in a 
volume V =  A L  is Fvortex =  L Ne .  In  addition, H  ■ f  V  x A =  L H N Φο =  V n H Φο. 
The free energy per unit volume o f a state with vortices relative to  the Meisner 
state is then

(9.6.35)

(9.6.36)
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Thus,
4ne  Φ0 , H c

H ci =  —-  «  -—-r In κ =  —=-  In κ. (9.6.37)
Φ0 4πλ 2 φ _ κ κ

For Η  >  H ci, the repulsive interaction between vortices causes them  to form a
triangular lattice. This is the Abrikosov vortex lattice.

The upper critical field H c 2 is calculated in exactly the same way as hc 2 was
calculated in for liquid crystals. The limit o f stability o f the norm al m etal phase
in a m agnetic field producing a nonvanishing V  x A determ ines H c2 · In the
L andau  G auge in  which A =  (0, Bx,  0) the stability kernel for ψ is identical to the
harm onic oscillator approxim ation for M  for liquid crystals, and H c 2 =  ^J1kHc.

Appendix 9A Notes on the Kosterlitz-Thouless transition

1 Integrat ion o f  the K T  recursion relations

The Kosterlitz-Thouless recursion relations, Eqs. (9.4.32) and (9.4.33), can be integrated 
analytically in the vicinity of the critical point. The resulting solutions can be used to 
obtain the correlation length, Eq. (9.4.40), the rigidity modulus [Eq. (9.4.41)], and the 
spin-correlation function at Tc [Eq. (9.4.39)]. As discussed in Sec. 9.4, the fixed-point value 
of K(l) = ps/ T  is K ‘ =  2/π. To describe small deviations from the fixed point Κ  = K ' ,  
y = y* =  0, we set

K(l) = K ' ( l - x ( l ) ) ·  (9A.1)
The recursion relations for K~'  and y [Eqs. (9.4.32) and (9.4.33)] to lowest order in x are

§  =  8π2>-2, (9A.2)

d-jx =  2 xy. (9A.3)

These equations imply
dx2

= 16π xy , (9A.4)

=  4xy2, (9A.5)

and

dl 
dy2 
~df

dx2
f i  =  4π2· (9A·6) 

The last equation implies that all trajectories lie on the hyperbolae,

y2= ^ j(x 2 + C), (9A.7)
where C is a constant. The lines y =  ±χ/(2π) are the asymptotes of the family of 
hyperbolae and are obtained by setting C to zero in Eq. (9A.7). All hyperbolae with C > 0 
lie above the asymptotes y = —χ/(2π), x  < 0, and y =  χ/(2π), x > 0. Hyperbolae with 
C <  0 intersect the y =  0 axis at x =  —\J\C\. The only trajectory that passes through 
the critical fixed point (x* =  0, y '  = 0) (Fig. 9.4.2) is that corresponding to the limiting 
hyperbola with C =  0. This is the critical trajectory, and the asymptote y =  —χ/(2π) 
is the critical line: all Hamiltonians starting on this line flow to the critical fixed point.
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Hyperbolae with nonzero values of C approach the critical trajectory as C -* 0. Thus, C 
measures distance from the critical point and is linearly proportional to T  — Tc:

C =  b2(T  — Tc), (9A.8)
where b2 is a constant with units of inverse temperature. Using Eq. (9A.7), we can convert 
Eq. (9A.2) to an equation for x alone:

Αγ
-  =  2(x2 +  C). (9A.9)

This equation says that x(l) increases with / for χ φ  0 regardless of its sign, i.e., that all 
flows are to the right, as shown in Fig. 9.4.2. If C =  0 and x <  0, flow is to the critical 
fixed point. If C <  0 and x <  0, flows are towards y =  0 and a state with no vortices.
If C > 0, and x is initially negative, the flow will first be towards decreasing values of y
and then, once x(l) becomes greater than zero, towards the asymptote y =  χ/(2π), x > 0. 
These trajectories are depicted in Fig. 9.4.2. The solution to Eq. (9A.9) thus depends on 
the sign of C, i.e., whether T  > Tc or T  < Tc. If C <  0 (T  < Tc), the equation for 
u(l) =  x( l) /^ /\C \  is

;a01 + (9A101 
or

=  (9A, „
1 +  Z>0e-4V ^ '

where D0 =  [1 +  u(0)]/[l — u(0)]. The right-hand side of this equation tends to —1 as 
/ -* o o ,  and

limx(/) =  —a/ |C |·  (9A.12)
/-►oo

Note that the denominator of the right-hand side of Eq. (9A.11) is never singular for / >  0 
because —1 <  D o  <  0 for — o o  <  u(0) <  —  1. Because K R = psR( T ) / T  =  lim(̂ ,x K(l)  for 
T  < T C [Eq. (9.4.35)], Eqs. (9A.1), (9A.8), and (9A. 12) imply Eq. (9.4.41):

/ ’J u (  0

PsR( T )  =  PsR( T c)[l + b y / T  -  Tc], (9A. 13)

where psR(Tc) /T c =  2/π.
When C > 0, the solution to Eq. (9A.9) is

r ( ' )

fJx( 0
(9 A. 14)

dx 1 /  x(Z) x (0 )\
3— ^  =  -f=  tan ~T= ~  tan 1 =  2 1 .

/x (o )  x  +  C  ^ /C  \  ^ /C  J C  J
Near the critical point for T  > Tc, x(0) is negative. As T  -* Tc, J C  —► 0 and |x(0)| > >  J C
so that tan-1(x(0)/>/C) «  —π/2. To determine the correlation length, we choose x(l')  to 
be positive and of order unity and (χ(Γ)/  J C )  «  π/2. Thus, at the matching point,

2Γ =  — (9A. 15)

and

ί  = e r = / / ν τ = 7 ϊ .  (9A.16)
a

bb' =  π /2 is universal.
Finally, to obtain the spin correlation function at the critical point, we observe that

/

f i a 1 _  e«t *

|9A,7)
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where K R(q) is the renormalized reduced stiffness, which at q =  0 satisfies Eq. (9.4.26). 
Along the critical trajectory, y2 =  x2/(4π) and

A v
= £ =  2x2 (9A.18)
al

or

xil) = T ^ k » I z : - Y r  (9A19)
To leading order in y,

K *‘ =  | [ l +*(/)]. (9A.20)

The rigidity p s and thus K r  satisfy the Josephson scaling relation Eq. (6.1.11):

K R(q) = e<d- 2»KR(e'q). (9A.21)
Thus, we can choose er q =  1 or x(l’) =  —(Inq~l )~l/2. Then, using Eqs. (9A.17) and 
(9A.20), we obtain

Λi r
*(*) ~ -λ -τ  14 iixi-1 9 V 21n<r ‘

d q L  1 
ί  \

± ln |x |- | l n ( ln |x |) ,  (9A.22)

where Λ is the upper cutoff. Then,

-*oo -  ln‘/8 Ιχ Ι
G (x )= e  (9A-23)

in agreement with Eq. (9.4.39).

2 Longi tud inal  and transverse response

Our derivation of Eq. (9.4.8) was somewhat sketchy. Here we will provide further details 
of this derivation and explore some of the subtleties of longitudinal and transverse 
momentum response in superfluids and xy-models. In normal fluids, the momentum 
density g is simply pv, where p is the total mass density and v is the velocity. Thus, the 
momentum susceptibility is xgjgj = dg,/dvj = p S , j .  In superfluids (see Sec. 8.5), there is a 
superfluid velocity vs and a normal veclocity v„, and g =  psvs + p„v„, where p„ and ps are, 
respectively, the normal and superfluid densities with p =  pn + ps. The superfluid velocity, 
being the gradient of the phase of the superfluid order parameter, is purely transverse. 
The normal velocity, on the other hand, has both longitudinal and transverse parts. As a 
result, the momentum susceptibility will have different longitudinal and transverse parts. 
We will show below that

Xgigj = P M j + Pn($ij -  W j )  = XiM j + Xt(Stj -  M i) ,  (9A.24)
where χι = p and χ, =  pn are, respectively, the longitudinal and transverse momentum 
susceptibilities. As the normal fluid phase is approached (e.g. by raising the temperature), 
ps -* 0, pn -* p, and xgjgj approaches pStJ. In the classical elastic version of the xy-model 
we study in Sec. 9.4, pn =  0 at T  =  0. It is the creation of vortex pairs that leads to 
transverse excitations and a nonzero pn at finite temperature.

To derive Eq. (9A.24), we begin with the superfluid free energy density

/(v„, vs) =  - i pvI +  ̂ ps(vs -  v„)2 (9A.25)
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derived from Eq. (8.5.32). This leads to g* =  —d f/d v ni = p„v„t + psvsi. The Legendre 
transformed free energy that is a natural function of g and g.s ξ  ps\ s is then

?(g, &) = L/(vn, gs/Ps) +  g ' V„],„=(g_fo)//,„

=  J - g j  + J - ( g i  ~  gs)2 +  j - g t>  (9A.26)2pn 2 ps
where g( and g, are, respectively, the longitudinal and transverse parts of g. In deriving 
this equation, we used the fact that gs is longitudinal so that g ■ gs =  gigs. The transverse 
momentum decouples from gs and gi, and Eq. (9A.26) implies that

XTl = S2} /d g l  = p·;1. (9A.27)
Since gi and gs are coupled, we introduce φ χ =  (gi,gs). Then

« ' ? ! - ' ) ·  |9A·28'
and

Thus

Χζβ

( p Ps) .  (9A.29)
\Ps PsJΧ«β

χ, = dgs/dv„i =  p (9A.30)
Xms = psdgi/dh = ps (9A.31)

Xgsgs = Psdgs/dh = ps, (9A.32)
where h is the field conjugate to vs (see Sec. 8.5). Combining Eqs. (9A.27) and (9A.30), we 
obtain Eq. (9A.24).

To make contact with calculations in Sec. 9.4, we identify ps in Eq. (9.4.6) with the zero 
temperature rigidity p and ps(vj + v 5x) with g. In Eq. (9.4.6), we replaced vs by V .9' +  v5x +  v 
with the boundary condition 9' =  0. If we lift the latter restriction for the moment, then 
the Hamiltonian in the presence of the external v is

J^(y) = + J  d2x g ■ v +  1 J  d2xpv2, (9A.33)

where we have replaced, as discussed above, the bare rigidity ps by p and where = 
f  d2xg2/2p  with the identification of g discussed above. The free energy density associated 
with J ^ ( \n) is

/i(v„) =  ~  ΙηΤ πΓ ^Μ  =  / 2(v„) +  Χ-ρ υ \ ,  (9A.34)

where / 2 (v„) =  —(Γ/Ω)Τγ1π6χρ[—β(,:^0+ f  d2x g-v„)] is the Legendre transform of /(vs, vs)
with respect to vs with the field h conjugate to vs equal to zero. The second derivative of
/ 2(v„) with respect to v„ is —xgigj, so that

= -Xgigj +  Ρδϋ =  Ρ ^δϋ ~  §Αί)· (9A.35)uVniVnj
This implies that

/ i K )  =  /i(0) +  \p sv2nt (9A.36)

depends only on the transverse component of v„ to quadratic order in v„. If we impose the 
constraint that 9' is zero at the boundaries, then f  d2x g ■ v„ -* f  d2g, ■ v„, and v„ couples 
only to the transverse part of g in f 2. In this case, d f 2/dvnidv„j =  — p„(Sjj — and

/i(v„) -♦ /i(0) +  1 pvI -  i p„v2nt, (9A.37)

in agreement with Eqs. (9.4.7)—(9.4.9) with ps identified with p and p f  identified with ps.

yjk
高亮
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3 The  spin correlation fu n c t i o n

In our treatment of the KT transition, we obtained Eqs. (9.4.9) and (9.4.26) for the 
renormalized stiffness by differentiating the free energy with respect to an externally 
imposed angle gradient. We did not, however, show explicitly that the same renormalized 
rigidity appears in the spin correlation function G(x — x') =  (cos(,9(x) — $(x'))). Here we 
will show that G(x) =  χ |_ι'/(2πΚ'«(Τ»> where K R is the reduced renormalized rigidity of Eq. 
(9.4.20). We begin, as in Sec. 9.4, by dividing 9 into an analytic part and a singular part:
9 = 9a + 9S, with V.9a =  v!j and V.9S =  v5x. The transverse velocity is determined by the
vortex density via —V2vs =  2π ( ν  x ez)nv(x) or

t)s|(x ) =  2π J  d2x'eij8jG(x — x')nv(x'), (9A.38)

where is the antisymmetric tensor, G(x) =  (1/2π)1η(|χ — χ'|/α), and V2G(x) =  <5(x). The 
regular and singular parts of 9 decouple, and the spin correlation function can be written 
as

G(x) =  Gsw(x)Gv(x), (9A.39)
where

Gsw(x) =  (ei(s«(x)“s«(0))) =  e~mxya)/2K (9A.40)
is the spin-wave or longitudinal contribution of G, and

Gy(x) =  (e>(Ss(x)-9s(0))} _  e-<(9s(*)-9s(0))2)/2 =  e-gv(x) (9A.41)

is the vortex or transverse contribution to G. (We used a cumulant expansion to obtain
the final form for Gy·)

To calculate gv(x), we use Eq. (9A.38) to write

9s(x') -  9s(x) = J  ds- Vj(s) =  2π J  <i2>iii(y)u(y), (9A.42)

where the integral over s is along some path connecting x and x' and

u(y) =  J  d s a f i G i s - y ) .  (9A.43)

(It is understood that u(y) depends on x and x' as well.) The line integral in this equation
can be done exactly using the Cauchy-Riemann relations

e,jdjG(x) = —djG±(x), e,jdjG±(x) =  5,G(x), (9A.44)
where Gx(x) =  (1/2π) taxTl (y/x)·.

w(y) =  —(G±(x' -  y) -  G±(x -  y)). (9A.45)
We now use the fact that f  d2ynv(y) =  0 to write

g v (x -x ')  =  i ( 2, ) 2 /  d2y J  <i2/ ( n v(y)nv(y'))u(y)u(y') (9A.46)

= “ (2π)2 J  d2y J  d2y'(nv(y)ny(y'))(u(y) -  u(y'))2.

Setting y =  R +  r /2  and y' =  R — r /2  and expanding in powers of r, we obtain

g v (x -x ')  =  ^(2π)2 J  d2r(nv(r)nv(0))rir^j J  d2RdiU(R)5jU(R)

=  i (2 n)2C2 J  d2R8iu8iu, (9A.47)

yjk
高亮



578 9 Topological defects

where C2 =  —(1/4) f  d2rr2 (nv(r)nv(0)) was introduced in Eq. (9.4.24). Next, using d,ud,u =  
eacdkuendiu and the relation

etkSkU =  -  g^(G (x ' -  R) -  G(y -  »))> (9A.48)

which follows from Eqs. (9A.44) and (9A.45), we obtain, after integration by parts,

g v (x -x ')  =  ~ C 2 (2 n )2 J  d2 R { [ G ( x ' - R ) - G ( x - R ) ]

xV2[G (x '-R ) -G (x -R ) ]}

=  — l c 2(27r)2[G(x' — x') — G(x' — x)

—G(x — x') +  G(x — χ)]. (9A.49)
The function G evaluated at zero argument is formally infinite. However, we do not allow
points to be closer together than a cutoff distance, and G(0) is at worst a constant. We
therefore have

gv(x — x;) =  2nC2 ln(|x — x '|/a), (9A.50)
at |x — x'| »  a, and

G(x) =  |x|—1/<2πΛ:>|χ|—27iC2 =  (9A.51)

with K r 1 = K ~ l + (2n)2 C2, in agreement with Eqs. (9.4.20) (9.4.23), and (9.4.26).

Appendix 9B Duality and the Villain model

The Hamiltonians of a number of lattice models can be expressed as a sum over bonds of 
bond energies depending only on the differences of dynamical variables on the pairs of sites 
defining the bonds. When this is the case, the bond potential can be Fourier transformed, 
and partition functions can be expressed either as sums over the original dynamical 
variables defined on lattice sites or as sums over Fourier-transform variables defined on 
bonds but subject to constraints to be discussed below. The transformation to Fourier 
transform variables is called a duality transformation. Duality and related transformations 
provide valuable insight into phase transitions in two dimensions and have played a 
particularly important role in the theory of the Kosterlitz-Thouless transition. A duality 
transformation also provides a direct relation between the lattice Coulomb gas and the 
discrete Gaussian model, which, as we shall see in the next chapter, is used to describe the 
transition from rough to smooth crystal surfaces.

In this appendix, we will review some consequences of duality transformations for 
models on two-dimensional square lattices with bond energies only on nearest neighbor 
bonds. A square lattice <£a  with N  sites x  has 2N  bonds ( x , x ' )  connecting nearest 
neighbor sites x  and x '.  Plaquettes on the lattice are squares with edges defined by bonds 
and vertices by sites, as shown in Fig. 9B.1. The reduced Hamiltonians for models of 
interest here can be expressed as

3 r  = j e / T  = ~ Υ ^ ν ( σ χ - σ Λ  (9B.l)

where σχ is the dynamical variable at the lattice site x .
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X 3
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X 1 X 2

....... . M A fc...... i fc

(a) (b)

Fig. 9B.1. (a) Section of a square lattice with sites at positions x  denoted 
by dots (·). Bonds, represented by lines, connect nearest neighbor sites. 
Plaquettes are squares whose four edges are bonds and four vertices are 
lattice sites. Shown is a plaquette centered at R with vertices xi, x 2, X3 and 
x 4 and bonds ( x i , x 2 ) ,  ( X 2 , X 3 ) ,  ( X 3, X 4 ) ,  and ( x 4 , x i ) .  (b) A site x  and its 
nearest neighbors at x  +  a x  and x  +  ay, where a X J , =  aex y . The site x  is 
shared by the bonds ( x , x  +  a x ) ,  ( x , x  +  a ,, ) ,  ( x , x  — a x ) ,  and ( x , x  — a ,,).

1 Pot t s  models

In an s-state Potts model (see Sec. 3.6), σχ is an integer-valued variable taking on values 
0, l,...,s— 1. Both σχ and the difference σχ — σχ< are defined mods so that σχ — σχ< only
takes on the values 0, l,...,s— 1. Therefore, eVia> can be represented in a Fourier series (see
Appendix 2A):

5—1

en°) =  ^ j l n k c / s ^ k ) ^  (9B.2)
k=0 

1 s“ ‘e m  =  e-2 Ki kv/ sg VW)_ , 9 B 3 j

S  '  σ=0
The Potts model partition function can now be expressed as

Z(V)  = Σ Π
σ(χ) (x.x'>

N  J ( 2 n / s ) k , ( c x - c , ) P ( k

-  ( ; )  Σ Σ Π

where the sum in the last equation is over site variables σχ and link variables kxy  =  1 ,..., s— 1 
defined on nearest neighbor bonds ( x , x ' ) .  The nearest neighbor bond ( x , x ' )  has not been 
assigned a direction and is, therefore, identical to the bond ( x ' , x ) .  Since the quantity 
kxy ( a x — σ χ/) is defined on the undirected bond and is independent of the order of x  and 
x ' ,  it must be equal to fcx' χ(σχ' — σχ), and we conclude that /cxx< =  —fcx/x. The site variables 
appear linearly in the exponent in the partition function, and their partition trace can be 
carried out exactly.

On a square lattice, the variable σχ appears four times, multiplying the link variables 
fcx,x+a for a  =  + a e x , + a e j ,  defined on the four bonds with an endpoint at x  as shown in
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Fig. 9B.lb. The trace over σχ then yields

if Σ,^χ,χ+> — 0; (9B.5)
0, otherwise,

where the sign convention fcx,x+a =  —fcx+a,x is understood. The partition function can now 
be written

z(v)= ΣΠΔ(χ) Π e"(V)· (9B-6)
k\,\' * M

This partition function is a sum over the 2N  bond variables fcxy  with N  constraints 
imposed by the functions Δ(χ) at each site x.

A judicious parameterization of the variables fcxy  guarantees that the constraint at 
each site is satisfied and converts Z (V )  into a sum over N  independent and unconstrained 
variables. To arrive at this parameterization, we show first that J ] a fcx,x+a =  0 is a
discrete generalization of the curl operator on the link variables. Therefore, the constraint
X]afex.x+a =  0 implies that the lattice curl of the link variable fcxy  is zero and can be 
expressed as a lattice divergence of a scalar field. We begin by assigning a direction to the 
bond (χ, χ') =  (χ, x +  a) pointing from x to x', as shown in Fig. 9B.2. We then associate 
with each bond (x,x') a perpendicular bond (R,R') passing through its center with a 
direction determined by the right hand rule, as shown in Fig. 9B.2. The bonds (R,R') 
terminate at sites R that form a regular square lattice iPg, which is the dual lattice, of 

as shown in Fig. 9B.2b. A given bond can be specified either by (x,x') or by its dual 
lattice version (R,R'). We can now associate with each bond a vector kRR< =  /cr r < ( R '  —  R) 
pointing along the directed dual bond, where /cR R< =  kxy .  Then,

= έ Σ kR,R'-(R,-R). (9B·7)
a plaquette

where the final sum is over the bonds in the dual lattice plaquette centered at x, as shown 
in Fig. 9B.2b. The right hand side of this equation is the lattice generalization of the 
integral a~2 <j> k ■ dl =  a~2 f  (V  x k) ■ dS, i.e.,

^ U  =  ( V x k ) r e 2, (9B.8)
a

where (V x k)L denotes the lattice curl of kR R*. Thus, the constraint imposed by Δ(χ) is 
that the lattice curl of kRR' on the plaquette centered at x is zero. This implies that kRR< 
can be expressed as the lattice divergence of a scalar m u:

knj(' =  (Rf — R)(wr  — mg') (9B.9)

or

kKM< =  a“2(R  -  R) ■ kR R' =  mR -  mR>. (9B.10)
Because /cR R< is an integer, mg and mR' are also. The partition function can now be written 
as

Z (V )  = Σ Π  eV(mR-mR,) (9B.11)
mR (R,R'>

Eqs. (9B.4) and (9B.11) are equivalent expressions of the same partition function. The 
first, however, is a trace over integer valued variables σχ on the sites x of whereas the 
second is a trace over integer valued variables ihr on the sites R of the dual lattice, .
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Fig. 9B.2. (a) This figure shows the construction o f the nearest neighbor 
bond (R, R') in the dual lattice from its associated bond (x, x') in the 
lattice A  direction pointing from the site x  to the site x' is assigned to 
the bond (x,x')· The bond (R,R') is the perpendicular bisector (x, x') and 
points in a direction determined by the right hand rule relative to the normal 
pointing out o f the page, (b) A  section o f  the lattice <£a and its associated 
dual lattice Sites and bonds in are, respectively, represented as full 
circles and solid lines; those in are shown as squares and dashed lines.

In the preceding analysis, we did not specify the precise form o f V(a).  In the usual 
definition o f  the s-state Potts model,

V( a  -  σ') =  K s 5 „ s  =  sK,5σ_</,ο (9B.12)

and

e» >  =  l +  (esK -  1)«5σ>0, (9B.13)

where K  =  J / T  and where we have not included the constant —K  that appears in the 
definition o f  Eq. (3.6.6). With this form for V(a),

n-l

( * * - ! )  +  £ . —2 niko/s

- [ ^ - l  +  s4 ,o ]
S

~( esK 
s

where

esK =

(9B.14)

(9B.15)
— 1

Thus, apart from a trivial prefactor, e Vik) and e via> have identical forms. Eqs. (9B.4), 
(9B.12), and (9B.14) then imply

Z ( K ) :
1 ■'N 
~( esK -  l ) 2 
s

Z ( K ) . (9B.16)

If T  increases, K  decreases, and K  increases. The duality transformation maps the partition 
function at low temperatures onto the partition function at high temperatures. If the Potts 
model in question has a second order transition at some K  =  K c, its free energy, and thus 
its partition function, must be singular at K c. I f Z ( K )  has a singularity at K c, then Z ( K )  
must have the same singularity at K  =  K c, and from Eq. (9B.15), K c must satisfy

(esKc — l)2 =  s (9B.17)
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Tc =  ■ 77 - Γ  V (9B·18)ln(l +  φ )
The transition temperature for the Ising model (the two-state Potts model) is, therefore,

Γ< =  , ^ = 1 1 1 J · (9B'19> ln(l +  y/2)

N ote that the prefactor o f  Z ( K )  in Eq. (9B.16) is unity when Κ  =  K  =  K c as required.

2 The xy-, Villain, and lattice Coulomb-gas models

In the xy-model, the variable σχ becomes the continuous angle variable θχ, and the 
potential F(,9) becomes a periodic function o f  $ with period In.  In the simplest version 
o f the xy-model,

F(9) =  X ( c o s 9 - l ) ,  (9B.20)

where, for ease o f  presentation in this appendix, we have chosen — F(S) to be equal to
zero at its minimum at & =  0. The periodicity o f  F(,9) implies that it has a Fourier
decomposition,

oo

e V(B) =  Σ  eikSe V(k), (9B.21)

where

=  f  Γ .
2π Jo

d9e~m e m ) . (9B.22)

When F(,9) is the cosine function o f Eq. (9B.20)
ρ2π

=  [  dBe- ik:ieK(cos:)- i> =  e - KIk( K )
2π Jo
J  ( K / 2 ) k/ k !, for K  - + 0 ;
X i l n K ) - ^ 2^  for X  -> oo, (9B'23)

where h ( K )  is the modified Bessel function (Abramowitz and Stegun 1972, p. 374). The 
partition function for the xy-model can be transformed to dual variables following the 
same steps as outlined above for the Potts model:

K ( 9 * - 9  /)
__ pin

Z ( V )  =  Π /  ^ U e
X Jo <x.x'}

= Π  / (9B.24)

χ J o  (χ.χ'> *xy

-  Σ Π  Δίχ) /^'» = Σ Π
kv , X kR (R.R')

where, as before, R is a site on the dual lattice, and /cr =  0, ± 1 ,± 2 ,.. .  is an integer valued 
function. Eq. (9B.24) is the duality transformation for the xy-model. It is very similar to 
that for the Potts model except that F(,9) is a periodic function o f the continuous variable 
9  and V(k)  is a function o f the integer variable k, whereas, in the Potts case, both F and
V are functions o f an integer mod s.

Further transformations employing the Poisson summation formula  provide useful 
representations for the xy-model. The Poisson summation formula,
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CO CO Λ(

Σ * < « =  Σ  /I— λ.— J —'
(9B.25)

where k is an integer, applies to any function g((j>) defined on the interval (—00, co) and 
having a Fourier transform. When applied to the periodic potential o f the χμ-model, which 
can be written as a sum over integers k according to Eq. (9B.21), it implies

At low temperature, V(k)  «  —k 2/ ( 2 K )  — \ n ( 2 n K ) / 2  [Eq. (9B.23)]. If this simple form is 
assumed for V,  then

This is the Villain model (Villain 1975). It is a version o f  the xy-model in which the periodic 
cosine potential o f Eq. (9B.20) is replaced by the periodic function lnQ ^m exp(—K ( 9  — 
2nm)2/2)].  The link variable can be decomposed into a lattice version o f  longitudinal 
and transverse parts: mxy  =  mx — m x> +  m^x,, where m^x, is determined entirely by the 
vorticities mR> on the dual lattice via X )plaquette mx x' =  mR'· The sums over the site integers 
mx convert the integrals over ,9X from 0 to 2π to integrals from —00 to +00. In this form, 
the Villain model is a lattice version o f  the low-temperature continuum model that we used 
to discuss vortices and the Kosterlitz-Thouless transition in the xy-model. The difference 
,9X — ,9X< is the lattice version o f  the longitudinal part o f vs =  V 0  [Eq. (9.4.4)] and m^x, is 
the lattice version o f v̂ -.

Finally, the Possion summation formula can be applied to the dual version o f  the 
xy-model [Eq. (9B.24)]:

(9B.26)

where

(9B.27)

With this expression, the partition function [Eq. (9B.24)] can be rewritten as

(9B.28)

e VoW _  e-K»2/2 (9B.29)

and

(9B.30)

Z
%  (R .R )

(9B.31)

If the Villain form for V  is used, then

Ζ  = Σ Π ( 2 π Κ )  1/2exp - ^ ( f c R - fcR-)2 . (9B.32)
fcR R,R'
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This is the discrete Gaussian model.  It is dual to the Villain version o f  the xy-model, Eq. 
(9B.30). Then, using the Poisson summation formula [Eq. (9B.25), we find

-  ? /
άφκ  exp ' 2κ  E ^ r - ^ r')2

(R.R'}

exp 2 ; n ^ m R0 R

=  Σ εχρ
mR

-2π 2Κ  ^ m RG(R -  R')mR,
R.R'

(9B.33)

where G(R) is the lattice Green function 

d2q  e‘,R
(2π)2 e(q) (|R|/a>i)

G(R)
- I

G(0) +  2π ln(|R |/a) +  const., (9B.34)

where e(q) =  2(2 — cos qxa — cos qya). The final form is the lattice Coulomb gas [Eq. 
(9.4.19)] without the core energy.
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9.1 Show th a t 0(x) =  Y ji 0; with 0,· =  ki tan -1 [(_y—y ,) /(x —x,)] is a solution in two 
dimensions to  V20 =  0 with vortices o f  strength ki a t positions x; =  (x„y,·)· 
One way to  show this is to use the complex coordinates ζ = x  +  iy and 
ζ = x  — iy. Then V2 =  (d/dz){d/dz),  and any function o f z  is a solution to 
Laplace’s equation. Finally, Im  ln(z — z,·) is a solution with a unit strength 
vortex at z

9.2 Derive Eq. (9.3.23) by introducing a vector potential A for hs =  V  x A.
9.3 A hedgehog in a three-dim ensional O3 model is a m apping from  the sphere 

in three-dim ensional coordinate space onto the unit sphere o f the order 
param eter space. Let Θ and φ  be the spherical angles o f the coordinate-space 
sphere and Θ, and let φ  be the spherical angles o f the order param eter sphere. 
Then Θ and φ  and  the unit vector field n(0, φ) can be regarded as functions 
o f Θ and φ. The analog o f the winding num ber o f the xy-model is then

Problems
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Use Eq. (9P.2) to  show tha t q — +1 for η =  + x /  | x  |. Use Eq. (9P.1) to 
construct explicit forms for n with arbitrary  “charge” q.

9.4 (Hedgehogs in a nematic) Calculate the elastic energy o f a spherical nem atic 
droplet o f  radius R  with a radial hedgehog, in which n =  ( x , y , z ) / |x |, and 
with a hyperbolic hedgehog, in which n =  (—x, — y ,z ) / |x | assuming, no 
surface anchoring. Show th a t the radial hedgehog has lower energy than  
the hyperbolic hedgehog for K j  > 6K\.  In a real nem atic droplet, surface 
anchoring cannot be neglected. Nevertheless, a transition from  a hyperbolic 
to a radial hedgehog can be observed as the nematic-to-smectic-yl transition 
where K i  diverges is approached. (Lavrentovich and Terent’ev, 1986.)

9.5 Energies o f  dislocations in type I smectic liquid crystals, in which the twist 
and  bend penetration  depths are smaller than  the correlation length, can be 
calculated using the Landau-Peierls elastic energy o f Eq. (6.3.10) ra ther than  
the free energy o f  Eq. (6.3.11). In  this problem, you are to  use the Landau- 
Peierls free energy to calculate dislocation energies in terms o f the dislocation 
source function b(x) introduced in Eq. (9.3.68). The field v(x) =  V u (x )  can be 
decom posed into a transverse part and  a longitudinal part according to  Eqs. 
(9.3.66), with the transverse part determ ined entirely by b(q). The longitudinal 
part h(q) is determ ined by the Euler-Lagrange equation for u(x), which, when 
expressed in term s o f v, is

where λ\  =  (K \ / B )*/2. Show tha t

* ( , )  -  ~ q H q i  +  a fe j .) (1 ~  '1̂ )β* X "(<Ι>1·

Use this result and the Landau-Peierls free energy to  show tha t
1 f  d 3q f K i { \ d e z ■ [q x b(q)]|2}
2 J (2π )3 \  { q l + X \ q \ _ }

+ 2£s|Mq)l2 +  2 £ e|b± (q)|2 j

where Es and Ee are, respectively, the core energy per unit length o f screw 
and edge dislocations. Use this result to show tha t the interaction potential 
between screw dislocations in this approxim ation has zero range and th a t the 
interaction potential between edge dislocations is given by Eq. (9.3.82).

9.6 In  this problem, you will calculate the contribution to  the F rank  elastic con
stan t in the nem atic phase arising from  a distribution o f unbound dislocation 
loops. Let

£core =  2 /  ( 2 ^ 2£<'|b(q)|2 
in Eq. (9.3.77). Then, using <5n =  — +  <5ns, where <5ns is the contribution
to <5n arising from  dislocations with com ponents Snt and δη± given by Eqs. 
(9.3.71). Calculate (|<5nt(q)|2) and (|<5nx(q)|2) using Debye-Hiickel theory for
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b, and show th a t the renorm alized F rank  elastic constants are K f  — K i, 
K ?  =  K 2 +  2Ec, and K «  =  K 3 +  2E c.

9.7 (Mean-field theory for the lattice C oulom b gas) In the lattice C oulom b gas 
with H am iltonian Eq. (9.4.19), each site 1 on the lattice can be occupied by a 
charge o f  strength ki =  0, +1, +2, " . I n  mean-field theory, the density m atrix 
is expressed as a product o f site density m atrices p =  fJi pi, where Trpi =  1 
(see Sec. 4.8). For the C oulom b gas, pi can be written as '}2k a y ^ ,  where

ak,i — 1» atid where a y  — (<5y,) =  (ny) is the average num ber o f particles 
o f charge k at site 1.

(a) Show tha t the mean-field free energy can be written as

F  =  \  5Z (n i)^U '(”i') +  Ec Y ^ k 2{nk<i)
U' y

+ T  X](ny) In (ny),
k, 1

where (ni) =  J2k(nk,l) *s the average charge at site 1 and V\y is the 
C oulom b potential.

(b) Derive the mean-field equation for (ny ), and show th a t it has an 1- 
independent solution,

e ~ k 2Ec/ T  

(nk) =  (ny) — ^  e-k2Ec/T ’

with average num ber o f  vortices (n) =  X^(njt) a t each site equal to zero.
(c) Show tha t the charge density correlation function

Gw(q) =  ^ e _'q<R|“ R|,)(ninii),

where ni =  S y  n y  satisfies Eq. (9.4.44) with B l — k 2(nk).

You m ay wish to  introduce a chemical potential μ^\ conjugate to ny to  solve 
parts (b) and (c).

9.8 The H am iltonian for vortices and dislocations in two dimensions can be 
written as [Eq. (9.3.50)]

W  =  l γ2 f  d2xd2x U { \ ,x')s(x)s(x') +  Ec^ 2 b l +  Es ^ 2 s 2 ,

a a.

where s(x) =  s(x) — ei;V;b,(x),

U < x x ’ ) =  f  d q —( ’ ’ J (2n)2q4

and Ec and Es are, respectively, the dislocation and disclination core energies.

(a) Using this expression, show th a t the energy o f a single isolated disclination 
at the center o f  a disc o f radius R  is proportional to R 2 In R.

(b) Use this energy to derive Eq. (9.5.1) when s(x) =  0.
(c) Above the m elting transition, the dislocation density b(x) can be treated

yjk
高亮
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as an independent continuum  variable (as in the Debye-Hiickel approxi
mation). Calculate the equilibrium  value o f b(x) in the presence o f a non
vanishing disclination density s(x). Show th a t b(x) screens the interaction 
between disclinations, leading to  an effective disclination H am iltonian

with a logarithm ic interaction between disclinations, where a is the dislo
cation core radius.

(d) Calculate the effective interaction between disclinations in the isotropic 
fluid phase where s(x) is a free field.

9.9 This problem  will lead you through the derivation o f Eq. (9.3.33) for ^ i;(x).

(a) Let &<2>(x) =  — \n(r/ a)/ (2π), where r =  (x2 +  y2)1/2. Show by direct 
evaluation that

where A  and B  are constants (possibly depending on the sample size R. 
[Hint: write e,qx =  1 — (q ■ x)2/2  — [1 — (q ■ x)2/2 ) +  e'q x] and proceed 
along the lines developed in Eqs. (6.1.24) to  (6.1.27).]

(c) Use the fact th a t —V2^ <4) =  ^ (2) to show tha t A =  —(3/2) — lna.
(d) Derive Eq. (9.3.33) using a =  1.

9.10 This problem  will lead you through a derivation o f the connection between the 
partion  functions o f the two-dim ensional C oulom b gas and the sine-Gordon 
model (see Secs. 10.2 and 10.6). Assume tha t there are only charges q =  +1 
at respective positions x+ and x^. The C oulom b gas H am iltonian (without 
core energies) is

where ^ <2)(x) is defined in Problem  9.9. Using the H ubbard-Stratonovich (HS) 
transform ation discussed in A ppendix 5A, show tha t

—V 2# 2)(x) =  <5<2)(x)·

(b) Show by direct evaluation o f the integral that

r 2(ln r + A) +  B,

β·#\ = J  ̂2χά2χ'ην(χ)(̂ 2)(χ -  x ' ) r t v ( x ' ) ,

where C is a constant. The C oulom b gas partition  function is

where y  is the charge fugacity, and
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is the partition  function for N+ positive charges and iV_ negative charges. Use 
the HS form  for e~PJfc and the expression for nv(x) as a sum over ^-functions 
to  show tha t Z (y) — C Z sg = C f  3 φ ( χ ) ε ~ ^ ία, where

P ^ S G  =  I  ά2χ ( ν φ ) 2 d2x c o s  φ(χ)

is the reduced sine-G ordon H am iltonian. Thus, the sine-G ordon H am iltonian 
is dual to  the two-dimensional C oulom b gas Ham iltonian. This relation 
implies, as we shall see in m ore detail in Sec. 10.6, tha t the sine-G ordon 
model has a transition  with the same properties as the Kosterlitz-Thouless 
transition.

.11 Consider a low-angle grain boundary  in a two-dim ensional isotropic crystal 
consisting o f  edge dislocations at positions nl along the y-axis. The Burgers 
vector density for this grain boundary  is

b(x) =  exb Σ  <5(y -  nl)S(x).
n

(a) Show tha t the shear stress generated by this boundary is

hx  00axy(x) — 4π2ϋ-γ y ^ k c o s ( 2 n k y / l ) e ~ 2nk^ /l,
k=l

where D =  bY2/4n. This shows tha t stress decays exponentially away 
from  the grain boundary with a length scale set by the distance between 
dislocations. [Solution h in ts : this problem  can be solved in several ways. 
O ne way is to  sum the expression Eq. (9.3.35) for the stress generated by 
a single dislocation over all dislocations. The Poisson sum m ation form ula 
[Eq. (9B.25)] should be used to evaluate this sum. A nother way is to 
solve for the Airy stress function [Eq. (9.3.48)] in Fourier space using 
b(<l) =  ex (b /l)J2n3(cl y ~  (2πη/ί)) and to  use Eq. (9.3.46) to evaluate axy(q) 
by Fourier transform ation σχ>,(χ).]

(b) Show th a t the energy per unit length o f  a low-angle grain boundary with
I a, where a is the core size, is

I  =  \ τ [1 ~ 1η(2πα/ /}] =  \ θ θ [ 1 - Μ Θ / 2 π ) \ ,

where, in the final expression, we used a — b and Θ «  b/1. [Solution hint: 
introduce cuts for each dislocation extending along the x-axis from  a to 
oo. Then use

poo

N b  /  dxaxy,
J  a

where dSj is the surface element associated with the cut o f the fcth 
dislocation and N  is the num ber o f dislocations in the boundary. You 
m ay also use Eq. (9.3.51), bu t then you will have to introduce a cutoff in 
the sum  XX1 A )  at k & 1/(2πα).]

E  =  j  /  d 2 x u ‘Ja U =  \  Σ /  d S J u^a ‘J =  \



10
Walls, kinks and solitons

In C hapter 9, we studied topological defects in ordered systems with a broken 
continuous symmetry. In  this chapter, we will study fundam ental defects in 
systems with discrete symmetry such as the Ising model. These defects are 
surfaces, o f one dimension less than  the dimension o f space, th a t separate regions 
o f equal free energy bu t with different values o f the order param eter. They are 
variously called domain walls, kinks, solitons, discommensurations, o r simply walls, 
depending on the particu lar system and  context. They can also be regarded as 
interfaces, such as, for example, the interface separating coexisting liquid and gas 
phases. They play an im portant, if no t dom inant, role in determ ining the physical 
properties o f  systems with discrete symmetry.

We begin this chapter (Sec. 10.1) with a num ber o f  examples o f  walls. In 
Sec. 10.2, we study the continuum  mean-field theory for kinks and solitons. Then, 
in Sec. 10.3, we discuss in some detail the Frenkel-K ontorow a model for atoms 
adsorbed on a periodic substrate. This will introduce in a natu ral way a lattice of 
interacting kinks (called discom m ensurations in this case) to describe the incom 
m ensurate phase o f adsorbed m onolayers. A fter investigating the properties of 
interacting kinks at zero tem perature, we will in Sec. 10.4 study therm al fluctua
tions o f walls in dimensions greater than  one and show th a t structureless walls 
in three dimensions o r less have divergent height fluctuations th a t render them  
macroscopically rough. In Sec. 10.5, we will consider arrays o f walls, beginning 
with the repulsive interaction between walls arising from  the reduction in entropy 
produced by the steric confinement o f  a wall between two others. This will 
provide a quantitatively correct theory o f  the com m ensurate-to-incom m ensurate 
transition observed in m onolayers adsorbed on graphite and  discussed in Sec. 2.9. 
In Sec. 10.6, we will discuss the interface between coexisting solids and liquids 
o r gases. Such interfaces are flat and sm ooth at low tem peratures, where their 
shape is fixed by the periodic solid substrate. A t high tem peratures, they develop 
divergent height fluctuations and become rough. We will study the roughening 
transition  between sm ooth and rough interfaces. Finally, we will study faceting 
and equilibrium shapes o f crystals.

590
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(a) |  t ί ί t t ί ί
(b) |  { { 1 1 1  { |

. . .  1 1 1 1 1 1 1 1

»  t t t t t t t t
Fig. 10.1.1. Topologically inequivalent states o f the one-dimensional Ising 
model: (a) the spin-up ground state, (b) the spin-down ground state, (c) a 
kink state with a positive domain wall separating a spin-down ground state 
from a spin-up ground state, and (d) a kink state with a negative domain 
wall. These four states can be labeled according to the sign o f  the spin at 
—oo and +oo. Thus, the states depicted in (a) to (d) are, respectively, (+ , + ), 
( - , - ) ,  ( - , + )  and ( + , - ) .

, Π Η , Τ Π Τ

Fig. 10.1.2. Mapping o f  a one-dimensional Ising model with a single domain 
wall onto the Ising order parameter space.

10.1 Some simple examples

Consider a linear Ising chain. I t has two equivalent ground states, one with spin 
up and the o ther with spin down, as shown in Figs. 10.1.1a and b. I f  a boundary 
condition is im posed specifying the spins to be up at one end (say at z = —L /2 )  
and down at the o ther end (say at z = L/2),  then there m ust be a spin flip 
somewhere in the chain, as shown in Figs. 10.1.1c and d. This spin flip is a 
kink th a t cannot be removed so long as the boundary  conditions do no t change. 
Like the topological defects studied in the preceding chapter, the kink can be 
represented as a m ap from  real space (the lattice o f the Ising model) to  an order 
param eter space. The order param eter space for the Ising model consists o f two 
points, σ  =  +1. All points to the left o f the kink are m apped into the spin-up 
point, and  all points to  the right o f the kink are m apped into the spin-down 
point, as shown in Fig. 10.1.2.

A kink can have a positive or a negative sign depending on w hether the up 
spins are on its right or on its left. A state with a positive and a negative kink
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is topologically equivalent to  one o f the ground states since the two kinks can 
annihilate. Thus, the topological character o f a state o f the one-dimensional Ising 
model is determ ined by the direction o f spins at z — + 00. Since positive and 
negative kinks can come together and annihilate to produce a uniform  ground 
state, there are only four topologically distinct sectors o f the one-dimensional 
Ising m odel: the ground states ( + ,+ )  and and the kink and anti-kink
states (—, + ) and (+ , —). In the param agnetic state, which is therm odynam ically 
stable at any nonzero tem perature, the num ber o f kink-anti-kink pairs is o f  order 
the num ber o f spins, and the distinction between the four topological sectors is 
unim portant. A t zero tem perature, however, the kink states will have a higher 
energy than  the ground states.

There are only four topologically distinct states in the Ising model because 
there are only two energetically equivalent ground states. In models with more 
than  two ground states, there are m ore topologically inequivalent states. For 
example, the four-state Potts model has four ground states, which we can label
0, 1, 2 and 3. There can be dom ain walls separating any two ground states. Two 
walls separating, respectively, 0  and 1 and 1 and 2 can com bine to  produce a wall 
separating 0  and 2 , bu t they cannot com bine to  produce a uniform  ground state. 
The state with two walls shown in Fig. 10.1.3e is no t topologically equivalent to 
the one-wall state shown in Fig. 10.1.3f. The num ber o f distinct ground states 
need no t be finite. For example, if a — cos φ  potential is added to the elastic xy-  
H am iltonian discussed in C hapter 6, there will be a countable infinity o f  ground 
states with φ  =  2ηπ, with n an integer. This model and its generalizations can 
have topologically distinct states with an extensive num ber o f positive or negative 
kinks. We will investigate one version o f this model in detail in Sec. 10.3.

The poin t kink o f a one-dimensional Ising model becomes a one-dimensional 
line defect in a two-dimensional Ising model, as depicted in Fig. 10.1.4, and a two- 
dim ensional surface defect in a three-dim ensional Ising model. These generalized 
kinks have spatial dim ension one less than  the dimension o f space, and are 
generally referred to  as dom ain walls. In the one-dimensional Ising model with 
H am iltonian =  — J  ^ <ιι,> σ\σ\, all spins are aligned in the ground state, and 
each bond <  1,1' >  has an energy — J. In a state with a single kink, there is a 
single broken bond with opposite signs o f the spin at its vertices and energy +J. 
Thus, the energy o f a kink state relative to the ground state is + 2 J. In higher 
dimensions, the energy o f a dom ain wall is proportional to  the num ber o f broken 
bonds. Thus, in an Ising model on a ^-dim ensional lattice o f  side L =  N\a, the 
wall energy is proportional to  L d~ l :

£ kink =  2 J N t 1 =  <rLd~ \  (10.1.1)

where σ  =  2 is a “surface” tension. The above energy should be compared 
with the energy tha t scales as L d~2 [Eq. (6.1.3)] o f a system with continuous 
symmetry with similar boundary  conditions

In  one dimension, a kink can be located at any bond on the lattice. The entropy
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Fig. 10.1.3. (a)-(d) Ground states o f  the four-state Potts model, (e) State 
with a single 0 — 1 kink, (f) State with a 0 — 1 kink and a 1 — 2 kink.
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Fig. 10.1.4. Walls in a two-dimensional Ising model, (a) A  straight wall, (b)
A wandering domain wall. The wandering wall has a greater length (area) 
than the flat wall and, therefore, greater energy (for positive surface tension). 
It also has greater entropy so the free energy o f the wandering wall at finite 
temperature is generally less than that o f  the flat wall, (c) A  droplet o f down 
spins separated by a closed domain wall from a sea o f  up spins.
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o f a single kink in a lattice o f N  sites is thus In N,  and the free energy E  — T S  
is always lower a t any nonzero tem perature if there is a kink than  if there is not. 
Since a single kink destroys long-range order, the Ising model is disordered for 
all T  >  0. The lower critical dimension o f the Ising model is one.

In  dimensions greater than  one, a dom ain wall does no t have to be flat. I t can 
w ander from  one end o f  the system to the o ther or separate a droplet o f  one 
phase from  the other, as shown in Figs. 10.1.4b and c. W andering increases the 
length o f the wall and, therefore, its energy. W andering also leads to  an increase 
in the entropy o f the wall. Thus, at finite tem perature, the surface tension o f a 
single wall will have an energetic part and an entropic part. I t can be defined as 
the difference in free energy per unit area between the single kink state (—,+ )  
and the ground state (+ , + ):

σ (Τ )  =  [F(— l·) -  F (+ + ) \ /L d~1. (10.1.2)

This is the generalization to systems with discrete symmetry o f the expression, 
Eq. (9.4.3), for the spin-wave stiffness. In  the ordered phase o f the Ising model, 
σ (Τ ) is nonzero. In  the disordered phase, it is zero.

Because o f its increased entropy, the free energy o f  the wandering wall may 
be less than  tha t o f  the flat wall at nonzero tem perature. This com petition 
between energy and entropy o f dom ain walls can be illustrated in the following 
simple estim ate o f the transition tem perature o f the two-dimensional Ising model. 
A t very low tem peratures in the ferrom agnetic phase, there should be very few 
flipped spins. There will be small clusters o f flipped spins separated by dom ain 
walls. As the tem perature is increased, the size and num ber o f these clusters will 
increase until finally, at Tc, there will be as m any up spins as down spins. A good 
estim ate o f Tc is the tem perature at which it becomes favorable to m ake clusters 
o f  arb itrary  as opposed to finite size. The energy o f a cluster with P  perim eter 
bonds is 2JP .  The entropy o f the same cluster is simply the logarithm  o f the 
num ber Cp o f  closed-loop nonintersecting P -step walks. It can be estim ated by 
considering the various ways o f constructing a closed walk. A fter the first step has 
been taken, the next step can be in any o f  three directions, since it is no t allowed 
to step back on itself. The th ird  step can also be in any o f three directions. I f  this 
process could be continued indefinitely (ignoring the constraint th a t the walk has 
to close on itself), Cp would simply be 3P. There are configurations where there 
will be only two choices for the fourth step if the walk is no t to  close after only 
four steps. A m ore careful analysis o f this effect yields Cp =  (2.639)p . The free 
energy o f a single wall o f  perim eter P  is then

F  =  E  -  T S  ~  U P  -  T  In CP =  [2J -  T  ln(2.639)]P. (10.1.3)

Thus, for tem peratures greater than

T'c =  2J/ln(2 .639), (10.1.4)

large perim eter clusters are m ore favorable than  small ones, and a transition 
to  the disordered state takes place. This calculation is over-simplified in tha t it
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considers only one cluster o f  down spins. The estimate o f Tc it gives, however, 
is very close to  the exact result Tc =  2 J / ln ( l  +  y/2) =  J /  ln(2.414) [Eq. (9B.19)]. 
N ote th a t the reasoning leading to  this estim ation o f  Tc is very similar to  the 
simple Kosterlitz-Thouless calculation o f the transition tem perature o f  the two- 
dim ensional xy-model presented in C hapter 9.

10.2 Domain walls in mean-field theory

D om ain walls are easily generalized to  systems with a coarse-grained continuous 
order param eter field such as those described by the Landau theories o f  C hapter 
3. In  this case, the dom ain wall provides a transition between energetically 
equivalent m inim a o f the free energy, as shown in Fig. 10.2.1. A t one end o f the 
sample, the order param eter φ  takes on the value φι  corresponding to one o f 
the m inim a o f the free energy. A t the o ther end o f  the sample, it takes on the 
value Φ2 corresponding to  the o ther minimum, φ  changes continuously in passing 
from  one end o f  the sample to  the other, and there is an increase in free energy 
relative to  a spatially uniform  equilibrium  state bo th  because o f the energy cost 
associated with spatial variation o f the order param eter and  because the order 
param eter m ust take on values for which the local free energy is higher than  at 
its minima. Rem em ber th a t φ  can be the order param eter for any system with 
discrete symmetry. The order param eter profile depicted in Fig. 10.2.1b could, 
therefore, represent the m agnetization near an Ising dom ain wall, the density 
profile near a liquid-gas interface, o r the relative density profile a t the interface 
separating two coexisting liquid phases. In the la tte r two cases, the free energy 
curve shown in Fig. 10.2.1 need no t be symmetric about any axis (as discussed in 
Sec. 4.3).

The field theories o f C hapters 4 and 5 can be used to calculate the energy of 
a flat dom ain wall. I f  all spatial variation takes place along the z-direction, the 
L andau  mean-field free energy per unit area relative to the energy o f the ground 
state is

z-axis. e(z) is the local energy (strictly speaking free energy) density. The function 
/ ( φ )  is depicted schematically in Fig. 10.2.1. I t has two equivalent m inim a at 
φ  =  φ ι  and φ  =  Φ2 but, is no t necessarily symmetric about any axis. Its value 
at these m inim a is fo  =  ί(Φ ι) =  /(Φ ι)· The dom ain wall is described by an 
extrem um  with respect to φ  of F /A  subject to  the boundary conditions tha t 
φ  = φ ι  at z =  —00 and  φ  — Φ2 at z =  00. The value o f F /A  a t φ  satisfying this 
extrem al solution is simply the surface tension σ  o f  the dom ain wall.

dz / { φ )  +  - ε (ά φ /ά ζ )2 \ =  /  dze{z), (10.2 .1)(10.2.1)

where / ( φ )  =  /(</>) — /o  is the free energy density m easured relative to  the ground 
state and where A  =  L d~ l is the (d — 1)-dimensional area perpendicular to  the
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(a) (b)

Fig. 10.2.1. (a) Free energy with two energetically equivalent minima at 
distinct values φ { and φ2 of the order parameter φ. Note that the shape of 
the free energy curve does not have to be symmetric, (b) Schematic 
one-dimensional representation of the domain wall as a function of spatial 
coordinate z.

Before presenting an analytical calculation o f  dom ain wall solutions and as
sociated energies, it is instructive to  consider a heuristic solution. As discussed 
above, there are two contributions to  the energy o f the kink: one coming from 
the energy density / ( φ )  and the o ther from  the gradient term  \ ε ( ά φ / ά ζ ) 2. Assume 
tha t the kink is localized to  a region o f width I, as shown in Fig. 10.2.2. Outside 
this region, the system is in one o f  its ground states, and /  is zero. W ithin the 
kink, the order param eter has to  change from  φ ι  to  φ 2· In this process, ] ( φ )  

takes on all values between 0  and eo> the height o f the barrier separating the two 
minima. This change occurs over a distance I so th a t the total free energy cost 
arising from  /  is o f  order eol. The energy associated with the spatial variation 
o f φ  is o f order \ ο ( φ ι  — φ ι Ϋ / Ι  so tha t the total free energy per unit area o f the 
kink is

F, ~ e o l  +  c ^ ,  (10.2.2)
A  21

where Α φ  — φ ι  — φ ι ·  The optim al length o f the kink can be obtained by 
minimizing this equation with respect to  I to  yield

V =  [c(A4>)2/2 e0]1/2 (10-2.3)

and

σ  =  F / A  — 2 €0Γ. (10.2.4)

N ot surprisingly, the surface tension o f  the kink is o f the form  (condensation 
energy /  volume ) x (length). The scale o f the length Γ  is set by the length
(c /eo)1/2, which can vary widely depending on the system, tem perature and  other
variables. I t is generally o f  order the correlation length ξ discussed in C hapter 4. 
In  the Ising model near T  =  0, it is o f  the order o f  the lattice spacing, as is the 
correlation length.
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eo

--------------Φ2

I

Fig. 10.2.2. Representation o f an idealized kink in which all spatial variation 
takes place in a region o f  length /.

We will now seek an  analytical solution for the kink. In  equilibrium, φ  satisfies 
the Euler-Lagrange equation

This equation can be solved in the standard  way by multiplying bo th  sides by 
ά φ / d z  to  yield

t = ± {l ' f + B ) ' 12· "o26) 
where B  is a constant o f integration. The kink boundary conditions are ά φ / d z  =  0 
at z  =  +00  and e i t he r  φ  = φ ι  at ζ =  —oo and φ  =  Φ2 a t z =  +00  for a positive 
kink or  φ  — φ 2 at z =  —00 and φ  =  φ ι  at z =  +00  for a negative kink (anti-kink). 
The positive solution to Eq. (10.2.6) corresponds to  the positive kink, and the 
negative solution corresponds to  the negative kink. Since f  is zero when φ  — φ ι  

or φ  = φ 2, the constant o f integration B  m ust be zero in order for ά φ / d z  to be 
zero at z =  + 00. Integration o f Eq. (10.2.6) yields the implicit equation 

[ φ(ζ) ά φ
ζ -  zo =  +  /  -̂ — ψ (10.2.7)

Λ(ζ„) (2m / c ) V 2
for φ ( ζ ) .  This equation clearly satisfies φ  = φ (ζ ο)  when z =  z0. It is useful to 
choose zo to  be the position o f the center o f the kink. This can be done by 
choosing φ {ζο)  to  be the value o f φ  at the kink center. For symmetrical models, 
this value is usually zero. The surface tension o f the kink can be calculated using 
Eqs. (10.2.1) and (10.2.6) with 5 = 0 :

/
OO Ι·φ 2

ί ( φ ( ζ ) ) ά ζ  =  2 ( c /2 )1/2 /  I m  I1/ 2 ά φ .  (10.2.8)
-00 J φι

This result applies to bo th  positive and negative kinks.

1 T h e  φ 4 k i n k

A n analytic solution for the above kink equations can be obtained for the φ 4 
model discussed in Sec. 4.3 with

ί  = - γ < ?  +  υ φ \  (10.2.9)

(Note th a t we have set the coefficient o f  φ 2 to — \ r  with r  >  0.)
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Φ ο

(b)

Fig. 10.2.3. (a) φ(ζ) and (b) e(z) for a φ4 kink.

There are two m inim a in /  at φ =  ± φ 0 — ± (r /4 u )1/2 with f 0 — —r2/ l6 u  
-rc^o/4 so tha t

1 (Φ2 ~ Φ 2ο)2 
4 ΦΙ

Using this expression in Eq. (10.2.7), we obtain

. Zo =  +  ί — *Φ = + ( 2 c/r)1' 2 f
- J  | 2/ / c  |»/2 1 ’ J

Φο I άφ

Φ2 ~Φ ο
=  + (c /2r )1/2 tan h - 1(c/>/ | φο I). ( 10.2 .11)

Thus, the order param eter φ(ζ), the energy density e(z), and the surface tension 
σ  are, respectively,

φ(ζ)  =  +(/>0 tanh[(z -  ζ0) / { φ .ξ ) \ ,  (10.2 .12)

e(z) =  2 | / 0 |sech 4[ ( z - z 0) /(V 2 i)], (10.2.13)

and

σ =  (8 /3 )(V 2 i) | f 0 |=  (2 ^ 2 /3 )(ξτφ 2), (10.2.14)

where ξ  =  (c /r ) l/2 is the mean-field correlation length introduced in Sec. 4.3. At 
the center o f the kink at ζ =  zo, φ  is zero. The energy density is strongly localized 
in space with a m axim um  at the center o f  the kink and falling rapidly to  zero for 
| z — zo |>  y/ ϊ ξ .  Fig. 10.2.3 depicts bo th  φ(ζ)  and e(z).

The φ 4 model has the same topological character as the Ising model. There are 
four topologically distinct sectors specified by the values o f the order param eter 
at z =  +oo. They are the spatially uniform  states (φ ο , φ ο )  and (—φο, —φο) and the 
positive and  negative kink states (—φο, φο) and (φ ο , —φο)· A topological charge 
analogous to a vortex can be defined via

Q =  ^~[Φ(οο) ~  tf(-ao)] =  Γ  dzψ .  (10.2.15)
2<po 20o J—oo dz

Thus, the ground states have charge 0, and the kink and anti-kink states have
respective charges o f + 1  and —1.
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2 The sine-Gordon soliton

An analytic kink solution can also be obtained for the periodic potential

/  =  - F 0 cos m/φ,  (10.2.16)

where we assume m  is an integer. This model describes tw o-com ponent spins in 
an m-fold anisotropy field. I t is often called the sine-Gordon model. Unlike the φ 4 

model, it has an infinite num ber o f  equivalent ground states a t φ  =  2 n p / m ,  where 
p is an integer. A simple kink (soliton) state in the sine-G ordon model is one in 
which the order param eter passes from  zero to the next m inim um  ( φ  =  2π / m )  in 
the free energy. Its solution is very similar to  tha t for the angle o f the director 
in a nem atic liquid crystal in an external m agnetic field and  anchoring boundary 
conditions a t z =  0 discussed in Sec. 6.2. Following the procedures discussed 
there, we find

Φ±(ζ) =  tan ” 1 ezmWc)l,\  (10.2.17)

where the φ +  describes a soliton and  φ -  describes an anti-soliton centered at 
z  =  0. Solitons centered at zo are described by φ ± ( ζ  — zo). The energy o f a soliton 
is

σ  =  8y/^V0/m.  (10.2.18)

N ote tha t the energy o f a single kink goes to  zero as m  —> oo 

Because the sine-G ordon m odel has an infinity o f equivalent ground states, 
there can exist states in which the order param eter increases m onotonically 
undergoing m ore or less discrete changes o f 2π /m  a t each kink. The different 
topological sectors can be indexed by the num ber o f kinks, or equivalently by 
the charge defined in Eq. (10.2.15). This charge may, as we shall see in the next 
section, be an extensive quantity.

3 Dynamics

The tim e-dependent properties o f kinks depend on the dynamics assigned to  the 
field φ{ζ, t). In one m uch-studied dynamical model, a kinetic energy proportional 
to  (δ φ /δ ί )2 is introduced so tha t the dynam ical H am iltonian associated with the 
free energy o f Eq. (10.2.1) is

t f  =  J  dz 2(δ φ /δ ί )2 +  ^ ( δ φ / δ ζ ) 2 + } ( φ ) (10.2.19)

where vo is a velocity and cvq2 is analogous to the mass density in the Lagrangian
elasticity theory o f Eq. (7.2.1). t f  should be interpreted as a H am iltonian in
which εν^2(δ φ /δ ί)  (like pv in Sec. 7.3) is a m om entum  density. The equation of 
m otion for φ{ζ, t) is

4 * *  f *  + i g _ a  (10.2.20)
υΖ δ ί2 δζ2 c άφ
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Both the H am iltonian and the equation o f m otion for φ  are invariant under the 
Lorentz transform ation

z - > z '  =  (1 - β 2) ~ ι /2{ ζ - ν ή

v0t ^ v 0t' =  ( ΐ - β 2) - ν 2( - β ζ  +  υ0ή,  ( 10.2 .21)

where v is any velocity less than  i>o and  β = v /t>0. Thus, if φ(ζ, t) is a solution to 
the equation o f m otion, then φ'(ζ, t) =  φ(ζ', ί') is also. In particular, if φ 5(ζ) is a 
static solution such as Eqs. (10.2.12) o r (10.2.17) to Eq. (10.2.20), then

φ(ζ,ί)  =  M l  -  β 2Γ 1/2(ζ -  Vt)] (10.2.22)

is a tim e-dependent solution to  Eq. (10.2.20). This solution is one in which the 
center o f the kink o r soliton moves with a constant velocity v.

The dynamical kink solution ju st discussed is a moving wave packet in which 
the energy density and  order param eter variations are localized in space. We are 
fam iliar with such wave-packet solutions to the wave equation with /  =  0 :

1 δ2φ δ2φ
- 9 - Γ Τ - - 5- τ = 0 ·  (10.2.23)v% dt2 d z2 K ’

A ny reasonable sm ooth function g(z+vot) is a solution to  this linearized equation. 
Because the frequency spectrum, ω =  voq, is linear in wave num ber q, a wave 
packet described by the function g(z) at time t =  0  will propagate with velocity 
+vo and m aintain its shape at all future times. In addition, two localized 
solutions gi(z — vot) and g2(z +  vot) can be added to produce a th ird  solution 
g3(z ,i) =  gi(z -  v0t) +  g2(z +  v0t). Let gi(z -  v0t) and g2(z +  v0t) be widely 
separated wave packets at time t =  0. As time increases, the two wave packets 
will approach each other, creating a distortion described by the function g3(z,i)· 
A t large positive time, the two wave packets will separate and  have shapes 
identical to  those they had  at t =  0. The invariance o f the shape o f wave 
packets with respect to  time and collisions with o ther wave packets results from 
the linearity o f  the wave equation and the linearity o f the dispersion relation 
ω =  i>0q. Both nonlinearities and  dispersion (i.e., deviations from  linearity in 
ω  as a function o f q) will in general lead to  a broadening o f  wave packets 
over time. There are, however, special solutions to  nonlinear wave equations 
in which nonlinearities and dispersion work together to  produce a wave packet 
whose shape is constant in time. Such constant shape solutions to  nonlinear 
wave equations are generally called solitary waves. The dynam ical kink solution 
o f Eq. (10.2.20) is a solitary wave. M ost solitary waves are no t invariant with 
respect to  collisions. However, some nonlinear equations do have solutions in 
which well-separated solitary waves collide and emerge at large positive times 
with precisely the same shape as they had  at times well before the collision: the 
wave packets simply pass through each other. The special solitary-wave solutions 
are generally called solitons. The φ 4-field theory has solitary-wave bu t no t soliton 
solutions. The solitary waves o f  the sine-G ordon theory, on the o ther hand, are 
all solitons. We will leave the study o f a two-soliton solution as an exercise
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(Problem 10.1). Strictly speaking, the term  soliton should only be used for the 
restricted class o f  solitary waves ju st described. I t is, however, often used in the 
literature interchangeably with kink.

10.3 The Frenkel-Kontorowa model

1 Introduction

In  Sec. 2.9, we saw tha t atom s o f elements such as xenon adsorbed on a periodic 
substrate such as graphite form  periodic arrays th a t are either com m ensurate or 
incom m ensurate with the substrate. In  the la tter case, the reciprocal lattice of 
the resulting structure has colinear vectors with an irrational m agnitude ratio. In 
this section, we will study in some detail the simplest one-dimensional model for 
atom s adsorbed on a periodic substrate. This model was originally introduced 
in the 1930s by Frenkel and K ontorow a (1938) and was subsequently reinvented 
independently by others, notably F rank  and Van der M erwe (1949). I t provides 
a simple and realistic description o f com m ensurate-incom m ensurate transitions 
when therm al fluctuations are un im portant as they are near zero tem perature. 
I t also provides a starting poin t for the treatm ent o f the m ore complex two- 
dim ensional problem  at nonzero tem peratures to  be discussed in the next section.

The adsorbed atom s (adatom s) at positions x„ in the Frenkel-K ontorow a (FK ) 
model are treated as a harm onic chain with equilibrium  lattice spacing a. The 
substrate is a one-dimensional periodic lattice with period b. The interaction 
between the nth adsorbed atom  and the periodic substrate is described by a 
potential energy V(xn). The potential energy o f the F K  model is thus

t ' - E
1 ,
- K ( x n+1 -  x n -  a)z + V{xn) (10.3.1)

To m ake contact between this model and real adsorbates in equilibrium  with 
their vapor phase, one may assume tha t the lattice spacing a is a linear function 
o f the adsorbate chemical potential μ, which is determ ined by the partial pressure 
o f the vapor phase. The potential V(x) is an arbitrary function with period b; 
it can be approxim ated, however, w ithout significant loss o f  physical content by 
the cosine potential,

V(x) = —Vocos(2nx/b), (10.3.2)

having m inim a at x =  mb for any integer m. The first, o r elastic, term  in U 
favors a periodic lattice o f adsorbed atom s with x„ =  na whereas the second, or 
potential, term  favors lock-in to the substrate with each x„ an integral m ultiple of 
b. If  the potential V(x) is zero, the adsorbate lattice spacing will be independent 
o f b. The resulting structure is called a “floating phase” in which the equilibrium  
lattice spacing a o f the adsorbed lattice can be an arbitrary (including irrational) 
m ultiple o f the substrate periodicity b. Thus, the floating phase is incom m ensurate
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for alm ost all values o f the ratio  a/b. In the opposite limit, where the potential is 
very large, one can expect each atom  o f the adsorbed lattice to  sit in a m inim um  
o f the potential V. This leads to  a com m ensurate structure with the average 
spacing between adsorbed atom s a rational m ultiple o f  b. The equilibrium  state 
for general V  can be characterized by the average spacing a between adsorbed 
atom s which is defined via

a =  lim X" ~ X° . (10.3.3)η—κο n
If  a is an irrational m ultiple o f b, the adsorbate lattice is incom m ensurate with 
the substrate; otherwise, it is com m ensurate.

2 Discommensurations

Fig. 10.3.1 depicts schematically the various types o f ground states one might 
expect in the F K  model. The floating and com m ensurate states discussed above 
are depicted in (a)-(d). The simplest com m ensurate states are those in which 
a = pb for an integer p and for which there is exactly one adsorbate atom  for 
every p th  substrate minimum. In  this case, each adsorbate atom  sits at the bottom  
of a substrate m inimum, as depicted in Figs. 10.3.1b and c. M ore generally, there 
can be com m ensurate states with a =  (p/q)b  with p and q relatively prim e integers 
consisting o f periodically repeated unit cells o f  length pb containing q adsorbate 
atom s for every p substrate minima. In this case, no t every adsorbate atom  will 
sit at the bo ttom  o f a substrate minimum. A state with q =  4 and p =  5 is 
depicted in Fig. 10.3.Id. In  incom m ensurate states with a/b  irrational bu t near 
an integer p, one would expect (and indeed we will shortly show) tha t the best 
com prom ise between com peting elastic and potential term s in U is realized by 
placing atom s at the m inim a o f U as often as possible and occasionally stretching 
(or compressing) the spring between adsorbate atom s so tha t a m inim um  o f V is 
missed. M ore generally, for a/b  near p/q, one can expect regions with repeated 
unit cells o f the a/b  = p/q  com m ensurate structure separated by regions in which 
springs are stretched o r compressed and in which com m ensurate registry with 
the substrate is lost. Configurations in which springs are stretched or compressed 
correspond precisely to a soliton o f the type discussed in the preceding section. In 
the present model, they are usually called discommensurations because they break 
the com m ensurate registry o f  the adsorbate and substrate lattices. Two equivalent 
ground states o f  V are separated by a positive discom m ensuration if springs are 
stretched or by a negative discom m ensuration if springs are compressed, as shown 
in Figs. 10.3. Ie and f. A positive discom m ensuration leads to a reduction in the 
density o f  adsorbate atoms. It is, therefore, often referred to as a light wall. 
A negative discom m ensuration leads to  an increase in adsorbate density and is 
called a heavy wall. The energies o f heavy and light walls need no t be equal.

All unit cells o f the reference com m ensurate structure to  the right o f a positive 
(negative) discom m ensuration are displaced by one unit cell o f the substrate
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(a distance b)  to the right (left). Let N<ns = ±  \ N<ns | be the net num ber of 
discom m ensurations relative to the p / q  com m ensurate structure o f N  adsorbate 
atoms. The total length o f the adsorbate chain is thus

L N =  x N — x o =  N ( p / q ) b ±  \ N dis | b,  (10.3.4)

and the average spacing between adatom s [Eq. (10.3.3)] is

a  =  ( p / q ) b  ±  t f - ' b ,  (10.3.5)

where i f  =  N /  \ | is the num ber o f adatom s between discom m ensurations.
The average distance between discom m ensurations in real space is

/ =  c£~a =  [JV { p / q )  ±  1 ]b.  (10.3.6)

In the therm odynam ic limit, i f ,  and thus a / b ,  can take on any, including 
irrational, values. N ote tha t the addition o f one extra unit cell (consisting of 
q  adatom s at fixed length x N ) can be described by an increase (or decrease) 
in the num ber o f discom m ensurations by p.  F or example, if a  <  (p / q ) b , then 
x N ( N dis) = x N+q{N'dis) implies N'dis -  JVdis =  p.

3 Devil’s staircases and the FK phase diagram

To discuss the dependence o f the equilibrium  average spacing a  on the preferred 
spacing a,  it is convenient to m easure all lengths in term s o f the substrate 
periodicity b,  and we introduce Ω =  a / b  and the w i nd i ng  n u mb e r  Ω =  a / b ,  

which is a m onotonic increasing function o f Ω. I f  the potential strength Vq 
is zero, then Ω =  Ω, as shown in Fig. 10.3.2a. If  Vo is no t zero, then, as 
we shall see shortly, there is an interval A i l { p / q )  about each rational value of 
Ω =  p / q  such th a t Ω =  p / q .  Thus, the curve o f Ω versus Ω will have intervals 
o f zero slope o f length A i l { p / q )  centered about every rational value p / q  of Ω, 
as depicted schematically in Figs. 10.3.2b and c. These finite intervals o f lock-in 
to rational values o f  Ω exist because the transition from  a rational value of 
Ω to  an irrational value involves the creation o f  a discom m ensuration, which 
costs energy. As Ω increases away from  a rational value, the strain energy in 
the com m ensurate phase with Cl =  p / q  increases. W hen this energy exceeds the 
energy required to create a discom m ensuration, a transition to  an incom m ensurate 
phase with a nonzero discom m ensuration density occurs. This c o m m e ns u ra t e -  

i nc o mm e ns u ra t e  (Cl) transition is second order in the F K  model. The distance 
between discom m ensurations in the incom m ensurate phase is determ ined, as we 
shall see, by repulsive interactions between discom m ensurations, which for the 
F K  model fall off exponentially with distance. The widths A i l { p / q )  increase 
with increasing Vq. For Vq less than  a critical value Vc, the total step length 
S  =  Σ  A i l { p / q )  for Ω in some interval /  =  [Ωο, Ωο +  So] is a fraction o f the total 
length o f  the interval So· Thus, the fraction 1 — (S/So) o f the interval /  for which 
Ω is irrational is nonzero. In  this case, the function o f Ω(Ω) is an i n compl e t e  

d e v i l ’s s ta i rcase ,  depicted schematically in Fig. 10.3.2b. For Vq > Vc, S/So is
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(f)

ί
Fig. 10.3.1. (a) The floating phase o f  the FK model with a  =  a with a  an 
arbitrary multiple o f b. (b) A  commensurate structure with a =  b. (c) A  
commensurate structure with a =  2b. (d) A  commensurate structure with 
a =  (5/4)6. There are periodically repeated unit cells o f length 5b containing 
four adatoms which do not all sit at the bottom o f a potential minimum, (e) 
A  portion o f an incommensurate structure with a o f order but greater than 
b. There is a regular array o f positive discommensurations where springs are 
stretched relative to the substrate lattice spacing b separating regions where 
atoms sit in the minima o f  the potential V. In this figure, there is a single 
discommensuration marked with an arrow, (f) A  portion o f  an 
incommensurate structure with negative discommensurations and a <  b. A  
single discommensuration (marked with an arrow) is shown.

equal to  one, and the interval for which Ω is irrational becomes a set o f measure 
zero. In  this case, the function Ω(Ω) is a c o m p l e t e  d e v i l ’s s t a i rc a se  (Fig. 10.3.2c). 
It is a continuous function which has a zero derivative alm ost everywhere (i.e., 
except on a set o f  m easure zero). Such functions are called s i ngu la r  c ont inuous  

functions in the m athem atical literature. The function Ω(Ω) at the transition from 
an incomplete to  a com plete devil’s staircase is o f  special interest. The intervals 
for which Ω is irrational form  a C antor-set with a non-integral fractal dimension 
analogous to  the fractal dim ension o f polym ers and diffuse objects discussed
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Ω

Ω

Ω

(c ) (d)

Fig. 10.3.2. The function Ω(Ω) for (a) Fo =  0, (b) an incomplete devil’s 
staircase (0 < F0 <  Vc), (c) a complete devil’s staircase (F0 >  Fc), and (d) a 
harmless staircase.

in Sec. 2.12. In  some models, there can be discontinuous or first order jum ps 
between com m ensurate states leading to  a harmless staircase (Fig. 10.3.2d).

The numerically calculated phase diagram  and the function Ω(Ω) for the F K  
model are shown in Fig. 10.3.3. Also shown is the exact phase diagram  for a 
model in which the cosine potential o f the F K  model is replaced by a periodic 
“saw tooth” function.

4 The continuum approximation

A com plete determ ination o f the ground states o f Eq. (10.3.1) for arbitrary  a and 
b  is very complicated, and we will consider in detail only the C l transition near 
p =  q =  1 th a t occurs when a — b =  δ  is small (i.e., δ / b  «  1) and when the 
potential is weak (i.e., when Vo «  K b 2). In  this limit, the atom  index n can 
be treated as a continuous variable analogous to the indicator variable in the 
Lagrangian form ulation o f elasticity (see Sec. 6.5). Since we are interested in the
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Ω

(b)

(c )

Fig. 10.3.3. (a) Numerically calculated phase diagram for the FK model as a 
function o f  the variables V =  ( 2 n / b ) 2(VQ/ K )  and Ω =  a/ b .  The fractions 0, 
1/4, 1/3 and 1/2  indicate the value o f the winding number Ω in 
commensurate phases. The shaded tongues each break up into higher order 
lock-in regions, such as ̂ hown in (c). (b) Winding number Ω as a function of 
Ω for the FK model at V  =  1. [W. Chou and R.B. Griffiths, Phys.  Rev.  B  34, 
6219 (1986).] (c) Exact phase diagram for a modified model in which the 
cosine potential is replaced by V(x)  =  (Vo/2)(x  — b[ (x / b)  +  (1/2)]), where [y] 
is the greatest integer less than or equal to y.  This diagram shows many 
rational lock-in regions. The shaded regions, when expanded, show lock-in to 
higher order rationals. [S. Aubry, in Solitons in Condensed Mat ter  Physics,  
eds. A.R. Bishop and T. Schneider (Springer-Verlag, New York, 1978).]
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transition from  the com m ensurate state with x„ =  nb,  we write x„ in term s o f  its 
deviation φ ( η )  from  nb:

x„ =  nb +  φ{η) .  (10.3.7)

The potential energy o f Eq. (10.3.1) can thus be w ritten as

U  =  j  d n  ĵ Κ ( ά φ / ά η  -  δ ) 2 +  Υ [ φ ( η ) ] (10.3.8)

N ote that, because V(x)  is periodic with period b,  the potential term  is a function 
o f φ  only. We have taken the atom-index n to be a continuous variable in the 
above energy. We m ight alternatively have chosen, in the spirit o f Lagrangian 
elasticity, to index the adsorbate atom s by their position na  in their unstretched 
state. In  this form ulation, Eq. (10.3.8) would have m ore the appearance o f an 
elastic m edium  coupled to an external potential. We will continue to  use n ra ther 
than  na  to emphasize th a t n really is an indexing rather than  a distance variable.

The existence o f  a C l transition as a function o f the m ism atch δ  can be 
dem onstrated by a crude estim ate o f the energies o f the two phases. In the 
com m ensurate phase, φ  =  0, and the energy U  is simply

\ κ δ 2 +  vw (10.3.9)

where N  is the num ber o f a d s o r b a t e  atom s and Vmm is the value o f V  at its 
m inim a (—Vq for the potential o f Eq. (10.3.2)). In  the incom m ensurate phase, 
ά φ / d n  is nonzero, and we may estim ate it to  be equal to  δ  to minimize the elastic 
contribution to U.  This corresponds to  setting a  = a.  If  δ  is an irrational multiple 
o f b,  all values o f the argum ent o f V  are probed in the limit N  —* oo so tha t

l/inc =  J  jT  ν{φ)άιι =  N V ,  (10.3.10)

where V  is the average o f Υ ( φ )  over the interval b. C om paring U comm with U mc, 

we conclude tha t there is a first-order transition from  the com m ensurate phase 
with a  =  b  to  the incom m ensurate phase with a  =  a  when S equals

Sc =  [ ( V - V min) / K ] ^ 2. (10.3.11)

This is clearly only an estim ate o f <5C since it com pares the com m ensurate state
with an incom m ensurate state with x„ =  na.  One would expect incom m ensurate
states with discom m ensurations and an average spacing a  less than  a  to  be 
energetically preferred.

Before proceeding to  an analytic solution for the C l transition, it is useful to 
m easure energy relative to the energy o f the com m ensurate state by introducing

A U  =  U  — U comm =  J  d n  |̂ Κ ( ά φ / ά η ) 2 +  Ϋ ( φ )  -  δ Κ  j  ά η ( ά φ / ά η )

=  U'  +  U u  (10.3.12)

where V  =  V  — Vmm, which for the cosine potential o f Eq. (10.3.2) becomes
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Ϋ ( φ ) =  V0[l — cos(2π φ / b ) ]  =  2Vo  sin2(7t(£/fc).

(10.3.13)

We have divided A U  in Eq. (10.3.12) into two parts: U' ,  which is harm onic in 
( ά φ / ά η )  and is clearly minimized when ά φ / ά η  =  0 , and U\, which is linear in 
ά φ / ά η  and depends only on φ ( η )  at the boundaries. The la tter fact can be seen 
via

is the average rate o f growth o f φ  with n. Thus, the final equilibrium  phase is 
determ ined via the com petition between U',  which favors a φ  independent o f n, 

and Ui, which favors nonzero { ά φ / d n ) .

The range in n over which changes in φ  take place in going from  one m inim um  
o f the potential to  another is determ ined by the ratio  o f the elastic constant K  

to  the coefficient o f φ 2 in the expansion o f V  around φ  =  0, i.e., by

where the final form  applies to the cosine potential. The unitless param eter λ  is 
the analog o f a correlation length. Indeed, if we had chosen to  index particles by 
their position na  in the unstretched adsorbate lattice, then α λ  would be precisely 
a correlation length.

The Euler-Lagrange equations satisfied by u at extrem a o f A U  are determ ined 
entirely by U'  and are no t influenced by U \ .  These equations are identical in 
form  to Eq. (10.2.6) and can be integrated as in Eq. (10.2.7) to  yield

where e  is an integration constant with units o f energy. In our discussion of 
dom ain walls in the preceding section, the integration constant was determ ined 
by the boundary  conditions th a t the order param eter be in one m inim um  of 
the free energy at z  =  —oo and another a t z  =  + o o  with a single kink. Here e  

defines a continuous family o f extrem al solutions to  U'.  The particu lar solution 
tha t minimizes A U  is determ ined by minimizing U '  +  U \  with respect to  e.  The 
integration constant e  is thus determ ined by energy m inim ization ra ther than  by 
externally imposed boundary conditions.

■N

ά η ( ά φ / ά η )  =  —δ Κ [ φ ( Ν )  — * (0 )] ξ  —Κ δ Ν ( ά φ / d n ) ,

(10.3.14)

where

( ά φ / d n )  =  lim [ φ ( Ν )  -  φ { 0 ) ] / Ν
Ν —> 00

(10.3.15)

(10.3.16)

^ Κ ( ά φ / ά η )2 =  Ϋ ( φ )  +  €, (10.3.17)

5 N ature o f  solutions

Before determ ining the actual equilibrium  solution for a given δ,  let us first study 
the nature o f the extrem al solutions, Eq. (10.3.17), as a function o f the integration
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constant e.  Eq. (10.3.17) can be integrated to  yield an implicit equation for φ ( η)  

as a function o f n:

and where the constant o f integration u is chosen so tha t φ ( ΰ )  =  0. The 
positive sign in Eq. (10.3.18) corresponds to  { ά φ / d n )  >  0 and the negative sign 
to  { ά φ / d n )  < 0. The function J (0 )  is a m onotonic single-valued function o f φ ,  

so tha t Eq. (10.3.18) can be inverted to  yield φ ( η )  =  J _1(n — u). J^φ )  can be 
expressed after an appropriate change o f variables in term s o f an elliptic integral 
o f the first kind and the inverse function as the associated am plitude function a m  

(see, for example, Abram ow itz and Stegun 1965, esp. C hapter 17). The precise 
form  o f these relations is no t im portant for our present discussion.

The periodicity o f  V  in the above integral implies tha t φ ( η )  increases by a 
substrate lattice spacing at regular intervals in n. To see this, we note

From  Eq. (10.3.18), we have 3 [ φ ( η  +  i f ) ]  =  η — ΰ +  i f . Thus, if we apply the 
inverse function J -1 to  bo th  sides o f Eq. (10.3.20), we obtain

Therefore, φ ( η )  has the form  depicted in Fig. 10.3.4 with discom m ensurations 
(increasing or decreasing φ  by b)  occurring at intervals o f  i f  separating regions, 
where φ ( η )  is a multiple o f b.  i f  specifies the num ber o f adsorbate atom s between 
discom m ensurations. The distance in real space between discom m ensurations is 
i f a  (not i f  a). We will, therefore, refer to  i f  as the distance or separation 
between discom m ensurations with the understanding th a t it m ust be multiplied 
by the average adatom  spacing 2 to be a physical distance, i f  is a real quantity 
and can exist according to Eq. (10.3.21) only for e  >  0. As e —> 0, i f  diverges 
logarithm ically with e-1 , as can be seen by

(10.3.18)

where

g(e,<£) =  [2 {e  +  V ) / K ] l >2 (10.3.19)

=  n — u +  i f , (10.3.20)

where

(10.3.21)

φ ( η  +  i f ) =  φ ( η )  +  b. (10.3.22)

2 f b/ 2 

v f  7o Κ7 / K

k \ n ( a . K b 2/ e  λ 2),

[(ε/Κ)  +  λ - 2φ 2/ 2]1/2
ά φ

+  const.

(10.3.23)
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where a is a constant tha t depends on the potential. For the cosine potential,
a =  S/ π 2.

The average rate o f increase o f φ  is determ ined by Eqs. (10.3.15) and (10.3.22) 
to be

{άφ/dn) =  ± b /S e .  (10.3.24)

The average separation between adsorbate atom s is then

a =  b + (άφ/άη) =  ( l ± ^ T 1)b, (10.3.25)

as can be seen with the aid o f Eqs. (10.3.3), (10.3.7) and (10.3.24). N ote tha t 
Eq. (10.3.25) is identical to  Eq. (10.3.5) with p =  q =  1. Eq. (10.3.24) shows that 
(άφ/άη)  can be positive or negative, depending on whether there are positive or 
negative discom m ensurations relative to  the com m ensurate state. The average 
rate o f increase (decrease) in φ  is the increase (decrease) b per discom m ensuration 
divided by the distance i f  between discom m ensurations. As in Eq. (10.3.6), the 
average distance between discom m ensurations is / =  i f  a =  ( i f  +  1 )b.

The average linear increase in φ(η) can be explicitly displayed so th a t φ(η) can 
be expressed as the sum o f a linear function o f n plus a periodic function xp(n-u)  
with period i f  (as depicted in Fig. 10.3.4b):

φ(η) =  (n —  u){b/i f )  + ip(n — fi), (10.3.26)

where the positive sign in Eq. (10.3.24) was chosen. Finally, we can use this 
equation and Eqs. (10.3.4), (10.3.7), and (10.3.25) to  express the actual positions 
o f the adsorbate atom s as

x„ =  na — u +  ψ(ηα — u), (10.3.27)

where ψ(χ) ξ  ψ(χ/α)  is a periodic function with period / =  i f a  and

u =  δα and u =  u(fc/if) =  u{b/l). (10.3.28)

Eq. (10.3.27) m akes it clear tha t two spatial periods are needed to  describe the 
density o f adatom s: the average distance a between atom s and the average spacing 
/ =  i f a  between discom m ensurations. The variable u describes spatial displace
m ents o f discom m ensurations whereas the variable u describes displacem ents of 
adatoms. This relation between u and u is valid for arb itrary  I.

6 The minimum energy solution

As discussed earlier, the solution φ(η) tha t minimizes A U  is determ ined by 
inserting the solution Eq. (10.3.18) into Eq. (10.3.12) for A U  and then minimizing 
over the integration constant e. Evaluating AU,  we obtain

rb

(10.3.29)
A U  1 Γ fb

~ N = # [ J o  άΦ[2Κ(€ + Ϋ)]1/2 KbS
N ote tha t this energy is independent o f  fi. D ifferentiating this equation with 
respect to  e, we find
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φ(η

b

n (a)
£

w

Φ(η)
(b)

Fig. 10.3.4. (a) The function φ(η).  It consists o f a regular periodic array o f  
flat regions separated by discommensurations, where there is rapid change. 
The width w o f  the discommensuration is o f  order λ  for e  near zero but 
decreases as e  increases. The average slope o f φ(η)  is b/5£.  When the average 
linear increase with n is subtracted off, there remains a periodic function 
tp(n — u) with period 5£ as shown in (b).

The first solution corresponds to  an infinite separation between discom m en
surations, and thus to the com m ensurate phase. This solution with zero AU  
always exists. The second solution only exists if e >  0, and corresponds to  the 
incom m ensurate phase with a finite separation between discommensurations.

The critical value o f δ for which an incom m ensurate solution first exists is 
determ ined by Eq. (10.3.31) with e =  0. Solutions exist for the positive sign o f 
this equation if δ > δ0 and for the negative sign if δ < — <5C, where

where eo is the energy o f an isolated discom m ensuration. For the cosine potential, 
eo =  (4b/n)(KVo)1/2. For δ >  <5C, the relation between δ and e is

This expression is zero if i f  1 =  0 or if

(10.3.31)

(10.3.32)



612 10 Walls, kinks and solitons

a

b

Fig. 10.3.5. The average adsorbate lattice spacing as a function o f the 
mismatch parameter <5. There is a second-order transition from the 
commensurate state with α =  fe to an incommensurate state with a >  b. The 
difference a — b increases continuously from zero as l/ln[(<5 — <5C)-1] for 
δ >  <5C >  0 and decreases continuously from zero as — 1 /  In[(—<5C — <5)_1] for 
δ <  —<5C <  0. The curve a versus a thus has zero slope for —<5C <  δ <  <5C. 
Such regions o f  zero slope exist in the vicinity o f  each rational value o f a/ b,  
as depicted in Fig. 10.3.2.

| δ | - S c =  b~1 J *  άφ  [[2(e +  V ) / K ] l /2 -  (2 K /X )1/2j . (10.3.33)

This equation determ ines e  as a function o f δ  and can be used in Eq. (10.3.29) 
to  determ ine the m inim um  energy as a function o f <5. Again, since this solution 
only exists for e  >  0, | δ \ m ust be greater than  <5C. | δ \ — δ 0 clearly goes to  zero 
as e  —y 0. A clean way to  determ ine how | δ \ — δ 0 goes to  zero with e  is to 
differentiate Eq. (10.3.33) with respect to e:

d(| δ | - δ ε)/ά€ =  ^ ιΚ - ι ^ { € )  

This equation can be integrated to  yield

{X/bK)\n{aKb2/e k 2). (10.3.34)

<5 I -<5,  = k [  *{e) *  έ  [ - e(ln(aXfc2/ ^ 2) + 1)]

implying

bK
a b <£
T T *

-se/x

a b
A I <5 I -<5C

(10.3.35)

(10.3.36)

Thus, the separation between discom m ensurations diverges logarithm ically with 
| <5 | — <5C, and the difference between the lattice constant a o f the adsorbate lattice 
and  b goes to  zero as 1 /  ln[(| δ \ — as depicted in Fig. 10.3.5. There is,
therefore, a second-order C l transition. It should be emphasized, however, that 
this m odel is purely m echanical: it has no therm al fluctuations.
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(10.3.37)

7 Repulsive  interaction between discommensurations

The energy difference A U  can be expressed as a function o f e, as we have 
ju st seen. Alternatively, it can be expressed in term s o f the spatial distance 
/ =  i f  a between discom m ensurations using Eq. (10.3.35). The la tter form  is quite 
instructive and lends itself m ost readily to generalizations to  m ore complex and 
higher dim ensional problems. The energy A U  in Eq. (10.3.29) can be expanded 
near e =  0 with the aid o f Eq. (10.3.32) for eo and Eq. (10.3.35) for f  de££‘(e). 
The result is

A U  [(e0 +  K bS) +  eX\
N a  <£a

σ(δ) +  U0e- '^ 'a
I

where Uo =  ctb2KX~l and

a(S) =  K b(Sc -  | δ I) (10.3.38)

is an effective surface tension for a discom m ensuration. The in terpretation of 
this form ula is as follows: The energy eo o f an isolated positive or negative 
discom m ensuration is positive and contributes an energy eo / i f  to  the energy 
per particle. D iscom m ensurations increase (decrease) (άφ/dn) and give rise to 
a decrease in the contribution to  A U / N  com ing from  U\ [Eq. (10.3.14)]. The 
incom m ensurate phase first becomes favorable relative to the com m ensurate 
phase when the positive energy o f creating a single discom m ensuration is just 
com pensated for by the energy gain associated with a nonzero (άφ /dn). W hen 
the effective surface tension σ(δ) is positive, discom m ensurations are energetically 
unfavorable; when it is negative, they are energetically favorable and tend to 
proliferate. N eighboring discom m ensurations repel each other, however, with a 
potential th a t dies off exponentially with spatial separation I. The exponential 
die-off o f this potential is a result o f the fact tha t ά φ /dn  tends to  zero as 
exp (—η/λ)  =  exp (—l/λα)  away from  the center o f an isolated discom m ensuration. 
The interaction between neighboring discom m ensurations comes predom inantly 
from  the elastic part o f A U  and is approxim ately Κ (άφ(0)/άη )(άφ (^>)/άη)/2. 
The equilibrium  separation between discom m ensurations, and thus the value 
o f  a, is, therefore, determ ined by the com petition between a negative effective 
surface tension for an individual discom m ensuration and the repulsive interaction 
between neighboring discom m ensurations.

8 X - r a y  diffraction

The Fourier transform  o f the density is easily obtained from  the positions given 
in Eq. (10.3.27):

Pk =  ^  e ^ ~ u + v ( n a ^ u ) )  ( 10.3.39)
n
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Because ψ(χ)  has period i f a ,  this function will have delta-function spikes when
ever k is an arbitrary  linear com bination with integer coefficients o f b \  =  I n / a  

and b 2 = 2 n /  ££ a.  Alternatively, the positions o f  these spikes can be expressed in 
term s o f b \  and

b 2 = b x + b ’2 =  ~ ( l  +  i f " 1) =  (10.3.40)
a  b

where Eq. (10.3.25) was used to  obtain the final form  o f this expression. Thus, the 
adsorbate has an incom m ensurate reciprocal lattice with vectors o f the form  o f 
Eq. (2.9.2) with primitive translation  vectors b \  and b 2 determ ined by the average 
spacing a  o f the adsorbate direct lattice and the spacing b  o f the substrate lattice. 
The am plitude o f the mass-density wave a t reciprocal lattice vector G  =  p b \  + q b 2 

is easily calculated from  Eq. (10.3.39):
N  f -s?a

PC =  —  /  d x e iq^ - bi)xe iG<Hx). (10.3.41)
i f 'a  JO

This expression gives the scattering intensity from  the adsorbate atom s only. 
Scatterers also couple to the substrate, so that, in any real experiment, there will 
be additional intensity in peaks at reciprocal lattice vectors q b 2 of the substrate. 
N ote tha t the arbitrary  phase u appears only as a factor o f p b \ ,  a reciprocal lattice 
vector determ ined by the average adsorbate lattice; it does no t appear as a factor 
o f the vectors q b 2 determ ined by the substrate lattice. In  general, one would have 
expected two phases in an incom m ensurate system such as this. The substrate 
lattice is, however, frozen in this model, and there is only a phase associated with 
translating  the adsorbate relative to the substrate. N ote th a t the phase o f the 
mass-density wave tha t would enter into an Eulerian description o f the elasticity, 
such as discussed in Secs. 6.4 and 6.6, o f  the incom m ensurate phase is a multiple 
f t / i f  o f the discom m ensuration index u.

9 Compressional elastic constants

In  equilibrium, for a given value o f  m ismatch, there is a preferred separation 
between discom m ensurations in the incom m ensurate phase. The energy associated 
with deviations <5 i f  =  i f '  — i f  is determ ined by a com pressional elastic constant:

g  =  2d2(A U /N )  i f  J p ^ g - 1
dse2 die/de j ^ g - 3

*  ^ e - , i ^ K b ( s _ - s c) ( i o 3 4 2 )

λ λ λ,
To obtain this result, we used Eqs. (10.3.29) and (10.3.30) with A l/( i f )  =  
A L/(e(if)) and d2A U / 5 i f 2 =  (dJ£’/de)~1[(dJi(’/de)~1dAU/de] evaluated in equi
librium  determ ined by Eq. (10.3.31). Changes in i f  can be related to  gradients in 
the discom m ensuration phase variable u using Eqs. (10.3.26) and (10.3.27): 

du( n)  (b <£/<£)

dn 1 +  {5<e/<e) <£
(10.3.43)
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The energy o f a com pressed discom m ensuration lattice in analogy with the 
Lagrangian elasticity theory o f C hapter 6 can, thus, be written

l/el =  1  J  d n B ( d u / d n ) 2. (10.3.44)

As discussed in Eqs. (10.3.39) and (10.3.40), the regular discom m ensuration lattice 
gives rise to an incom m ensurate structure with a reciprocal lattice generated by 
the vectors bi  =  2 π / a  and b 2 =  2 π / b .  From  Eq. (10.3.28), the phase o f the 
mass-density waves generated by the average adsorbate lattice is related to  u via 
u =  u b / y .  For long-wavelength disturbances, the position in real space o f  the 
nth atom  is x„ =  na, from  Eq. (10.3.3), implying dn =  dx/a .  The Eulerian elastic 
energy o f the incom m ensurate structure with frozen substrate lattice is, therefore,

Uel =  ^  J  d x B ( d u / d x ) 2, (10.3.45)

where

B  =  a ( £ C / b ) 2B .  (10.3.46)

N ote th a t B  tends to zero exponentially with separation between discom m ensura
tions, as would be expected from  the exponentially decaying interaction between 
discom m ensurations; apart from  logarithm ic corrections, however, it is linear in
I <5 I -  sc.

10 Phasons

There are two reasonable models for the dynam ics o f the F K  model. In the 
first, dissipative couplings between the adsorbate and the substrate are ignored; 
in the second, they are not. The energy o f  an incom m ensurate phase described 
by an elastic energy o f the form  o f Eq. (10.3.44) is invariant with respect to 
arbitrary  uniform  increm ents o f the displacem ent variable u, and one expects a 
zero-frequency G oldstone m ode (Sec. 8.1) at wave num ber q =  0 in either model. 
In  com m ensurate phases, there is no invariance, and m odes should either have 
a gap o r be overdam ped a t q =  0. We consider the non-dissipative case first. In 
this case, the H am iltonian consists o f a kinetic energy and the potential energy 
o f Eq. (10.3.1):

*  =  \ l 2 mvn +  U ’ (10.3.47)
n

where vn =  x n =  pn/m  is the velocity and pn is the m om entum  o f the nth adsorbate 
atom  o f m ass m.

In  the com m ensurate phase with a =  (p/q)b , each adsorbate atom  sits in a 
m inim um  o f the cosine potential, and a harm onic expansion in displacements 
from  the ground state is appropriate:

*  = \  Σ  ^ φ η / d tf +  I  Σ  Ϋ "Μ Φ 2η + \ K  Σ ^ " + 1  “  “  °)2’
η η n

(10.3.48)
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where V"( 0)  =  Vo(2π / b ) 2 for the cosine potential. The frequency spectrum  o f this 
harm onic H am iltonian is

w 2(q) =  ^  [P"(0) +  K q 2]. (10.3.49)

There is a gap in the spectrum  at q =  0 in the a =  a com m ensurate phase. A
similar gap also exists for arbitrary  p/q ,  though it is technically m ore difficult to
calculate when p >  1 because there are, in general, p branches to the spectrum.

In the incom m ensurate phase, there should be a gapless G oldstone mode 
whenever the elastic energy o f Eq. (10.3.44) provides a correct description o f the 
long-wavelength statics. To determ ine the frequency o f this mode, we express the 
kinetic energy o f Eq. (10.3.47) in term s o f du(n)/dt ra ther than  v„ with the aid of 
Eq. (10.3.18):

dJ x , Φ» dHn)-ττΦη =  +  , , - = ---- -τ— , (10.3.50)
αφ g(e^ n )  dt

where g(e, φ) is defined in Eq. (10.3.19). Then, in the continuum  limit, the 
H am iltonian can be expressed as

tf =̂m J  d n g 2(e ^„ )(d u (n ) /d t)2 + U. (10.3.51)

The function g(e, φ η) is a periodic function o f n with period i f .  To describe 
excitations with wavelength long com pared to i f ,  we can replace g2 by its 
average over i f  and U by the elastic energy o f Eq. (10.3.44):

- U ‘t f  =  ^  I dnmeff[du(n)/dt]2 +  Ueh (10.3.52)

where

"Jeff =  ^  J  d n g 2(e,  φ η) =  ^  d φ g ( e ,  φ) .  (10.3.53)

The H am iltonian o f Eq. (10.3.52) is essentially identical to  the elastic H am iltonian 
o f Sec. 7.3. The equation o f  m otion for u(n) is

cftiin) ~ d 2u(n) 
rHeS~ d f i~  =  ~  ~dn2~' (1°·3·54)

There is a thus a sound-like m ode with u(n) ~  exp(iqn) with velocity

c =  /  B  y / 2 _  {K /m )1/2 /q d φ g - 1

[ ( /o fc# g - 3) ( / o h # g ) ] 1/2

~  ((I δ | — <5c)ln[<5c/( | δ | — ^c)])1/2, (10.3.55)

where we used Eq. (10.3.42) for B  and Eq. (10.3.21) for i f .  This gapless mode 
is called a phason. Phasons exist in incom m ensurate systems because there is an 
invariance associated with the uniform  relative translation o f the phases o f two 
mass-density waves with relatively irrational periodicities (in this case those of 
the adsorbate and the substrate). N ote th a t the phason velocity tends to  zero as 
the com m ensurate phase is approached.
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If  dissipative coupling between the adsorbate and the substrate is allowed, a 
dam ping term  proportional to (d(f>n/dt)  (or to  (du(n)/dt)) m ust be added to the 
equation o f m otion. A t low frequencies, this term  always dom inates the inertial 
term, leading to  a long-wavelength diffusive phason with frequency

ω =  - i ( B / y eS)q2, (10.3.56)

where yeff is a friction coefficient. Because friction is essentially always present, 
phasons in incom m ensurate systems are generally diffusive at long wavelengths 
provided the phason spectrum  is gapless.

11 Pinned phasons

The energy o f any incom m ensurate state is invariant with respect to «-independent 
increm ents o f u(n). The existence o f the gapless phason mode, however, is 
intim ately connected to  the existence o f an analytic elastic energy o f the form  
of Eq. (10.3.44), which in  tu rn  depends on the analyticity o f the function ip 
[Eq. (10.3.27)] relating x„ to u„. W hen the potential strength Vo is sufficiently 
small, ip is analytic, and  it can be shown th a t x„ m od ft takes on all values between
0 and b. This means, in particular, tha t there will always be at least one atom  
sitting at the m axim um  o f the periodic potential (x„ m od b =  b/2), as shown in 
Fig. 10.3.6a. If  the adsorbate is translated  relative to the substrate, the atom  (or 
atoms) at the top o f potential m axim um  will move dow nw ard into a position of 
lower potential energy. In  the process o f translation, however, at least one o ther 
atom  will have moved to the m axim um  o f the potential. Thus, an incom m ensurate 
state can be transform ed into an energetically equivalent translated state w ithout 
passing over any energy barrier, and the gradient expansion o f the elastic energy 
is justified.

As Vo increases, the tendency o f atom s to  seek potential m inim a increases. Also, 
as we have already discussed, the measure o f incom m ensurate states in any given 
interval o f a decreases. Aubry (1978) has shown that, above the critical strength 
Vc a t which the devil’s staircase first becomes complete, ψ  becomes a nonanalytic 
function in the incom m ensurate states, which now occupy a set o f  measure zero 
as a function o f a. W hen ψ  ceases to  be analytic, x„ m od b ceases to  take on 
all values between 0 and b. There are no atom s sitting at the m axim um  o f the 
potential wells, as shown in Fig. 10.3.6b. In  any given ground state configuration, 
there will be an atom  tha t is closest to  the m axim um  o f the potential. Let ep be 
the potential energy required to  move this atom  to the top o f its well. In  order to 
reach another ground state described by a spatially uniform  translation  o f u„, it 
is necessary to move this atom  over the top o f its well. Thus, there should be a 
gap in the phason spectrum  o f order ep. Extensive num erical work (Aubry 1978; 
Peyrard and A ubry 1983; de Seze and A ubry 1984) confirms this hypothesis.
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(b)

Fig. 10.3.6. (a) Representation o f  an incommensurate state with unpinned 
phasons. There is at least one atom at the top o f a potential well. Under an 
infinitesimal translation, this atom will move to a position o f lower potential 
energy, but another atom will move to the top o f some other well, (b) 
Representation o f  an incommensurate state with pinned phasons. There is
no atom at the top o f the well. It is necessary to raise at least one atom over
an energy barrier in order to reach an energetically equivalent 
incommensurate state.

12 Extension to two dimensions

The F K  m odel can readily be extended to higher dimensions. The nature of 
ground state structures depends critically on the rotational symmetry o f the 
substrate. I f  the substrate has uniaxial symmetry (e.g. a rectangular lattice) with 
basis vectors ai and a2, then it is in general easier for stretching or com pression of 
the adatom  lattice to  occur along one direction, say along ai. In  this case, ground 
state configurations consist o f one-dimensional solutions along ai repeated along 
a2. Thus, for example, there can be a p χ  1 com m ensurate structure in which
there is one adatom  per substrate unit cell along a2 bu t only one adatom  per p
substrate unit cells along ai. Point discom m ensurations in the one-dimensional 
m odel become walls parallel to the single easy direction a2, and incom m ensurate 
phases are striped phases, such as in Fig. 10.3.7a, consisting o f a regular array of 
parallel walls.

If  the substrate has square or hexagonal symmetry, there are, respectively, two 
o r three, ra ther than  one, easy directions for walls, and incom m ensurate states, 
such as the hexagonal state shown in Fig. 10.3.7b, in which walls cross are possible 
(Bak et al. 1979). Configurations o f  crossed light and heavy walls relative to  a 
s f i  χ  λ/3/?30° com m ensurate state o f krypton on graphite are shown in Fig. 10.3.8. 
Each wall crossing costs an energy ec, which can in principle be calculated from  
atom ic interactions. If  ec is positive, the num ber o f wall crossings will be as 
small as possible in equilibrium. Thus, in this case, incom m ensurate ground 
states will be striped phases with no wall crossings and with lower symmetry 
than  the substrate. If, on the o ther hand, ec < 0, crossings are favored, and 
a new calculation is needed to determ ine the nature o f the C l transition. To 
be concrete, consider a hexagonal substrate and a hexagonal array o f walls, as 
shown in Fig. 10.3.7b. Let / be the length o f a hexagonal side. If  we assume 
th a t the dom inant repulsive interaction arises from  repulsion from  parallel wall
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(a) (b)

Fig. 10.3.7. (a) A  striped incommensurate phase consisting o f a linear array 
o f equally spaced domain walls, (b) A  hexagonal incommensurate phase in 
which domain walls follow the edges o f  a honeycomb lattice.

(a )  (b )

Fig. 10.3.8. (a) Heavy walls and (b) light walls relative to the χ  ,J3R30°  
commensurate state.

segments separated by a distance *fSl, then the energy per unit area A  relative to 
the com m ensurate state is

A U  6a(S)l +  4ec +  U0e - ^ m (103 57)
A  3V3/2

This energy predicts a first-order C l transition. Thus, at T  =  0, the C l transition 
on a hexagonal substrate is either first order or it leads to  a state o f lower than  
hexagonal symmetry.

Unlike one-dimensional systems, two-dimensional systems have shear as well 
as longitudinal strain. Transverse strains in general have lower energy than 
longitudinal strains. This causes the incom m ensurate adsorbate lattice to  tilt
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relative to  the substrate (see Problem  10.8). The angle o f tilt goes continuously 
to  zero at a second-order C l transition.

10.4 Fluctuating walls

As discussed at the beginning o f this chapter, surfaces in dim ensions greater 
than  one undergo therm al fluctuations at any nonzero tem perature and are, 
therefore, no t microscopically flat. The nature o f these fluctuations depends on 
the energy o f different non-flat configurations. F luctuations change the total area 
and increase the energy o f walls with positive surface tension. The energy o f a 
wall can also depend on other quantities, such as the local curvature. In  this 
section, we will introduce some rudim entary differential geometry tha t will allow 
us to  describe spatial configurations o f a fluctuating surface. We will then discuss 
simple properties o f fluctuating surfaces in the harm onic approxim ation. Finally, 
we will discuss effective interactions between fluctuating surfaces arising from  
entropy reduction caused by the confinem ent o f  a surface between two neighbors.

1 Differential geometry and the total surface area

A surface S is a (d — l)-dim ensional m anifold in a ^-dim ensional space. Points 
on a surface are then specified by a ^-dim ensional vector R(u) as a function of 
d — 1 coordinates u =  (m1,...,!^-1 ). Any set o f d — 1 independent coordinates u 
can be used to param eterize the surface, and particular choices are m ade to  suit 
particu lar geometries. For example, if one is interested in a surface in 3-space 
with nearly spherical symmetry, the po lar angles (0 , φ) would be an appropriate 
choice for u. On the o ther hand, if one is interested in nearly flat surfaces, the 
coordinates x±_ =  (x i,x 2) in a fixed plane in space would be a m ore appropriate 
choice. The invariance o f the properties o f a surface with respect to  changes 
in param eterization is analogous to  gauge invariance in electrodynamics, and a 
choice o f param eterization is often called a gauge choice. Since we are most 
interested in nearly flat surfaces, we will focus on the la tter choice called the 
Monge gauge. In this gauge,

R ( x _ l )  =  [χχ,Λ(χχ)], (10.4.1)

where h(x±) specifies the height o f the surface above the base plane with co
ordinates χ χ  =  as shown in Fig. 10.4.1. In  general, the surface
can have overhangs, as shown in Fig. 10.4.1b. In  this case, the function h(x±) 
is m ulti-valued, and the M onge gauge m ay no t be optimal. It may, o f course, 
be possible to  choose a ro tated  base plane such th a t there are no overhangs, as 
shown in Fig. 10.4.1b. In this case, the M onge gauge relative to  the ro tated  base 
plane is a good one. The M onge gauge is equivalent to  specifying the height of 
the surface above the base plane via the zeroes o f  the function,
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Fig. 10.4.1. (a) A  surface without overhangs above a base plane. In the 
M onge gauge, points on the surface are specified by their height h(xL) above 
a coordinate xj_ on the base plane, (b) A  one-dimensional surface in two 
dimensions with overhangs relative to base plane B  but without overhangs 
relative to the rotated base plane B'.

Φ(χ) =  χ ά - Η χ ±), (10.4.2)

where x =  (x±,xd)  is a d-dimensional vector. Eq. (10.4.2) will prove useful in 
w hat follows.

To simplify our discussion, we will, for the m om ent, restrict our attention to 
surfaces w ithout overhangs in two and three dimensions. A one-dimensional 
surface in two dimensions is simply a planar curve, which can be param eterized 
by a single scalar variable u. Then,

dR =  ^  s= tdu. (10.4.3)
du

The vector t =  dR /du  is tangent to the curve at u. The length o f the line segment
between u and u +  du is ds =  (dR · dR )1!2. I f  u is the arc length s, then t  is a unit
vector. In the M onge gauge, R =  [x, h(x)], and

dR /  dh λ , ^
M =  + T x ‘ ” ) d x · (1 0 A 4 )

The length o f an infinitesimal line segment is ds, and the total length o f the curve 
in the M onge gauge is

L =  [  d s =  [  * dx[l +  (dh/dx)2]1/2, (10.4.5)
J o Jo

where L B is the length o f  the horizontal base line shown in Fig. 10.4.1.
A two-dimensional surface in three dimensions is param eterized by two vari

ables w1 and u2. Infinitesimal displacements along the surface satisfy

-  f j ? * · ' + H * · 2· <10·4·6'

The vectors ti =  d R /d u 1 and t2 =  d R /d u 2 are tangent to the surface a t (ul ,u2)
bu t are no t necessarily orthogonal, as shown in Fig. 10.4.2. The area o f  an
infinitesimal surface element with sides du1 and du2 is, therefore,

dS =
(R  gR
du1 X du2

duldu2

[1 +  (V x  h)2]1/2dx idx2, (10.4.7)
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Fig. 10.4.2. Representation of a section of a surface S showing at point P 
the normal vector N, tangent vectors ti and t2, the tangent plane T, and 
normal planes perpendicular to T. The intersection of the surface S with the 
normal planes are called normal sections. The normal sections shown here 
coincide with the lines u1 and u2, which are equal to constants.

where the second form, valid for the M onge gauge with =  (x i,x 2), follows
from  Eq. (10.4.1) The total area o f  a surface w ithout overhangs relative to a fixed 
base plane is, therefore,

dx \dx2[l + ( V i  h)2]1?2, (10.4.8)

where the final integral is over the base plane area A B.
A unit norm al N  can be constructed at each point P on a surface. The norm al 

to a p lanar curve can be obtained by rotating the tangent vector d R /d u  through 
90°. The unit norm al to a two-dimensional surface can be constructed from  the 
tangent vectors tj and t2 at P:

N  =  — . (10.4.9)
I tl x t2 |

The sign o f N  is no t uniquely determined. I f  there is nothing to distinguish the 
two sides o f  the surface, the choice o f  the sign o f  N  is arbitrary. If, however, 
the two sides are distinguishable, as they are, for example, when the surface is a 
dom ain  wall separating two coexisting equilibrium  phases A  and B, or when it is
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Fig. 10.4.3. A  planar curve with a tangent plane T  at a point P .  The circle 
tangent to the curve has a radius equal to the local radius o f curvature at P.

a surfactant layer separating w ater and oil in a microemulsion, it is appropriate 
to choose N  to po in t always from  one phase to the o ther (say from  A  to phase 
B  or from  w ater to oil). We will refer to surfaces for which the sign o f  N  has 
significance as oriented surfaces. The plane norm al to N  at P  is tangent to the 
surface a t P  and is called the t a ng e n t  p lane .  A n explicit form  for N  in  the Monge 
gauge is easily obtained with the aid o f  Eqs. (10.4.2) and (6.3.6):

N  =  =  [1 +  (V ± fc)2r 1/2( - V ± ft, 1). (10.4.10)

We leave as an  exercise the verification that Eqs. (10.4.9) and (10.4.10) are 
identical.

2 Curvature

Each poin t on a surface is characterized by a local curvature tensor. For a 
p lanar curve in two dimensions, the curvature tensor a t point P  is a scalar with 
m agnitude equal to the inverse radius o f  a circle tha t locally follows the curve at 
P ,  as shown in Fig. 10.4.3. Let T  be the tangent line to the curve at P ,  let x be 
the coordinate along T  as m easured with respect to P ,  and let ft(x) =  N  ■ R be 
the height o f  the curve above P  in the direction o f  the norm al N. For small x, 
h( x)  can be expanded in a power series in x. Because T  is tangent to the curve, 
we have d h / d x  =  0 and h ( x)  = K x 2/ 1 .  Now imagine a circle o f  radius R  tangent 
to T  at P . I f  the center o f  the circle is along N , its height above P  as a function 
o f  the angle Θ m easured with respect to N  is ft' =  R ( 1  — cos 0).  For small Θ, 

Θ =  x / R  and ft' = R ~ l x 2/ 2. Thus, the circle and the curve will m atch to order x2 
if  Κ  =  I?-1 . I f  the center o f  the circle lies along —N, then ft' =  —R ( l  — cos 0),  

and K  =  —R ^ 1. Thus, the sign o f  K  is positive if  the curve rises towards N  and 
negative if  it falls away from  N.

A similar analysis applies to a two-dimensional surface S  in three dimensions. 
Let T  be the tangent plane at the point P  on S,  as shown in Fig. 10.4.2. Planes 
norm al to T  at P  are called n o r ma l  p lanes .  Each norm al plane intersects the 
surface S  in a p lanar curve called a n o r ma l  sec t ion.  Each norm al section has an
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\

(a) (b) (c)

Fig. 10.4.4. Sections o f surfaces (a) with two positive radii o f  curvature, (b) 
with two negative radii o f  curvature, and (c) with one positive and one 
negative radius o f curvature. The surface in (a) has positive mean and 
Gaussian curvature at P ; that in (b) has negative mean and positive 
Gaussian curvature; and that in (c) has negative Gaussian curvature and 
mean curvature whose sign depends on the relative magnitude o f  Ri  and R2-

associated curvature. Let x i  and x 2 be coordinates in an orthogonal coordinate 
system on the tangent plane m easured with respect to an origin a t P. The height 
h =  N  · R o f  the surface above P to second order in x± =  (x i ,x 2) is then

where X y are the com ponents o f  a 2 x  2 real symmetric tensor K ,  which has two 
real eigenvalues K f 1 and R ^ 1 and associated orthonorm al eigenvectors ei and e2 
in T. Therefore, Eq. (10.4.11) can be rew ritten as

Ri and R2 are called the principal radii o f  curvature o f  the surface at P  and 
correspond, respectively, to the radii o f  the circles in the N  — ei and the N  — e2 
norm al planes tha t best fit the norm al sections in these two planes. The signs 
o f  Ri and R2 can be positive or negative. I f  the norm al section in the N  — ea 
(a =  1,2) plane curves towards (away from) N, R^ is positive (negative). I f  Ri and 
R2 are both  positive (negative), all norm al sections curve towards (away from) 
N, as shown in Figs. 10.4.4a and b. I f  i?i and R2 have opposite signs, as they 
do at a saddle point, there will be norm al sections that curve towards N  and 
others tha t curve away from  N, as shown in Fig. 10.4.4c. The curvature o f  a 
norm al section in a norm al plane containing the vector e(y) =  cosyei +  sinye2 
is R ~ l(y) =  cos2 y +  R ^ 1 sin2 y. The extremal values o f  /?- 1(y) occur at 
7 =  0  m od (π) and at y =  ( π /2 ) m od (π), where R ^ ( y )  is equal, respectively, to 
K f1 and R ^ 1. Thus, the principal radii o f  curvature R\ and R2 correspond to the 
m axim um  and m inim um  curvatures o f  all o f  the norm al sections through P.

Two scalar invariants can be constructed from the tensor K .  They are

(10.4.11)

h(x ± )  =  \ R i ' e i ) 2 +  ^ R 2 ' e 2)2· (10.4.12)

TrX =  R i 1 +  R 2 ' =  2Hc (10.4.13)

and
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H c is the average or m e a n  c urv at ure ,  and d e t X  is the G a u s s i an  c urv at ure .  The
m ean curvature in the M onge gauge is simply ( V x - N ) /2 .  This relation is trivially
true when the base plane is the tangent plane at P . In  this case, to linear order 
in x±  near P , N  =  (—K y x j , 1), and V  · N  =  TrX . It is a straightforw ard exercise 
to show that this relation applies to any point on a surface (see Problem 10.6). 
Thus,

V i  · N  =  —  +  —  = ----------------------------  (10415)
X  Rl R2 [ 1  +  ( V i  f t ) 2 ] 3 / 2  ( 1 U A 1 3 J

To linear order in ft, the m ean curvature is simply Vj _h/ 2 .

det k = r ^r 2 (10A14)

3 Energy o f  a surface

As we indicated at the beginning o f  this section, the energy o f a surface depends 
in general on its total area and on surface param eters m easuring deviations from 
local flatness, the lowest order o f  which is the curvature tensor. A phenom eno
logical H am iltonian for a surface can, therefore, be w ritten as

J f  =  J f ,  +  +  J fo ,  (10.4.16)

where

=  j  d S a (  N),

-  r h ih + h -h ) 1· <10A17)
1 ί  1

g =  I  d S -
2 J  R i R2

The first term  is the surface tension contribution to 3/C. The second and 
third terms 3fCc and J f c  are, respectively, the m ean and G aussian curvature 
contributions to J f .  We discuss first. W hen σ(Ν) is independent o f  the 
direction o f the surface norm al N, =  σ Α ,  where A  is the total area o f  the 
surface. There are situations in which σ(Ν) can depend on N. For example, the 
energy o f  a solid-liquid interface can depend on the direction o f  N  relative to a 
crystal axis o f  the solid. O r the energy o f  a Frenkel-Kontorowa-like soliton on 
a two-dimensional adsorbate such as Xe m ay depend on its direction relative to 
the periodic substrate. In  general, σ(Ν) does no t have to be an analytic function 
o f  N. Indeed, we will see in the next section how nonanalytic forms for σ(Ν) 
arise for solid-liquid interfaces and the effect they have on equilibrium  crystal 
shapes. Often, however, σ(Ν) is analytic. I f  the lowest energy configuration occurs 
when N  is along a fixed direction e in space (corresponding, say, to a lattice or 
substrate direction), then σ(Ν) can be expressed as a function o f Θ =  cos-1 (e · N). 
I f  σ(Ν) =  σ ( θ )  is analytic, it can be expanded in a power series about 0 =  0:
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σ(θ) =  σ +  ^ σ 1θ2 +  ..., (10.4.18)

where σ\ is positive if Θ =  0 corresponds to a local m inim um  o f σ(θ).
The second term  t f c measures the energy cost associated with deviations o f 

the m ean curvature from  a local preferred value Ro. I f  the lowest energy state is 
a flat surface, Ro =  oo. Interfaces between coexisting isotropic phases generally 
have Ro =  oo. Since Ro has a sign, it can only be nonzero for oriented surfaces. A 
particularly clear example o f  a oriented surface is provided by a surfactant layer 
separating w ater from  oil in microemulsions. A surfactant consists o f  molecules 
with a hydrophilic po lar head group preferring contact with w ater over oil and 
a hydrophobic hydrocarbon tail preferring contact with oil over water. Such a 
molecule can have a wedge shape, giving rise to a natural surface curvature and a 
nonzero R ^ 1, as shown in Fig. 2.7.13. The curvature rigidity κ  has units o f  energy. 
In microemulsions, its m agnitude is generally o f  order T  a t room  tem perature.

The third, or Gaussian, curvature contribution t f c  is different from the others 
in that, according to the Gauss-Bonnet theorem, it is a constant on a surface of 
fixed topology. I t does not, therefore, affect the fluctuations o f  a surface o f  fixed 
topology. I t can, however, become im portant if  a surface is allowed to break up 
into m any disjoint parts o r spontaneously to generate handles. The Gauss-Bonnet 
theorem  states that the integral over a surface is a topological invariant:

where the genus g is an integer equal to the num ber o f  handles o f  the surface. The 
quantity χ  =  2(1 — g) is called the Euler characteristic o f  the surface. The proof 
o f  the G auss-Bonnet theorem  involves concepts in differential geom etry that are 
beyond the scope o f  this book. A sphere, and all topologically equivalent closed 
surfaces that can be m apped continuously onto a sphere, have no handles and 
have genus g =  0. A torus is topologically equivalent to a sphere with a single 
handle and has genus g =  1. Representative examples o f  higher genus surfaces 
are shown in Fig. 10.4.5c. The “plum ber’s n ightm are” shown in Fig. 2.7.15 is an 
example o f  a surface with an extensive genus proportional to the total area of 
the surface.

The harm onic approxim ation to t f  in the M onge gauge is obtained by expanding 
to second order in h. I f  we restrict our attention to a nearly flat surface o f  fixed 
topology, we can ignore t f G, and we obtain

where γ =  σ +  σ\ is the interfacial stiffness, which includes a p art arising from 
the Θ2 term  [Eq. (10.4.18)] in the anisotropic surface tension. W hen y >  0, the 
interfacial stiffness determ ines the nature o f  the long-wavelength fluctuations, and

(10.4.19)

4 Fluctuations in the harmonic approximation

t f h ar =  σ Α Β +  ^ Ι d ^ x ± [ y ( V ±  h ) 2 +  K ( V 2± h ) 2l  ( 1 0 . 4 . 2 0 )
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(a) (b)

Fig. 10.4.5. Surfaces o f (a) genus zero, (b) genus one, and (c) large genus.

the curvature term  can be ignored for wave vectors q with m agnitude q  less than 
an appropriately defined cutoff A. I f  the curvature term  is dropped, Jfhar becomes 
identical to the x y  elastic H am iltonian discussed in Sec. 6.1. Recall that phase 
fluctuations in the xy-model become divergent at and below the lower critical 
dim ension (II =  2. The integral in Eq. (10.4.20) is over a (d  — l)-dim ensional 
surface, so tha t a surface in three dimensions is a t its lower critical dimension, 
and one in two dimensions is below its lower critical dimension. To be m ore 
specific, we have

/l2x f  d d- ' q  T  f  [ T / ( 2 n y ) ] L B, d  =  2;
( } J  ( I n f - ' y q 2 {  [ Τ / ( 2 π γ ) ]  In L „, d  =  3, (0.4.21)

where L b is the length o f  the base plane. Similarly,

([h(x±) - h ( 0)]2} =  2 [  (10.4.22)
J  (2π)“ 1 y q z

,  Γ[Γ/(2πν)Μ d  =  2;
\[Γ/(2πν)]1η(|χχ |/α), d  =  3.

Thus, a surface in spatial dimensions less than  or equal to three has height 
fluctuations tha t diverge with the size o f  the surface. This implies tha t the 
average position o f  such a surface becomes less well defined as its size increases: 
the surface lacks l ong -ra nge  p o s i t io n a l  order .  O n the o ther hand, the direction o f
the surface norm al rem ains well defined. The deviation o f Ν ( χ χ )  from  its average
direction e is, from  Eq. (10.4.10), (5Ν (χχ) =  N (x± ) — e as —V ±  h, and

f l i l W )  *  -  J  ~  (10.4.23)

Thus, fluctuations in N (x± ) rem ain finite as the system size diverges. This means 
tha t the average surface norm al points in the same direction for all parts o f  an 
infinite surface. The surface has l ong- ran ge  or i e n t a t i o na l  o r d e r  even though it does 
no t have long-range positional order (see Fig. 10.4.6).

The interfacial tension o f  some surfaces, such as surfactant layers in a m i
croemulsion, can be effectively zero, so that the curvature term  in determines
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N

Fig. 10.4.6. Schematic representation o f  a fluctuating surface with long-range 
orientational order but no long-range positional order.

Fig. 10.4.7. A  surface not subjected to tension is flat on length scales less 
than the de Gennes-Taupin length ξρ and crumpled on larger length scales.

the shape fluctuations. In  this case, height and orientation fluctuations are more 
violent than  they are when y >  0 :

and
/i Λΐντ i2S /  [77 ( 2™ )] ln (W a ) ,  d =  3; n n , w(I i N ! ) =  |  [ t / (2 to ) ]L j>  d =  2 (10.4.25)

Thus, in this case, no t only is there no long-range positional order, there is also
no long-range orientational order. The approxim ation o f  no overhangs breaks 
down for base plane lengths larger than  the orientational persistence length,

f α β 2 π κ / Τ  d =  3 ·

Η ( 2 , Κ)/Γ , J =  4  (10A26)
at which (| (5N |2} becomes o f  order unity. F or L >  ξρ, orientational order is
lost and the surface becomes crumpled, as shown in Fig. 10.4.7. For d =  2, ξρ 
is a special case o f  the persistence length o f  a polymer. For d =  3, ξρ is the de 
G ennes-Taupin length (de Gennes and Taupin 1982) for fluctuating surfaces.

W hen a surface has no long-range positional order, it is said to be rough in 
contrast to a crystal surface at zero tem perature, which is flat and macroscopically
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smooth. The height fluctuations o f  a rough surface diverge with the length L b o f 
its base. I t is useful to introduce a critical exponent describing this divergence. 
Let I =  (h2}1/2 be the root m ean square height fluctuation. Then

(l/b)  ~  (.LB/ a f , (10.4.27)

where ζ is called the wandering exponent, a is a cutoff length in the base plane, 
and b is a length determ ined by a and the rigidity param eters. F rom  our previous 
discussion, we have

( ( 3 - d ) / 2, for d < 3 and y > 0; Π04 78Ϊ
ς \ (5 - d )/ 2 ,  for d < 5 and y =  0, /c >  0.

The length b is proportional to ( T / y ) a 3~ J when y >  0 and to ( Τ / κ ) α 5~ Λ when 
7 =  0. N ote tha t b —► 0 as T  —► 0 so tha t I decreases for a given L j  as T 
decreases. In general, if  F  ~  J  d Dx ( V sh)2, then (h2) ~  Lgs~D, and ζ =  (2s — D)/2.

5 Nonlinearities and renormalization in flu id  membranes

A m em brane in equilibrium  has therm ally excited height fluctuations or “wiggles” 
at all wavelengths down to microscopic lengths set by interparticle spacing. A 
m em brane with wiggles is easier to bend than a m em brane w ithout wiggles. A 
simple experim ent will verify this. Take two pieces o f  fairly stiff wire (a paper 
clip, for example). Bend one piece so that it has several wiggles in it bu t so that 
its projected length is the same as tha t o f  the o ther straight, unbent wire. The 
wire with wiggles is easier to bend than  the one without. The short-wavelength 
wiggles renorm alize the long-wavelength bending rigidity. This is fundam entally 
a nonlinear effect because, in a harm onic system, modes o f different wavelengths 
do no t affect each other.

The bending H am iltonian t f c [Eq. (10.4.18)] is nonlinear, as can be seen with 
the aid o f  Eq. (10.4.15):

jfA  =  l-κ j  d2x[ l  +  ( V ±h)2] - 5/2(V2±h)2

\ k J  d 2x ( V \ h ) 2 1 -  ^ ( V i l ! ) 2 (10.4.29)

The curvature rigidity κ =  /c(A_1) is tha t at microscopic length scales o f  order 
the interparticle spacing a =  2π/Λ . The rigidity at longer length scales or smaller 
wave num ber can be calculated by integrating out high wave num ber degrees o f 
freedom, just as is done in the m om entum -shell renorm alization group discussed 
in Sec. 5.8. Let h(x) =  ^ ( x )  +  ^ ( x ) ,  where ^ ( x )  has Fourier com ponents 
with wave num ber q, with 0 <  q <  A' ,  and /i>(x) has Fourier com ponents with 
Λ' < q <  Λ, with A'  < A.  The H am iltonian at length scales 2π /Λ ',

t f *  =  - T i n / m >(x)e~Jf^ T

=  ^/c(A'_1) j  d2x(V 2h<)2 + ...,  (10.4.30)



630 10 Walls, kinks and solitons

Fig. 10.4.8. One-loop diagram contributing to the renormalization o f the 
bending rigidity κ. Each slash represents one power o f the gradient operator. 
Each o f  the external lines in this graph has two gradient operators.

can be calculated as a perturbation  expansion in T /κ ,  in analogy with our 
treatm ent o f  the nonlinear sigma model discussed in Sec. 6.7. The contribution 
to one-loop order to /c(A') is obtained from  the diagram  in Fig. 10.4.8 with two 
external V2 legs. The result is (Peliti and Leibler 1985)

κ ( A '-1 ) =  /c(A_1) -  ^  ln(A /A '), (10.4.31)
4 71

or equivalently

This equation has no fixed point and runs away to negative values o f  κ. This is 
a  reflection o f  the fact that a fluid m em brane (like a polymer) is a fractal object 
a t long length scales and cannot be treated as though it were nearly flat with 
a well-defined bending rigidity. The point at which /c(A') passes through zero 
defines a length ξ / α  =  A /A ' =  β4πκ/ 3τ similar to the de G ennes-Taupin length 
[Eq. (10.4.26)] that diverges exponentially as κ / T  —► oo.

We have considered only the renorm alization o f  the bending rigidity. The sur
face tension and G aussian curvature also undergo renorm alization, the calculation 
o f  which is m ore com plicated than  o f  tha t for κ.

6 Polymerized membranes

A fluid m em brane is com posed o f  molecules tha t freely diffuse; it cannot support 
a shear. A m em brane in which such diffusion is prohibited can be created by 
forming, via polym erization, a two-dimensional network o f connected molecules 
analogous to a fishnet. Such a fixed-connectivity network is a two-dimensional 
solid, differing from  those we considered in C hapter 6 by its freedom to fluctuate 
in a third direction. It is characterized by a strain variable m easuring distortion 
from  an equilibrium  reference state and a strain elastic energy. It can support a 
shear (at least in the harm onic approxim ation). Physical examples o f  fixed con
nectivity networks include partially polymerized phospholipid vesicles, graphite
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oxide sheets in an appropriate solvent, and the spectrin network in red blood 
cells.

The nonlinear coupling o f  in-plane strain modes and out-of-plane height modes 
o f  polymerized m em branes leads to nontrivial and surprising properties that are 
distinct from  those o f a fluid m em brane or a flat two-dimensional solid (Nelson 
and Peliti 1987; Aronowitz and Lubensky 1988). The long-wavelength bending 
rigidity is stiffened, ra ther than softened as in a fluid m em brane, and the in-plane 
bulk and shear m oduli are softened by the same effect tha t favors the use o f 
corrugated steel sheets in some construction projects. It is m ore difficult to bend 
a corrugated sheet into a section o f  a cylinder whose axis is perpendicular to 
lines o f  corrugation than it is to bend a flat, uncorrugated sheet. A bend in 
this direction creates nonzero G aussian curvature, which is strongly disfavored 
in a solid tha t supports shear. I t is also easier to bend such a sheet into a 
cylinder whose axis is parallel to the lines o f  corrugation than  it is to bend a 
flat sheet. This is the effect leading to softening o f the bending rigidity o f  a 
fluid mem brane. It is, as we shall see, less im portant than  the stiffening effect in 
polymerized membranes. Finally, it is easier to stretch a corrugated sheet in a 
direction perpendicular to lines o f  corrugation than it is to stretch a flat sheet. 
F luctuations at finite tem perature in a polymerized m em brane produce random  
corrugations in random  directions whose effect is to stiffen the bending rigidity 
and soften the bulk and shear moduli. The wave num ber-dependent bending 
rigidity and elastic m oduli, respectively, diverge and vanish as q tends to zero 
with power laws characterized by critical exponents

K(q)  ~  q - m

μ(<ί) ~  k ( q )  ~  q n“. (10.4.33)

R otational invariance implies, as we shall see shortly, that j/j, and ηυ are not 
independent bu t are related via

»7u =  2(1 — i/a). (10.4.34)

These power-law singularities lead to nontrivial w andering exponents for height 
and in-plane displacem ent correlations:

(10.4.35)

(|u(x) — u(0 )|2} ~  I  ^ )2 1 ~2+1 ~ l x l 2C“, c» =  ^ .

They also imply tha t ((V i/i)2) is finite and tha t the polymerized m em brane has 
long-range orientational order. Fig. 10.4.9 shows typical configurations o f  a 
model polymerized m em brane obtained from  com puter simulations. N ote that 
these m em branes fluctuate on average about a well-defined plane indicating long- 
range orientational order. They also have a finite thickness, indicating substantial
height fluctuations. The model used in these sim ulations consisted o f  spheres
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connected by unbreakable strings and interacting via a modified Lennard-Jones 
potential. Simulations generally give ζ «  0.6 and ^  «  0.8.

Polymerized m em branes have o ther unusual properties. They have a negative 
Poisson ratio  (Sec. 6 .6), i.e., when stretched in one direction, they expand rather 
than contract in the other. This effect can be seen with a crum pled piece o f  paper
- try it. They also have a nonlinear stress-strain relation with (Vw) ~  where 
φ σ =  {2 — ηυ)/(2  +  i/u) (see Problem 10.8).

The H am iltonian for a polymerized m em brane has a strain-elasticity part 
identical to tha t o f  a two-dimensional solid and a bending rigidity part identical 
to that o f  a fluid m em brane:

tf = \ j  dlxî u\ +  2//M,;My] +  ^ j  d2XK(V2h)2, (10.4.36)

where we have displayed only the harm onic p art o f  the bending energy. The 
strain My is the full nonlinear strain

t*ij =  ^(diUj +  d,uj +  c,u · dju +  dihdjh)

as ^(OjUjdjUj +  dihdjh), (10.4.37)

where the second approxim ate form applies because fluctuations in u are much 
smaller than  those in h. In the harm onic approxim ation, u and h decouple, and 
in-plane fluctuations are identical to those for a two-dimensional solid, while out- 
of-plane fluctuations are identical to those o f a fluid mem brane. The nonlinear 
dihdjh term  in My couples u to h. I f  the c,u · dju term  in My is neglected, then is 
harm onic in u, and the integral over u in the partition  function can be perform ed 
exactly to produce an effective H am iltonian for h:

t fe f f  =  \ k J  d2(V2h)2 +  \ y i J  d2x(P-j dihdjh)2, (10.4.38)

where P,J = δη — (V,V7/V 2) and Υι =  4μ(μ  +  λ )/(2μ  +  λ) is the two-dimensional 
Young modulus. The nonlinear term  arising from  coupling to strain is p ropor
tional to the shear m odulus μ  and is no t present in a fluid mem brane. It has 
fewer powers o f  V, and is therefore stronger than the leading nonlinear term  pro
portional to ( V h ) 2( V 2h)2 arising from  the curvature energy alone [Eq. (10.4.29)]. 
The interaction term  is, in fact, a long-range interaction between local Gaussian 
curvatures, as can be seen by using

- ^ V 2(P,J dihdjh) =  det dihdjh, (10.4.39)

which, to lowest order in Vft, is the G aussian curvature S(x) [Eq. (10.4.14)]. The 
interaction term  is, therefore, (1 /2) f  d 2x d 2x ' S ( x ) @ ( x  — x')S(x ') where, ^ (x ) =  
V“ 4 ~  |x |4 ln |x|.

The anom alous elasticity o f  polymerized m em branes can be studied analytically 
in an e-expansion. To do this, it is necessary to generalize to £>-dimensional 
m em branes em bedded in a space o f  dim ension d  > D.  In  this generalization, u 
is a D -dimensional displacem ent variable, and the scalar h  becomes a (d — D )-
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Fig. 10.4.9. Typical configurations o f polymerized membranes obtained by 
computer simulations. [Farid F. Abrahams, W.E. Rudge, and M. Plishke, 
Phys.  Rev.  Let t .  62, 1757 (1989).]
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dim ensional vector h in the hyperplane perpendicular to u. We now follow the 
m om entum  shell renorm alization technique discussed in Sec. 5.8. We rescale u 
and h according to

u<(q) =  b - {D+2+”“)/2u'(bq),

h<(q) =  fo-(D+4-'" ')/2h,(foq). (10.4.40)

According to the analysis in Sec. 5.8, these rescalings guarantee tha t the correlation 
functions Guu(q) and Gm(q) scale respectively as ς~2~η“ and q~4+̂  a t any fixed 
point. The space-dependent variables u(x) and h(x) scale according to u'(x /b)  =  
^(D-2- ii„)/2|J x̂ j ancj h'(x/fe) =  b(D~4+r,ĥ 2h(x). Therefore, under rescaling, we have

SiUj bb{D- 2- ^ /2diUj

dih-d jh  -*  fe2feD- 4+"‘c,h · djh. (10.4.41)

In order to preserve the form  o f the nonlinear strain [Eq. (10.4.37)] under 
renorm alization, the exponent o f  b in these two expressions m ust be equal, or

Vu +  2ηί, =  4 — D = e. (10.4.42)

This reduces to Eq. (10.4.34) when D =  2.
We can now develop recursion relations for μ, λ  and κ  following the procedures 

o f  Sec. 5.8. The results are
du ^  „ dc μ2
—  =  ηυμ-τκΏ—-j,
άλ dc ί  μ2 , μ λ  ,Α2 \  . . .  . ...
-  =  η« μ - Τ Κ Β - { - 2 +  6 - - + 6 ^ ) ,  (10.4.43)

d)c 5 μ  μ  +  λ
—  =  - n hK + T K D- - - ,
dl  ιη υ 2 κ 2 μ  +  λ ’

w here d c =  d  — D  and K D =  Ω0 /( 2 π ) ° ,  w ith  Q D the so lid  angle sub tended  by  a
£>-dim ensional sphere. Eqs. (10.4.42) and  (10.4.43) im ply  that the com b in ation s
μ  =  K D T μ / κ 2 and  λ  =  K d T X / k 2 scale n a ively  as b e. T hese variables are,
therefore, can d id ates to  reach first order in  e  fixed points. T heir recursion  

relations are

dp. „ d c „2 5μ2(μ +  λ )

d l  ~  e μ  12"  2 μ  +  λ  ’

ξ  -  +  +  (10.4.44)
dl  12 2 μ  +  λ

F or e  >  0, these eq uations have three fixed p o in ts  in  ad d ition  to the G au ssian
fixed poin t. A t the g lob a lly  stab le fixed p oin t,

(10Λ45)
W e have n o t ca lcu la ted  a value for either η„ or T o d o  this, w e use our freedom  
to  fix and  overall scale under renorm alization . W e require that κ  appearing in  
rem ains fixed, ju st as w e required the coefficient o f  ( V * ) 2 to rem ain  con stan t in 
our treatm ent o f  ren orm alization  o f  the critical po in t. (R eca ll that the κ  in  is
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not the same thing as the long-wavelength renorm alized κ.)  This leads to 

5 μ ( μ  +  λ )  12e
m  =

2  2 μ  +  λ  2 4  +  d c

"■ =  i r m -  (10446)
N ote that these choices for ηι, and η α also fix μ  and λ  to be constant.

The low -tem perature fixed point for polymerized m em branes differs from  those 
associated with critical points in tha t it is globally stable throughout the order 
phase. I t has no relevant direction.

10.5 Arrays of fluctuating walls

There are m any examples o f  physical systems tha t can be described in terms 
o f  arrays o f  walls. For example, K r and Xe adsorbed on graphite can form 
incom m ensurate phases consisting o f  regularly spaced discom m ensurations in 
either a parallel or hexagonal array, as discussed in Sec. 10.3. Similarly, lam ellar 
phases in microemulsions consist o f  a stack o f regularly spaced surfactant surfaces, 
as shown in Fig. 2.7.14.

1 Fluctuating walls and steric entropy

In the absence o f  therm al fluctuations, the equilibrium  properties o f  these arrays o f 
walls are generally determ ined, as in the F K  model, by the com petition between 
a negative wall energy (surface tension) and a repulsive interaction potential 
between walls. We have just seen, however, tha t isolated walls below their lower 
critical dimension fluctuate violently with m ean-square height fluctuations that 
diverge with the length o f  their base planes, and one can ask w hat effect these 
fluctuations have on wall arrays. There is always a short-range repulsion between 
walls tha t prohibits them  from  passing through each other. Thus, the am plitude 
o f  height fluctuations o f  a wall confined between two o ther walls is constrained 
to be less than  the distance between walls. This constraint reduces the phase 
space available to the wall and leads to a decrease, A S  <  0, in the entropy o f  
a confined wall relative to an unconfined wall. There is an associated increase 
— T  A S  =  T  \ A S  | in the free energy o f  the wall and thus an effective repulsive 
interaction between walls. This repulsion is often called st er i c  repuls ion,  and 
the reduction in entropy is called s t er i c  e n t ro py .  The concept o f  steric entropy 
first (de Gennes 1968) arose in connection with polymers confined between two 
walls. It was introduced in a study o f lam ellar liquid crystals (Helfrich 1978), and 
subsequently rediscovered and applied independently to two-dimensional soliton 
lattices (Pokrovsky and Talapov 1979).

We consider first a parallel array o f  walls with a preferred orientation relative
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to a substrate in two dimensions described by Eq. (10.4.20) with y >  0 and 
σ\ > 0. Assume the walls are, on average, parallel to the x-axis, and let I be their 
average separation. N eighboring walls will collide with each other as shown in 
Fig. 10.5.1. Between collisions, each wall fluctuates as though the o ther walls were 
no t present, and can, thus, be described by the independent wall H am iltonian o f 
Eq. (10.4.20). Let L x and L v be, respectively, the lengths along the x- and y-axes 
o f  the wall array, and let L b be the distance along the x-axis between collisions. 
The average separation between layers should be o f  order the root m ean square 
height fluctuation o f  a wall o f  base length L b , i.e., according to Eq. (10.4.21),
I2 ~  (T /2ny)LB .  Since a wall behaves freely between collisions, its free energy 
Fwaii is simply the independent sum o f contributions from  free walls with base 
length L b , i.e.,

•fwaii =  <*LX +  N wAFhM(LB), (10.5.1)

where N w =  L x / L b is the num ber o f  independent wall segments and where AFhar 
is the free energy o f a wall o f  base length Lb  described by the H am iltonian 
o f  Eq. (10.4.20). A good estimate for Fhar is obtained by replacing (d h / d x )2 by 
(.h2) / L 2 ~  l2/ L 2 in har:

AFhar ~  L B(yl2/ L 2B) ~  yl2/ L b . (10.5.2)

Then, using L b ~  (2πγ/Τ)12 [Eq. (10.4.21)], we find

F ^ n = L x ( ^  +  C ~ y  (10.5.3)

where C is a num erical constant o f  order unity. This free energy is often referred 
to as the Pokrovsky-Talapov energy. Calculations based upon a m apping o f 
this problem  onto one o f  interacting fermions in one dimension yield C =  π 2/6  
(O kwam oto 1980; Schulz 1980).

The free energy per unit area o f  a stack o f  N  =  L y/ l  parallel walls is simply

' - t £ - 7  +  c £ ‘
This equation describes the surface tension and steric entropy contributions to 
the free energy density. Potential energy contributions are, in general, also 
present. I f  the walls are F K  discom m ensurations, the repulsive interaction dies 
off exponentially with I and is always small com pared to the steric entropy term 
at sufficiently large I for T  > 0. In  equilibrium, /  is a m inim um  with respect to 
variations in I. The interfacial stiffness y =  σ +  σ\ m ust be positive; otherwise, the 
walls would be unstable with respect to the developm ent o f  spatial m odulations. 
In  order for a m inim um  with nonzero wall density /-1 to exist, however, σ  must 
be negative. Thus, as noted above, σ\ m ust be greater than  | σ  |. In  this case, 
m inim ization o f  /  with respect to I yields

' = ( i ^ f ·  (105!) 
This should be com pared with Eq. (10.3.36) for the F K  model, which neglects
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[

f
I

L b

Fig. 10.5.1. Representation o f  a lattice o f  fluctuating walls in two 
dimensions. The average separation between walls is I. Each wall is confined 
between its two neighbors. The average distance along the x-axis between 
collisions o f a given wall with its neighbors is L b - Between collisions, each 
wall behaves like a free wall. The two distances I and L b are related by the 
constraint that I2 =  ( Τ / 2 π γ )Lb-

fluctuation. The surface tension σ  is equivalent to | δ \ — Sc. A t zero tem perature, 
when therm al fluctuations can be ignored, /-1 ~  [ ln ( l/  | σ  |)]_1. A t finite 
tem peratures, however, / -1 ~  Τ -1 | σ  I1/2 rises m ore slowly from zero when 
σ  becomes negative. (Note tha t I is the real space distance between walls. Eq.
(10.3.36) applies to the average num ber o f  atom s <£ between discom m ensurations. 
From  Eq. (10.3.22), I =  <£a =  (<£ ±  l)b, and I and differ only by a scale factor 
when <£ >  1.)

Lam ellar phases in microemulsions consisting o f  stacks o f  surfactant layers with 
fluctuations dom inated by curvature energy can be stabilized by steric entropy 
in m uch the same way as walls in two dimensions with a preferred orientation. 
It turns out, however, to be o f  some im portance to take into account the finite 
width w o f the surfactant walls. Thus, though the average distance between walls 
is I, the m ean square height fluctuation is only (h2) =  (I — w ) 2. I f  the average 
distance in the xy-plane between collisions is Lb,

To a good approxim ation, the surfactant molecules com prising the walls are 
incompressible, and increasing the area o f  walls is equivalent to increasing the 
num ber o f  surfactant molecules. This means tha t the surface tension σ  is equal 
to the negative o f  the chemical potential for surfactant molecules times the area 
per molecule: σ  =  —μα2. The energy per unit volume o f a stack o f  walls is

(10.5.6)

and

Fwaii =  σ  L xL y +  N cL g /c ( ( V 2 h)2)

(10.5.7)
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f ~ T + c i ^ w -  <10·5-8»
In  equilibrium, this energy m ust be minimized over I. I f  σ  >  0, I =  oo in equilib
rium, i.e., there are no walls. In real microemulsions, this situation corresponds to 
a negative chemical potential μ  for surfactant molecules and to phase separation 
into oil- and water-rich regions separated by a single wall. I f  σ  <  0 (μ  >  0), it 
is energetically favorable for walls to form, and a lam ellar phase becomes stable. 
W hen σ  is small and negative, l / w  is large, and l ~ 2 =  (3/c | σ \ / C T 2). Again, 
Eq. (10.5.8) describes only the surface tension and steric entropy contributions 
to / .  In general, there are also potential energy contributions to / ,  arising, for 
example, from  van der Waals or screened C oulom b interactions between walls.

2 H oneycom b lattice o f  walls

Fluctuations have an even m ore pronounced effect on hexagonal incom m ensurate 
structures, such as that shown in Fig. 10.3.7b, than they do on striped phases. The 
honeycom b lattice has the very unusual property (Villain 1980) that displacements 
o f  vertices where three walls intersect do no t change the total length o f  walls 
provided no walls cross. A typical configuration o f  the honeycom b lattice with 
random ly displaced vertices is shown in Fig. 10.5.2. These configurations, which 
will be therm ally excited at any nonzero tem perature, carry considerable entropy. 
The diam eter o f  any hexagon can change, w ithout shrinking to zero size or 
colliding with a neighbor, by a factor o f  order l / b ,  where I is the average length 
o f  a hexagonal side and b  is the substrate lattice spacing. Thus, the entropy
S associated with fluctuations in the positions o f  wall intersections is o f  order 
N h \ n ( l / b ) ,  where Nh is the num ber o f  hexagons. A t finite tem perature, the 
entropic contribution — T S  will dom inate the exponential potential term  at large
I, and Eq. (10.3.57) should be replaced by the free energy density 

6 a ( S )  +  4 e c - B T \ n ( l / b ) ,

3^ /312
where B  is a constant o f  order unity and e c is the wall-crossing energy. This free 
energy, like the energy o f  Eq. (10.3.57), predicts a first-order C l transition.

3 Elastic ity  o f  sterically stabilized phases

Since equilibrium and stability o f  sterically stabilized phases are determ ined by 
entropic ra ther than  energetic contributions to the free energy, the only im portant 
energy scale in these systems is set by the tem perature. As a consequence, physical 
quantities such as elastic constants will tend to zero with tem perature. This leads 
to some interesting experimentally verifiable consequences.

The striped incom m ensurate phases are essentially two-dimensional smectic 
liquid crystals with a preferred orientation im posed by the anisotropic substrate.
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(a) (b) (c)

Fig. 10.5.2. (a) A  semi-regular honeycomb lattice and (b) a topologically 
equivalent distorted partner in which each vertex has the same neighbors as 
in (a). The total length o f  hexagon edges is the same in (a) and (b), as can be 
seen by the construction in (c).

B

(10.5.10)

(10.5.11)

The elastic free energy can be expressed in terms o f  the displacements w(x) [see 
Eqs. (10.3.27) and (10.3.28)] o f  walls from equilibrium:

Fe] =  ^  J  d2x[B(dyu)2 +  K (8 xu)2],

where

^  = 6 ell
dl2 yP

is the layer compressibility modulus. The constant K  measures the energy 
associated with ro tating  the lattice and is simply

K  =  y /l .  (10.5.12)

Eq. (10.5.10) expresses the elastic energy in terms o f the wall displacem ent variable. 
Alternatively, it can be expressed in terms o f  the adatom  displacement variable 
u =  u(b/l):

f d  = \J d2x[B(dyu)2 + K ( S xu)2], (10.5.13)

where B =  (l /b )2B  and K  =  (l /b )2K . These free energies are anisotropic versions 
o f  the xy  elastic free energy discussed extensively in C hapter 6 . A simple rescaling
o f lengths, x —► x' =  ( B / K ) 1/4x, y  —* y' =  ( B /K )~ 1/4y, leads to the isotropic xy
free energy with stiffness

J B K  =  b~2Ty/6C . (10.5.14)
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1(A)

Fig. 10.5.3. η€ as a function o f I for swollen lamellar microemulsions. The 
solid line is a fit to Eq. (10.5.17). [C.R. Safinya, D. Roux, G.S. Smith, S.K. 
Sinha, P. Dimon, N.A. Clark, and A.M. Bellocq, Phys.  Rev.  Lett .  57, 2718 
(1986).]

Thus, this “isotropic” stiffness is independent o f  I and goes to zero linearly with 
tem perature.

A sterically stabilized lam ellar microemulsion is a smectic liquid crystal which 
m ust be described by the long wavelength elastic theory o f  Eq. (6.3.10). The layer 
com pression m odulus is simply

d2f  T 2l

B =  l w  =  6cw = ^ ·  (1(m5)
The bending elastic constant K \  is clearly proportional to the bending rigidity κ 
o f  an individual layer. I f  the contributions o f  K i  arising from  therm al fluctuations 
are ignored (it can in fact be shown that they are small), then

K i  =  k /1  (10.5.16)

simply by dim ensional analysis. A n im portan t consequence o f  Eqs. (10.5.15) and
(10.5.16) is that the exponent η€ o f  Eq. (6.3.16) m easuring the power-law decay
o f order param eter correlations is independent o f  tem perature and independent
o f  I if  I »  w:

q$T  / w x -2
nc

■ (10'5' 17» 
Fig. 10.5.3 shows an experimentally m easured curve o f  η€ versus layer-spacing 
I for a swollen lam ellar microemulsion, which provides striking confirm ation of 
Eq. (10.5.17) and the im portance o f  steric entropy in these systems.

4 Dislocations and the C l transition

We have ju st seen that the striped incom m ensurate phase is described by an elas
tic energy identical to that o f  a two-dimensional xy-model. I t should, therefore, 
undergo a Kosterlitz-Thouless transition to a disordered fluid phase. The topo
logical excitations o f  the striped incom m ensurate phase are edge dislocations in
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Fig. 10.5.4. Dislocation in a domain wall striped phase near a 3 χ 1 
commensurate structure. The three possible registries of the adsorbate lattice 
with the substrate are denoted by A, B and C. A domain wall in which a 
single extra layer of adatoms is inserted requires the insertion of three 
domain walls because, in order for A  regions to connect smoothly from one 
side of the sample to the other, it is necessary to insert a B and a C region 
between two A  regions as shown.

which the layer displacem ent variable u undergoes a change in one circuit around 
a core th a t leaves the mass-density am plitudes pc  unchanged for all reciprocal la t
tice vectors G. It can be seen from  the discussion o f X-ray diffraction in Sec. 10.3 
and Eq. (10.3.41) that, to satisfy this condition, u m ust change by an integral 
m ultiple o f the average adatom  spacing a in one circuit around a dislocation core. 
Thus, the edge dislocations o f interest correspond to  the insertion or removal o f  a 
line o f adatom s. In  general, one m ight expect there to be dislocations associated 
with the second period (namely tha t o f ψ(ηα — ΰ) in Eq. (10.3.39)), the distance
I =  i f a  between discom m ensurations, appearing in the mass-density wave expan
sion o f Eq. (10.3.39). These, however, can be ignored since they require changes in 
the phase o f  the substrate lattice, which we have assumed is frozen. The insertion 
o f one extra line o f adatom s in an incom m ensurate state near a p χ  1 structure 
is equivalent to  the insertion or removal o f  p discom m ensuration lines, as can be 
seen from  Eq. (10.3.4). To be concrete, consider the case in which a =  (p — ££~l )b 
with i f  »  1, and assume there are initially N  adatom  lines occupying a length 
L N =  Npb — Nfasb along the y-axis. I f  one m ore line is added such th a t the total 
length rem ains fixed, then the num ber o f discom m ensuration lines m ust change 
from  Ndis to  N'dis: L N+1 =  (N  +  l)pb — N'disb =  L N, and Ndis =  Ndis +  p. This 
argum ent gives the correct relation between the num ber o f  extra layers and the 
num ber o f discom m ensurations. Far from  the dislocation core, o f course, L N +1 

will be equal to  (N  +  l)a  in equilibrium. A  dislocation in an incom m ensurate 
state relative to a 3 χ  1 structure is shown in Fig. 10.5.4.

The striped phase is stable with respect to  unbinding o f  dislocations provided 
the exponent η ( Τ ) describing the decay o f order param eter correlations is less 
than  1/4  [see Eq. (9.4.38)]. In  the xy-model, η(Τ)  =  T / 2 n p s. In the present case,
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T T

(a) (b)

Fig. 10.5.5. Possible phase diagrams in the temperature (T)-chemical 
potential (μ) plane for a Cl transition from a p χ 1 commensurate state to an 
incommensurate state, (a) p >  3; (b) p < 2. [S.N. Coppersmith, Daniel S. 
Fisher, B.I. Halperin, P.A. Lee, and W.F. Brinkman, Phys. Rev. Lett. 46, 549 
(1981).]

the elastic variable u has units o f  length ra ther than  angle, and ps =  (a/2n)2yjBK.  
Thus, when I is large and steric entropy dom inates potential repulsion so that 
y /BK  is given by Eq. (10.5.14),

This quantity is independent o f tem perature and depends only on a/b  and the 
constant C. As discussed earlier, calculations based on m apping the present 
problem  onto a problem  o f interacting fermions in one dimension yield 6C =  π 2. 
Thus the condition for stability o f a sterically stabilized striped phase with a «  pb 
is

or p2 >  8. The separation between discom m ensurations diverges as the incommen
surate-com m ensurate (IC) transition is approached. Thus, near the C l transition, 
steric entropy always dom inates potential repulsion, and Eq. (10.5.18) applies. We 
therefore conclude tha t there can be no C l transition for p <  3 at any nonzero 
T,  and th a t a fluid phase m ust intervene between a p χ  1 com m ensurate phase 
and an incom m ensurate phase a t all tem peratures greater than  zero, as shown in 
Fig. 10.5.5a. W hen p >  3, a C l transition at nonzero tem perature is possible, as 
indicated in Fig. 10.5.5b. As I decreases, exponential potential repulsion cannot 
be neglected, and elastic constants and η( Τ)  acquire nontrivial tem perature 
dependences and a finite transition tem perature Tm  from  the incom m ensurate to 
the fluid phase, as shown in Fig. 10.5.5a (see Problem  10.11).

We saw in Sec. 9.5 th a t a two-dimensional hexagonal solid on an anisotropic 
substrate undergoes a Kosterlitz-Thouless dislocation unbinding transition to a 
fluid phase with the rotational symmetry o f  the substrate when Eq. (9.5.3) is

(10.5.18)

η =  2p~2 <  1/4, (10.5.19)
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satisfied. Elastic constants for the hexagonal honeycom b lattice can be calculated 
following procedures similar to those just described by the striped phases. The 
bulk and shear m oduli are proportional to  T / I 2 times slowly varying functions 
o f  σ, and the left hand  side o f Eq. (9.5.3) is independent o f tem perature and 
less than  the critical value necessary for stability against dislocation unbinding. 
Thus, it is expected th a t a fluid phase will intervene between the ,/3  x ^J3R30° 
com m ensurate and the honeycom b incom m ensurate structure at all tem peratures, 
provided the zero tem perature C l transition is weakly first order (i.e., I is large).

10.6 Roughening and faceting

We saw in the preceding section th a t the fluid-fluid interface separating coexisting 
liquid and gas phases is m acroscopically rough, i.e., tha t its height fluctuations 
diverge with its linear dimension. The solid-fluid interface separating coexisting 
solid and gas or solid and liquid phases differs from  tha t separating liquid and gas 
phases because the solid has a periodic density tha t favors interfaces coinciding 
with lattice planes. One m ight expect, and indeed experience generally confirms, 
th a t a solid-fluid interface should be macroscopically sm ooth and should not 
exhibit divergent height fluctuations. In this section, we will develop models to 
describe equilibrium  solid-fluid interfaces, which predict tha t the interfaces are 
sm ooth at low tem perature, bu t tha t they can undergo a roughening transition to 
a state in which, like a fluid-fluid interface, they are m acroscopically rough. The 
idea th a t a crystal interface m ight roughen goes back to before 1950 (Burton and 
C abrera 1949; Burton, Cabrera, and F rank  1951), when it was suggested th a t the 
existence o f large fluctuations in surface structure m ight lead to a disappearance 
o f  the nucleation barrier to crystal growth. The m orphology and growth o f a 
wide class o f crystals grown in melts can be understood using these ideas.

1 The  solid-on-solid and  discrete Gaussian models

The atom s o f a crystalline solid occupy positions on a regular lattice. A t low 
tem peratures, vacancies, interstitials and other defects can be ignored so that 
every lattice site in the crystal phase is occupied by an atom. The density of 
the gas phase is essentially zero, and one can define a solid-gas interface as the 
surface along which occupancy o f  lattice sites changes from  one to  zero.

Consider for simplicity the (001) face o f  a tetragonal lattice with lattice pa
ram eters a in the basal plane and b norm al to  the basal plane. I f  overhangs 
are ignored, then the surface configuration is represented by a two-dimensional 
array  o f integers specifying the num ber o f atoms in each colum n perpendicular 
to the (001) face or, equivalently, by the height o f the colum n relative to  the flat 
T  =  0 reference surface. G row th or evaporation o f the crystal involves the atoms
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Fig. 10.6.1. Atoms on a (001) face of a tetragonal crystal. Surface atoms 
have up to four lateral neighbors. An energy J  is associated with each 
exposed lateral face.

at the tops o f  their columns. Complex surfaces with random  structure can be 
represented with this colum n model, as shown in Fig. 10.6.1.

In its lowest energy state, the surface is flat, every colum n has the same height, 
and the lateral nearest neighbor sites in the (001) plane o f  each surface atom  
are occupied. In  excited states, colum n heights differ, and some atom s will have 
unoccupied neighbor sites tha t appear as exposed vertical surfaces, as shown in 
Fig. 10.6.1. It is natural to assign an energy J  to each exposed vertical surface. 
The num ber o f  exposed surfaces between colum ns 1 and 1' is simply \hi — hy\/b, 
where hi is the height o f  colum n 1. This leads to  the absolute solid-on-solid 
(ASOS) model with H am iltonian

* a s o s  = ( J / b )  Σ  \ h i - h v \, ( 1 0 .6 .1 )

where the sum is over nearest neighbor colum ns <  1,1' > . I f  a surface with N x 
colum ns along the x-axis and N y colum ns along the y-axis is ro tated  through an 
angle β  about the y-axis (while preserving the orientation o f the bulk crystal), 
there will be N xN y \ tan/? exposed vertical surfaces and energy

e =  ( J / a 2)\ tan/?| (10.6.2)

per unit area o f the reference surface. This expression is nonanalytic in β  and 
is to  be com pared with the energy proportional to  β 2 o f a fluid interface. The 
reference surface itself has N xN y exposed horizontal surfaces. If  we assign an 
energy J± to each o f these exposed surfaces, then the energy per unit area o f the 
tilted surface is

σ(Ν) =  ( J / a 2)| sinyS| +  (J ± / a 2)\ cos/?| (10.6.3)

since the area o f the tilted surface is N xN ya2/ \ c o s β\. A  crystal with this surface 
energy is called a Kosel crystal.

A t low tem peratures, the height differences between neighboring columns will
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be small, and any model th a t assigns an energy difference to height differences 
should provide an accurate description o f fluctuations o f the surface. These 
models go under the general heading o f  solid-on-solid models or SOS models. 
The discrete G aussian model, which assigns an energy proportional to (hi — hy)2 
ra ther than  \hi — hy\, is analytically m ore tractable than  the ASOS model. The 
H am iltonian,

M dg = (J/b2) Σ  (* i -  M 2> (10·6·4)

of the discrete G aussian model was introduced in Appendix 9B. It is dual to  the 
Villain model, which in tu rn  is in the same universality class as the xy-model. 
Duality, as discussed in Appendix 9B, m aps the low -tem perature properties of 
one model onto the high-tem perature properties o f a dual model. The free energy 
o f  a model and its dual will have the same tem perature singularities. Since the 
xy-model exhibits a Kosterlitz-Thouless transition, its dual, the discrete Gaussian, 
model will also. We will rederive this result shortly.

To discuss the long-wavelength statistical mechanics o f fluctuating surfaces, it 
is useful to  introduce yet another model th a t a t low tem peratures is equivalent to 
bo th  the ASOS and the discrete G aussian models. The partition  function for the 
discrete G aussian model is 

Z DG =
Λ|

=  (  Π  W ( h \ ) e - ^ DGlT, (10.6.5)
^ 1

where
00

W(h) =  ^ 2  d(h — nb) (10.6.6)
n= —oo

is a weighting function tha t restricts each hi to be an integral m ultiple o f the 
lattice param eter b. Any weight function tha t favors heights tha t are integral 
multiples o f b will lead to low -tem perature therm odynam ic properties tha t are 
in the same universality class as the discrete G aussian model. The simplest such 
weight function is W(h) =  exp[—ucos(2nh/b)].  I f  we now take the continuum  
limit, we obtain

Z SG =  J  @h(x)e-*’SG/T, (10.6.7)

where

s g  =  * ^ o  +  •M 'u  ( 1 0 .6 .8 )

is the two-dim ensional sine-Gordori H am iltonian (which is dual to  the two- 
dim ensional C oulom b gas H am iltonian, Problem 9.10) with

d2x (V h (x ))2 (10.6.9)

and
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t f u/ T  =  —u cos[2 nh{x)/b], (10.6.10)

where y =  4 J / b 2. A  correlation length
1/2

(10.6.11)

can be introduced [as in Eq. (10.3.16)] by com paring the harm onic parts o f Eqs. 
(10.6.10) and (10.6.11).

2 The  roughening transition

The m echanism th a t leads to a roughening transition is clear from  the sine-G ordon 
H am iltonian. A t low tem peratures, the potential u is nonzero and favors sm ooth 
surfaces with heights at an integral multiple o f b. As tem perature increases, 
fluctuations away from  flatness increase and renorm alize the long-wavelength 
value o f  u. If  u renormalizes to zero at some tem perature Tr , then, for T  > TR, 
the effective H am iltonian has only the y(V7i)2 term  and is thus equivalent to  that 
describing fluid interfaces. Below TR, when u is nonzero, excitations in which h 
increases by one step height b are identical to sine-G ordon solitons discussed in 
Sec. 10.2. These excitations have a finite energy. A  surface tilted at an angle Θ 
relative to the reference flat surface has | tan  0 ~  \θ\ steps per unit length o f the 
reference surface. Thus, as in the ASOS model, the energy per unit area o f  the 
tilted surface is nonanalytic in Θ and proportional to |0| for small Θ.

To derive renorm alization equations for γ and u, we proceed in m uch the same 
way as we did to derive the Kosterlitz-Thouless recursion relations for the xy- 
model. The renorm alized surface stiffness yR is defined via F(v)—F(0) =  QyRv2/2,  
where v =  ( l /Ω ) J d 2x { V h )  is the average gradient o f  h. We therefore define 
h(x) =  v · x +  h'(x), where ti(x)  is constrained to be zero at the boundaries o f the 
surface. The sine-G ordon H am iltonian as a function o f v is

Expanding F(v) =  — T ln T re x p (—J f ( y ) / T )  to  second order in v, we obtain

where (Α)ο is the average o f A  with respect to  Jto.  Then, differentiating with 
respect to  vi, we obtain

where Tr refers to a sum over the indices i and j. F luctuations in h'(x) with 
respect to o are divergent, and ( t f u)o =  0 as (cos[27t/i'(x)/b])o =  0. Thus, the

t f { y )  =  +  j f 0[ti{x)] +  t f u[h’{x) +  x · v]. (10.6.12)

= (10.6.13)

— T  - ( t f u ) o / T  +  ^ ( ( t f 2u/ T 2) o - ( t f u/ T ) 20) +■■■,

1 T ra 2W o  _  1 Tr d2
dvidvj 4Τ Ω  dvidvj

[ ( je 2u)0 -  (10.6.14)
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only second-order perturbation  term  tha t survives in Eq. (10.6.14) is

{ ( J f u/ T ) 2) o =  U2 J  d- ^ d- ^ ( o O S  y ( f l '(x ± )  +  V X ± )

X COS y ( f t ' ( X x )  +  V -x '± ) (10.6.15)

from  which we obtain

f  d^x (fix'
x /  -----r-  [(xixi +  x'ix'Mcos[2nh'(x±)/b] cos[27rft'(x'± )/b])o

J  a1 a1 J

—(xix'j +  x'jxj)(sm[2nh'{x±)/b]  sin[27rft'(x^)/b])o]. (10.6.16)

Then, using the fact th a t (cos[(2n/b)(h'(x±)  +  Λ'(χ^))]) =  0 and expanding the 
products o f sines and cosines in term s o f  cosines o f  sum and difference variables, 
we obtain

The lower cutoff a in this integral, as in the xy-model, occurs because distances 
between sites on the lattice m ust be larger than  a lattice spacing a. The continuum  
sine-G ordon model m ust retain this or some equivalent short-distance cutoff to 
be well-defined. If  u is identified with 2y,  the vortex fugacity, this equation is 
identical to  Eq. (9.4.26) predicting a Kosterlitz-Thouless transition. Note, however, 
th a t Κ  =  T / ( y b 2) in the present case is linear in T,  whereas K  =  ps/ T  for the 
xy-model is linear in l / T .  Thus, the low- and high-tem perature phases o f  the two 
models are reversed as duality o f the xy-  and discrete G aussian models requires.

The properties o f the Kosterlitz-Thouless transition are now easily translated 
to the roughening problem, and we review them  here. First, the universal value 
o f K c =  2 /π  at the roughening tem perature leads to

This result implies tha t faces with the largest value o f b will have the highest 
transition  tem perature (assuming y does no t vary significantly with angle). The 
length b is the distance between equivalent planes; it is a m axim um  along

yR = y +  \ T ( j P )  " 2 / 7 0  (cos[(27r/b)(ft(x) — Λ(0))])0.

(10.6.17)

where r =  |x|. But

(cos[(27r/fc)(ft(x) — h(0))])o =  exp[—2π Κ  ln (r/a)], (10.6.18)

where

(10.6.19)

Defining K r =  T / ( y^b2) , we can rewrite Eq. (10.6.17) as

( 10.6.20)

TR = 2 y R(TR)b2/n. (10.6.21)
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symmetry directions (see Sec. 2.6), and high-symmetry surfaces, such as the (001) 
surface o f a cubic crystal, are the last to become rough as tem perature increases.

The energy per unit length o f  a step in the flat phase is the sine-G ordon 
soliton energy [Eq. (10.2.18)], which in the current units is e =  (4/n)(b/a)yJTyu.  
D im ensional analysis and scaling predict tha t this quantity m ust be proportional 
to Τ κ / ξ ,  where ξ ~  exp( B / — T )  is the Kosterlitz-Thouless correlation length 
[Eq. (9.4.40)]. This result can be obtained from  the renorm alization group by 
integrating out degrees o f freedom  up to length scales ae1’, where u(/*)/K(/*) ~  1:

The energy o f a step thus decreases as ξ ~ ι as the roughening transition is 
approached from  below. As shown in Fig. 10.6.2, steps can w ander like the walls 
in an incom m ensurate soliton lattice discussed in Sec. 10.4, and there is entropic 
repulsion between them. A  surface m aking a small angle β  relative to  the reference 
surface is called a vicinal surface. I t is com posed o f a series o f fluctuating steps 
separated by flat terraces, as shown in Fig. 10.6.2. The average distance between 
steps is determ ined by b/ l  =  tan/? =  |V i  h\. The free energy per unit base 
plane area o f a vicinal surface is, therefore, identical to the Pokrovsky-Talapov 
free energy o f Eq. (10.5.4) with the line tension for a step equal to e (rather than

where fo  is the free energy per unit area o f the flat reference surface. A  tilted 
surface tha t is in equilibrium  at angle βο with respect to  the base plane, whose 
energy is given by Eq. (10.6.23), is rough because Eq. (10.6.23) has an analytic 
expansion in deviations δβ  =  β — β0. A s  βο varies, however, there can be 
com m ensurate lock-ins to crystallographic directions with energies no t described 
by Eq. (10.6.23).

A  liquid droplet in equilibrium  coexistence with its vapor phase will have a 
spherical shape determ ined by the requirem ent th a t its surface energy σΑ  be a 
minim um  for a fixed volume V.  A  crystalline solid in equilibrium  with its liquid 
or vapor phase, on the other hand, generally has flat faces, or equivalently facets,  
oriented along symmetry axes o f the crystal and sharp edges where differently 
oriented facets meet. As the triple point is approached along the solid-vapor 
coexistence line, therm al fluctuations increase, the solid becomes m ore fluid-like, 
and one would expect some evolution o f the fully faceted low -tem perature crystal 
shape towards a spherical shape, as shown in Fig. 10.6.3. Since crystal faces 
have a fluid-like energy above their roughening tem perature, there should be no

(10.6.22)

y)··

f ( V h )  = f o  +  ^ \ V ±h\ +  C ^ W ±h \ \ (10.6.23)

3 Faceting
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b

Fig. 10.6.2. Sketch of a vicinal surface at low but nonzero temperature. The 
steps have a height b and average separation I with tan β = b/l. For small β, 
the steps are widely separated and the total free energy of the interface is a 
sum of two contributions, one proportional to the total terrace area and the 
other given by Eq. (10.6.23) arising from the fluctuating and interacting steps.

Fig. 10.6.3. Evolution of shape of a cubic crystal with increasing temperature. 
At zero temperature, the crystal is a perfect cube. For temperatures T  
between 0 and T r ,  the roughening temperature of the 001 faces, there are flat 
facets along the six high-symmetry surfaces and rounded edges. For T  >  T R, 
there are no flat surfaces, and the surface is described by an analytic function 
of angle. [Craig Rottman and Michael Wortis, Phys. Reports 103, 59 (1984).]

angular discontinuities in the crystal shape above the roughening tem perature of 
the highest symmetry face.

The solid-vapor (or solid-liquid) coexistence curve can be reached by in troduc
ing an appropriate am ount o f  m atter into a fixed-volume container and varying 
the tem perature. The total volume V  o f the solid phase along the coexistence 
curve will be determ ined therm odynam ically by the lever rule. Its shape will be 
determ ined by the condition tha t the to tal surface energy be a minimum, subject 
to  the constrain t th a t the total volume o f the crystal be tha t determ ined by the 
lever rule. The to tal volume o f the crystal is

where r(0, φ)  is the radius vector to  the surface from  the origin and x± =  (x, y).

T =  0 0  <  T  <  T R T r  <  T  <  T c

(10.6.24)
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Crystal shape is determ ined by m inim ization o f the function

F  =  J  d S a ( N ) -  2 X V

=  j  d x d y [ l  +  ( V i  h )2] i/2a ( V ± A) -  2 λ  J  d x d y h ,  (10.6.25)

where A is a Lagrange multiplier, and where we used the fact tha t the surface 
norm al N  is a function o f V ±  h [Eq. (10.4.10)] to write u(Vi h) in the second 
equation. Because h scales as F 1/3, the Lagrange m ultiplier λ  m ust be proportional 
to an energy density times V ~ 1̂  in order for F  to  scale with area ( F 2/'3) and 
to have units o f energy. We can, therefore, set λ  =  yL,  where L =
The coefficient a, which has a F -independent value in the therm odynam ic limit 
V  —► oo, is chosen to  fix the total volume after the crystal shape has been 
determined. Introducing reduced variables

x ± = x ± / L ,  h =  h /L ,  σ =  σ /y , F =  F / ( y L 2), (10.6.26)

and defining m =  V ± h ,  we can write Eq. (10.6.25) as

F =  J  dxdyf(m) — 2 J  dxdyh, (10.6.27)

where

7(m) =  (1 +  m2)1/2 cf(m) (10.6.28)

is the reduced surface free energy per unit base plane area. M inim ization o f  F  
over h{\j_) yields

# , - ^ - 2  =  0. (10.6.29)
Sh{x±) ext dm,■

This equation can be solved for m as follows. First introduce an auxiliary function 

ζ =  h — m ·  χ χ , (10.6.30)

which satisfies

άζ =  —χ χ  · d m  (10.6.31)

because, by definition,

dh =  m - d x ±. (10.6.32)

Thus, ζ =  f (m)  is the Legendre transform  o f the function h(x±), and h(x±) =
[ς(m) +  χ χ  · m]min m- N ext observe that

d d f  =  d ( d f / d m x,y)  _  d ( d f / d m x, - d C / d m y)
δ χ  dmx 8(x,y)  5(3c,y)

d d f  _  d ( x , d f / d m y) _  d(—dC/dmx, d f / d m y)
dy dmy ^ i ^ y )  5(3c, y)

and m ultiply Eq. (10.6.29) by

d(x,y) = d ( d C / d m x , d C / d m y) 

d{mx,my) d(mx,my)

(10.6.33)

(10.6.34)
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to obtain
d(df/dmx,-dC/dmy) δ(-δζ/δηιχ, δ ] /dmy) 

d{mx,my) 8(mx,my)
=  _ 2m / d m x,dC/dmy)' 

d(mx,m y)
This equation has a first integral

/(m )  =  C(m). (10.6.36)

We have ju st argued th a t h(x±)  is the Legendre transform  o f C(m). But, since f  
and ζ are equal, this means tha t the reduced height function h(x±)  is the Legendre 
transform  o f the reduced free energy:

h(x± ) =  g(x±), (10.6.37)

where

g(x±) =  Lf(ni) +  m · xjminm· (10.6.38)

These observations lead to  an in terpretation o f  crystal shape in term s o f a 
therm odynam ic phase diagram . The order param eter, which specifies the local 
orientation o f the surface, is m. There can be different therm odynam ic phases as 
a function o f χ χ  and T  characterized by different functional dependence o f  m 
on χχ . There are phases in which N(m ) is norm al to  a flat crystal surface; these 
correspond to crystal facets. O r there can be rough surfaces in which N  changes 
continuously with angle, as shown in Fig. 10.6.3. These phases can be separated 
by second-order phase boundaries, across which m changes continuously, o r by 
first-order phase boundaries, across which m changes discontinuously. Phase 
boundaries correspond to singularities in the function h(x±, T),  which can be 
represented as a phase diagram  (analogous to the μ  — Τ  phase diagram  o f a fluid) 
in the x± — T  plane. Second-order transitions m ark  transitions from  flat to  rough 
surfaces. F irst-order boundaries m ark discontinuous changes between facets with 
different crystal orientations.

It is generally m ore instructive to use polar coordinates (θ ,φ ) relative to  the 
center o f  the crystal, rather than  (3c, y), as independent variables when representing 
this phase diagram. A  phase diagram  in the Τ  — φ  plane in the equatorial plane 
with θ =  π /2  for a cubic crystal is shown in Fig. 10.6.4. A t T  =  0, there is a first- 
order transition between (100) and (010) facets at φ  =  π /2 .  A t all T  >  0, there 
are second-order transitions from  the (100) and (010) facets to a rough phase 
corresponding to  rounded corners. The width o f  the flat facets decreases and tha t 
o f  the rough corners increases with increasing tem perature until the roughening 
tem perature T r o f the (100) facet is reached. For T  > T r , all surfaces are rough, 
and there are no singularities in m (x x ). The surface is, however, no t spherical 
because the surface energy, though analytic, still depends on angle.

The curved surface will meet a flat phase with a power-law singularity:

h(x,0) — ho ~  (|5c| — 3co)\ (10.6.39)
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(equatorial plane)

T  =  0 0 < T < T R T < T R

Fig. 10.6.4. Schematic phase diagram for thermal evolution of crystal shape. 
The full phase diagram is three dimensional. Here, only the evolution in the 
equatorial plane θ =  π /2  is shown. The phase boundaries, which are all 
second order for T  > 0, specify the position of crystal edges as a function of 
angle φ. The curved boundaries separating the (100) and rough phases 
belong to the Pokrovsky-Talapov universality class with τ =  3/2. Above the 
roughening transition at TR, all surfaces are rough.

Fig. 10.6.5. A curved crystal merging with a flat crystal facet below its 
roughening transition. The curved surface has a power-law singularity of the 
form h(x) =  ho — -4(|5c| — x0 )3 / 2 .

as shown in Fig. 10.6.5. In addition, the length 23co o f the flat face will approach 
zero as the roughening tem perature is approached. The detailed behavior o f 
h(x, 0), including the exponent τ, can be calculated near TR using the Pokrovsky- 
Talapov free energy [Eq. (10.6.23)] with V ± h  =  m for a vicinal surface and 
Eqs. (10.6.37) and (10.6.38):

h(x,  °) =  { J 0’ . . . . .  ΐ ! ~ ! ί ~ 0; (10·6·40)
[ho  — X(|x| -  xo) ' , if  \x\ >  *o,

where
e b

*o =  — ~  ~  e
yb ξ

-B /\T r - T \ V 2

2 f e b 3y \ 1/2 f b \ 1/2

A  -  M m  ~ ( « )  ,10·641’
and ho =  f o / y ,  where β  is a constant. The final scaling forms in these equations
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z

Fig. 10.6.6. Geometric interpretation of the Legendre transform between 
/(m) and h(x) and the Wulff construction. The crystal surface z =  h(x) is the 
interior envelope of the family of curves with slope m and z-intercept f(m)  
or, equivalently, the family of lines with normal N =  (—m, l j / ^ l  +  m2 and 
normal distance to the origin ff(m) =  f (m ) /y / l  + m2.

were obtained by using Κ ( Γ )  ~  u(l')  ~  1 a t the m atching point, α(Γ) =  ae1 =  ξ, 
and b =  constant. Thus, the exponent τ is 3 /2 , and the length o f the flat 
face approaches zero as ξ~ι . The existence o f the flat face and singular form 
of the function h(x, 0) arises from  the cusp singularity in f (m) .  For T  > Tr ,  

f  =  (fo +  jyRm2) /y  and

S(5c,0) =  S o - ~  3c2. (10.6.42)
2 7r

The surface above T r  has a curvature R _1 =  L r l y / j R  tha t scales with the sample 
dimension L and tends to a f inite value at T  =  Tr .  The reduced curvature 
(L / R ) ( T R / y b 2) has a universal value o f  2 /π  a t the roughening transition.

We now turn  to  the geometric in terpretation o f  Eq. (10.6.37) and the Wulff 
construction, which provides a geometric algorithm  for determ ining the shape 
o f a crystal from  the surface free energy σ(Ν) (or /(m )). This construction is 
equivalent to the geometric in terpretation o f the Legendre transform ation. For 
simplicity, we will treat m and χ χ  as scalars m  and 3c. G eneralization to the 
vector case is straightforward. The goal is to construct h(x) given /(3c). The 
crystal surface is described in the z-3c-plane by the curve z =  h(x), which has 
slope m =  dh /d x  a t the po in t B =  (x,h(x)),  as shown in Fig. 10.6.6. The straight 
line ABC,  tangent to  the curve z. =  h(x) a t B,  has slope m  and intercepts the z 
axis at z =  h(x) — m3c =  f (m).  Its equation is, therefore,

z = m x + f ( m ) .  (10.6.43)
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(a) (b)

Fig. 10.6.7. (a) The Wulff plot for a Kosel crystal with 
<x(N) =  | sin £>| +  | cos θ\. The crystal shape specified by the function R(θ,φ) is 
the interior envelope of surfaces passing through the Wulff plot with normals 
N =  (sin Θ cos φ, sin Θ sin φ, cos Θ). In this case, the equilibirum crystal shape 
is determined entirely by the cusps in the Wulff plot. All surfaces are flat 
facets, and there are no curved surfaces, (b) The Wulff plot for what a Kosel 
crystal becomes when T > 0. The flat facets are still determined by cusps, 
but there are now rounded edges determined by parts of the Wulff plot other 
than its cusps.

A nother po in t on the crystal surface will have a different slope m  and be tangent 
to  another straight line satisfying Eq. (10.6.43) with the new value o f m. Thus, the 
curve z =  h(x) is the interior envelope o f  the family o f straight lines with slope 
m  and z-intercept f (m).  This family is determ ined entirely once the function f (m)  
is specified.

In  application to crystal shapes, the above construction is usually expressed 
in a slightly modified form. A  particular line (e.g., ABC in Fig. 10.6.6) in the 
family o f straight lines is determ ined by its z-intercept f (m)  and its slope m. T hat 
line is equivalently determ ined by the vector norm al to it and passing through 
the origin (OD in Fig. 10.6.6). This norm al vector points along the unit vector 
N  =  (—m, 1)/V1 +  w2 and has m agnitude cf(N) =  /(m ) /^ / l  +  m2, equal to the 
surface tension o f a surface perpendicular to N. This form ulation in term s o f the 
norm al rather than  the tangent vector applies directly to  three dimensions. Thus, 
the shape o f a crystal can be determ ined as follows. First, construct the surface, 
called the Wulff  plot, whose distance from  the origin in direction N  specified 
by the polar coordinates (θ, φ) o f  N  is σ(Ν). The crystal surface R(0, φ) is the 
interior envelope o f the family o f surfaces norm al to  N  and passing through 
the Wulff plot. Fig. 10.6.7 shows this construction for a Kosel crystal with the



10.6 Roughening and faceting 655

zero-tem perature surface energy o f  Eq. (10.6.3) with J± =  J  and the same crystal 
at finite tem perature. N ote tha t it is the cusps in the Wulff plot th a t define 
flat facets. In  the zero-tem perature Kosel crystal, all surfaces passing through 
the curved part o f  the Wulff plot intersect a t one o f the corners o f the square 
determ ined by the cusps, and the equilibrium  crystal has no curved surfaces. A t 
finite tem perature, curved surfaces develop at the corners.
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Problems

10.1 Show that

is a solution o f the sine-G ordon equation, where t =  vo^Vo /c t ,  z =  
\ fVof cz ,  and β =  v / v q .  Then show tha t

where φ + is the soliton and φ -  is the anti-soliton solution o f  Eq. (10.2.17).
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This shows th a t a soliton and an anti-soliton tha t are well separated at 
t =  —oo pass through each other and emerge as a soliton-anti-soliton pair 
at t =  + 00. Show that

is a solution to  the dynam ical sine-G ordon equation th a t reduces to two 
solitons at t =  +oo.

10.2 In tilted hexatic films (Sec. 2.8), there are bo th  vector and hexatic order 
with respective complex order param eters xpi =  |ipi|eie' and ψβ =  \ψ6\β6ιθύ. 
There is a preferred relative orientation o f 0i and 06, and the H am iltonian 
for the low -tem perature phase can be w ritten as

where V (0) is a periodic function with period 2π/6 .

(a) Show that, by transform ing to  variables 0_ =  06 — 0i and 0+ =  
a06 +  (1 — a)0i, can be transform ed to

for the proper choice o f  a. Calculate K +, K - ,  and a as a function 
o f  K u  K.6, and Ki6. Show tha t a w l ,  K _ «  Ke,  and K -  *  K \  for 
K 6 x > K u K l6.

(b) Let V(0) =  —F0 cos 60, and calculate 0_(x) and the energy per unit 
length e for a dom ain wall parallel to the y-axis in which 0_ changes 
by 2π/6 . Discuss the w idth and energy o f the wall for Κβ >  Κι ,Κιβ.  
In terpret this dom ain wall in term s o f the original variables 0i and 06. 
A  figure would be useful.

(See Selinger and Nelson 1989.)
10.3 Let c =  (co s0 i,s in 0 i)  be the tilt order param eter for a tilted hexatic film. 

A  coupling o f the form

is perm itted by symmetry and is no t included in the simple H am iltonian 
o f the Problem 10.2. This term  favors a nonzero splay, bu t integrates to 
the surface and does no t contribute to the bulk free energy if cos60_ is 
constant. If  cos 60_ goes to zero inside the sample, as it does a t the center 
o f a dom ain wall o f the sort treated in Problem 10.2, then there will be 
boundaries internal to  the sample, and Jt?c can contribute to the bulk free 
energy. This effect favors the form ation o f m odulated phases. Consider the 
following simple model o f a striped phase with one-dimensional m odulation 
in c. There are dom ain walls o f w idth w, across which 0_ changes linearly 
by 2π /6 , separated by stripes o f width I in which 0_ =  0 m od 2 π /6  is a

*  =  /  ^ 6 |V 0 6|2 +  ^Ki|V0i|2 +  Ki6V0i · V06 +  K(06-^i) ,

^ r  =  j  d2x  ^ K + | V 0 + |2 +  ^ K _ |V 0 _ |2 +  F(0_) ,
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constant. Assume th a t only 0_ changes in the walls and tha t Kf, »  K \ , K 16. 
Show th a t the energy per unit length o f this striped phase can be written 
as

where δθ =  π /4  and I »  w. Show th a t there is a second-order transition 
from  a uniform  to a striped phase when λ  is greater than  the wall energy 
e and calculate the stripe width I as a function o f  e — λ. Verify tha t w <C I 
when Kf, >  K\ .  Show in a figure the direction o f  c and the hexatic order 
param eter as a function o f  x.

In chiral films, there can be couplings o f the form

where N  is the unit norm al to  the film. D eterm ine the nature o f  the striped 
phase when μ φ Ο  and λ  =  0 and when both  λ  and μ  are nonzero (Selinger 
et al. 1993).

10.4 There can be po in t defects in tilted hexatic films in which θι changes 
by 2nk\  and 06 changes by 2nke/6  in one circuit o f  the defect, where 
fci and ke are integers. Alternatively, Θ+ and 0_ change, respectively, by 
2nq+ and 2πςμ , where q+ =  (1 — a)Ki  +  afci/6 and q -  =  (kf,/6) —fci. 
In  the tilted hexatic H am iltonian o f  Problem 10.2, the variables Θ+ and 
Θ- decouple completely. The θ+ part o f  the H am iltonian is an xy-model 
with logarithm ic interactions between vortex singularities. The 0_ part is a 
sine-G ordon H am iltonian with soliton excitations.

(a) Show tha t 6q-  soliton lines emerge in the lowest energy state from  a 
defect characterized by “charges” q+ and q—

(b) Show tha t the energy o f an arbitrary  collection o f n defects with charges 
q+<i and g_,· for i =  1 ,.,.,η in a sample o f linear dimension R  is

where Q =  Σ ί+ , ί ,  a is the core radius, r i;· is the distance between 
defects i and j ,  L  is the total length o f  soliton walls, and e is the energy 
per unit length o f a soliton.

(c) Show tha t the energy o f an “N -arm ed star” with N -soliton walls o f 
length R  originating from  a defect with q+ =  1 —N a / 6  and q -  =  —N a /6  
and term inating with a defect with q+ =  a /6  and q~ =  1 /6  com pared 
to the energy o f a single defect with fci =  fc6 =  1 is

Ε =  —πΚ+  ^  q+,iq+,j ln(fy / a) +  π Κ +Q2 ln(/?/a) +  eL,

E n
πα NK.

(12 — a — N a) ln —
36 a
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The five-armed star has been observed in free-standing tilted hexatic films 
(Dieker and Pindak 1986; Pettey and Lubensky 1993).

10.5 The free energy for a cholesteric liquid crystal in an external m agnetic field 
H is

F =  Fprank - h  J  d3 x  n · V  x n -  ^ χ α J  </3x(H  · n)2,

where Fprank is the F rank  free energy for a nem atic [Eq. (6.2.3) and Problem 
6.7], Consider a cholesteric with n =  (cos0(z), sin0(z),O) restricted to the 
xy-plane and Η  =  (H, 0,0) in the x-direction. Show tha t when H  =  0, 
0(z) =  koz, where ko =  h /K j .  Then calculate θ(ζ) and the average pitch as 
a function o f  H.  D eterm ine the critical value o f H  a t which the cholesteric 
helix unwinds completely and n =  (1,0,0).

10.6 Show th a t V ±  ■ N  =  R f 1 +  R ^ 1 in the M onge gauge for an arbitrary  point 
on a surface.

10.7 This problem  shows in a simple model th a t there is a preferred orientation 
o f an incom m ensurate lattice relative to  the substrate lattice. Let the 
substrate be a regular triangular lattice whose smallest reciprocal lattice 
vectors G  point to  the vertices o f a hexagon in reciprocal space. Assume 
th a t the adsorbate lattice is, on average, a regular hexagonal lattice with 
six smallest reciprocal lattice vectors K and tha t K  «  G. The adsorbate 
lattice is described by a two-dimensional elasticity and a coupling with the 
substrate, which we take to  be

U = —U0 ^ 2 cos[G  · (Ri +  ui)]
G,1

»  - ' ' « Σ  cos [G * R|] +  Uq ^   ̂G  * ui sin[G ■ Ri],
G,1 G,1

where Ri is the equilibrium  position o f the adsorbate atom  1 unmodified 
by U and ui is the displacem ent o f atom  1 from  Ri. The first term  in this 
expansion is zero in the incom m ensurate state. The second term  provides 
a linear coupling to ui. Calculate ui resulting from  coupling with the 
substrate, and show th a t its average over all atom s is zero. Show tha t the 
change in energy resulting from  coupling to  the substrate is

ΑΕ= - \ υο Σ  G'G^ K g -  G)Gj,
G

where GUiUj is the strain correlation function o f Eq. (6.4.24) and KG 
is the reciprocal lattice vector o f the adsorbate such tha t the difference 
KG — G  is in the first Brillouin zone o f the adsorbate lattice. Use this 
expression to calculate the equilibrium  angle Θ between the adsorbate and 
substrate lattices and to  show tha t Θ ~  |K — G| as the com m ensurate state 
is approached (Navaco and M actague 1977).

10.8 This problem  concerns polymerized membranes.

(a) Show tha t the transform ation u =  L ufi, h =  L^h and x =  Lxx leads to
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Uij — L UL X Uij if Lfa — L XL U and

& / T  =  ^ j  dD~x[2ul +  (λ /μ)ΰ2 +  (V2h)2]

for L x =  μ °~4 and Lh =  κ /μ ,  where μ =  μ2Τ / κ .  This shows th a t the 
initial H am iltonian can always be rescaled so tha t μ  and κ  equal unity, 
just as the H am iltonian for a φ 4 model can be rescaled so th a t the 
coefficient o f  (V</>)2 is unity. Furtherm ore, these coefficients can be 
fixed to unity under m om em tum  shell renorm alization.

(b) Show th a t the height correlation function evaluated with respect to t f  
satisfies

Ghh(q) =  e(4- ^ ' G hh(elq) =  Α ^ ~ (4~ ^ ,

where Ah is a constant. Then show th a t the height correlation function 
in original variables is

and, thus, th a t the g-dependent bending rigidity is K(q) =  K (q Lx)~r,h.
(c) Show tha t the free energy density for a polymerized m em brane in the 

presence o f an external stress σ satisfies the scaling relation

f {a )  =  L - De - Dlf ( e x°la / T a  0),

where λ σ =  (D +  f/u) / 2  and σο =  ( κ / Τ ) μ 2̂ 4~0\  Use this relation to 
derive the nonlinear stress-strain relation

^  ~  σ ^ - 'ί 'Λ /^ + Η

10.9 One way to  calculate the steric energy for a confined m em brane is to 
replace the hard-wall confining potential by a harm onic potential. I f  the 
w andering exponent for the free m em brane is ζ =  2s — D >  0, then the 
m em brane energy is

dDx[K(Vh)2 +  yh2],

where y is the spring constant for the harm onic restoring force. Let 
F i ( T , y , A B ) =  — Τ \ η Τ χ β ~ ^ ! τ  be the free energy associated with t f ,  
where A s  is the D-dimensional “area” in the x-plane. Then (h2) =  I2 =  
(1 /2)dFi /dy ,  and a free energy tha t is a natural function o f I ra ther than  y 
can be introduced via Legendre transform ation: F2 ( T , l , A B) =  Fi — \  l2y.

(a) Calculate SFj =  Fjil j  — FjH =  oo) for general ζ and D and show th a t it 
reduces to  the Helfrich-Pokrovsky-Talapov energy, const, χ  T 2/k12 for 
s =  ( C - D ) / 2.

(b) Use the results o f (a) to  calculate the compressibility β  o f a smectic 
phase in three dimensions com posed o f a stack o f two-dimensional 
m em branes with w andering exponent ζ.
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10.10 A  discotic liquid crystal can be modeled as a hexagonal array  o f semi- 
flexible linear chains (polymers). The position o f each chain element 
relative to  its straight equilibrium  position is R(z) =  (u(z), z), where z is 
the coordinate perpendicular to  the plane o f the hexagonal lattice. Each 
chain is confined, on average, by its neighbors to  occupy, on average, a 
cylindrical volume with diam eter 21 equal to the inter-chain distance. If 
this steric constraint is replaced by a harm onic constraint, the H am iltonian 
for an individual chain becomes

^  = \  J  dz [K(d2u(z) /dz2)2 + yijUiUj] .

Following the procedure o f Problem 10.9, calculate the bulk and shear 
m oduli for this model discotic as a function o f / (see Problem 6.6 for the 
elasticity o f a discotic). A lso determine the elastic constant K\ .

10.11 If  bo th  steric and exponential repulsion between dom ain walls are kept, 
Eq. (10.5.4) becomes

Calculate b = (l /b)2B  for this free energy. Then calculate the Kosterlitz- 
Thouless melting tem perature for p >  3 as a function o f σ near σ =  0 using 
η(Το) =  1/4.

10.12 Consider a two-dimensional square crystal in which there is an energy cost 
J i associated with breaking nearest neighbor bonds and a cost J2 = rJ\ 
associated with breaking next nearest neighbor bonds. Show tha t the 
surface energy is

σ(θ) = ^  [| cos θ\ +  | sin θ\ +  y/2r(\ cos(0 — π /4 )| +  | sin(0 — π/4)|)].

D raw  the Wulff p lo t and determ ine the equilibrium  shape for this crystal 
for r =  0.5 and —0.5.
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Abrikosov vortex lattice lattice of parallel vortices that forms in type II superconductors 
in a external field.

absolute solid-on-solid (ASOS) model model for a solid-fluid interface in which the inter
face is characterized by an integer-valued function hi specifying the interface height (in 
units of the crystal lattice parameter) above a flat crystal reference surface with lattice 
sites 1. The Hamiltonian for the ASOS model is =  J  ^ ||( \hi — hy\. 

adatom atom adsorbed on a solid substrate.
amphiphilic molecule molecule with a polar or charged (hydrophilic) head group and 

a hydrocarbon (hydrophobic) tail. Such molecules tend to segregate at oil-water 
interfaces. In water, at a concentration above the critical micelle concentration, they 
self-assemble into structures in which the hydrocarbon tails are shielded from contact 
with water (micelles, vesicles). Soaps and surfactants are composed of amphiphilic 
molecules.

anisotropy field field favoring spin order along specific axes in a crystal.
ANNNI model anisotropic next-nearest-neighbor Ising model. An Ising model on a 

three-dimensional lattice in which there is ferromagnetic exchange between nearest- 
neighbor sites but antiferromagnetic exchange between next-nearest-neighbor sites in 
one direction. This model exhibits modulated phases, 

atomic form factor Fourier transform of the atomic scattering potential.

basin of attraction region of parameter space flowing to a fixed point of renormalization 
group (or other) recursion relations, 

basis in a crystal the positions of the atoms in a unit cell written as fractions of translation 
vectors constitute the basis vectors or basis. The crystal structure is defined by specifying 
the lattice and the basis vectors, which then identify how each atom in the crystal is 
positioned.

BCC lattice body-centered-cubic lattice. Lattice sites are at the vertices and the center of 
a simple cubic unit cell. Thirteen elements have BCC structure at room temperature. 
Even more have BCC phases near their melting points, 

bend distortion of the director, n, in a liquid crystal with nonvanishing η χ (V x n). Imagine 
the director following the flow field around the bend in a pipe.

Bernal model random close packed sphere model for a liquid or an amorphous solid, 
biaxial nematic nematic liquid crystal with biaxial rather than uniaxial symmetry. The 

symmetric-traceless-tensor order parameter has two independent eigenvalues, 
bicritical point critical point where two second-order lines meet a first-order line, 
bipartite lattice lattice such as the BCC lattice that can be decomposed into two distinct 

interpenetrating sublattices with the property that a site on a given sublattice has 
nearest neighbors only on the other sublattice, 

block-spin variable spin variable replacing a block of spins in a renormalization group 
decimation on a lattice.

662
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Blume-Emery-Griffiths model lattice model with a three-state order parameter exhibiting 
a tricritical point. Initially used as a model for the tricritical point in He3 -He4 mixtures 
where the superfluid λ  line meets the coexistence curve, 

bond-angle order orientational order of vectors connecting nearest-neighbor atoms. Crys
talline solids have bond-angle order and periodic translational order. Bond-angle order 
without translation order can be found, e.g., hexatic order in liquid crystals, 

bonding orbital singlet configuration of electrons shared between two atoms or molecules 
giving rise to an attractive interaction.

Bragg peak delta-function peak, at finite wave vector, in the scattering intensity from 
a periodic solid. The peaks are at reciprocal lattice vectors, and their intensity is 
proportional to the square of the number of scatterers. Bragg peaks are indicators of 
the existence of long-range periodic order in crystalline solids.

Bragg scattering scattering from a set of periodic planes in a crystalline solid giving rise 
to constructive interference and Bragg peaks.

Bragg’s law relationship between the scattering angle Θ, wavelength λ, and periodic layer 
spacing d, leading to Bragg scattering: 2d sin θ = ηλ for n an integer.

Bragg-Williams theory a formulation of mean-field theory in which the entropy is calcu
lated exactly but in which the internal energy is approximated by replacing microscopic 
variables by their average value.

Bravais lattice a lattice. Periodic array of points in d dimensions with positions Ri =  
ΙιΛι +  Z2a2 +  ■ ■ -h&i, where /, (i =  1 , . . . ,d )  is an integer and the vectors a i,a2,...,a^  
are any set of linearly independent if-dimensional vectors. Equivalent points in unit 
cells of a periodic lattice lie on a Bravais lattice. One of the 14 three-dimensional or 
five two-dimensional lattices that can be distinguished as having different point group 
(reflection and rotation) symmetries.

Brillouin peaks peaks in the density-density correlation function, S„„(q, to), in fluids at 
a> =  ±cq,  where c is the velocity of sound. Contrast with Rayleigh peak.

Brillouin zone a Wigner-Seitz cell of a reciprocal lattice, hence the cell of smallest volume 
enclosed by the planes that are perpendicular bisectors of reciprocal lattice vectors, 

broken symmetry term associated with states or thermodynamic phases with a lower 
symmetry than that of the interaction Hamiltonian. For example, the Ising Hamiltonian 
is invariant under reversal of all spins, but the all-spins-up or all-spins-down ground 
states are not and hence are broken-symmetry states.

Brownian motion random erratic motion exhibited by small particles in suspension in a 
fluid. At long times in d dimensions the motion is diffusive with (<5R2(t)} =  2dDst, 
where (<5 R2(t)} is the mean-square displacement and Ds is the self-diffusion constant 
(Ds =  kBT /6πηα for a spherical particle of radius a, in a fluid of viscosity η). 

bulk modulus the second derivative (B) of the elastic free energy with respect to isotropic 
strain. The reciprocal of the compressibility κ. For isotropic solids it is related to the 
Lame coefficients by Β =  λ  +  2μ/ά, where d is the spatial dimension, 

bulk viscosity viscosity measuring the change in the isotropic part of the stress tensor 
resulting from the divergence of the velocity, i.e., <x,-y ~  CV · v<5j;, where ζ is the bulk 
viscosity.

Burgers vector vector specifying the strength of dislocations in periodic and quasi-periodic 
structures including crystalline solids and smectic liquid crystals. A loop which encloses 
a dislocation line will contain an extra step (the Burgers vector) corresponding to a 
direct lattice vector. If the Burgers vector is parallel to the dislocation line, we have a 
screw dislocation. If it is perpendicular, we have an edge dislocation.
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Cahn-Hilliard model purely dissipative dynamical model for a conserved order parameter. 
The time dependence of a field φ  is determined by the equation δ φ /d t  =  λ ν 2{δ.#'/δφ)+  
ζ(χ, ή, where λ is a dissipative coefficient and ζ is a noise. This model is also called 
model B.

Callen-Welton theorem also known as the fluctuation-dissipation theorem, it relates the 
imaginary part of the response function for some variable, / '(ω),  to the equilibrium 
fluctuations, S(cu), in that variable: /'(cu) =  [(1—e- ^ “ )/2fi]S(cu), where β is the inverse 
temperature and h is Planck’s constant. Classically, χ"(ω) =  \βωΞ(ω).

Cantor set take the unit interval, divide it into three equal parts and throw out the middle. 
This gives the next generation. Repeat this process with each of the remaining parts 
to obtain successive generations. The limit of inifinite generations gives the original 
Cantor set with fractal or Hausdorf dimension df =  0.6309. Now often used to describe 
any set with df <  1 . 

causal property that a disturbance can produce effects only after it occurs, 
chiral molecule a molecule that does not have a mirror plane. A molecule with a central 

atom and four different atoms at the vertices of a tetrahedron is a simple example 
of a chiral molecule. Chiral liquid crystal molecules, such as cholesterol nonanoate, 
produce chiral nematic phases, 

cholesteric a chiral nematic liquid crystal with an equilibrium director with a helical twist. 
Often the pitch of the spiral structure (helical twist) is comparable to the wavelength 
of visible light (microns). The resultant Bragg scattering of visible light is responsible 
for the colorful appearance of cholesterics, 

climb motion of dislocation in a crystal perpendicular to the Burgers vector, b, requiring 
motion of an entire plane of atoms, 

clock model lattice spin model in which spins are constrained to point to N  equally spaced 
directions on the unit circle. This model has Z N symmetry, 

close-packed lattice lattice formed by the centers of spheres packed so that they occupy 
the maximum possible volume fraction, φ = 0.7404. The face-centered-cubic and 
hexagonal close-packed lattices are close-packed lattices. The random stacking of 
hexagonal close-packed planes has the same volume fraction but does not form a 
lattice.

coarse graining replacement of microscopic variables by average variables on an expanded 
length scale (with an upper wave number cutoff Λ). 

codimension difference between the spatial dimension and the dimension of the core of a 
topological defect; e.g., a line dislocation in a three-dimensional solid has codimension 
2.

coexistence simultaneous equilibrium of two or more distinct thermodynamic phases; e.g., 
water and vapor are in equilibrium on the liquid-gas coexistence line, 

coherent and incoherent scattering if the scattering cross-section, bh of the particles in 
a sample varies, there is coherent scattering proportional to |(i>)|2 and incoherent 
scattering proportional to (b1) — |(i>)|2. Coherent scattering provides information about 
interparticle correlations, whereas incoherent scattering provides information about the 
motion of individual particles. For neutrons, the scattering cross-section can change 
for different isotopes or even for the same isotope in different spin states. This is 
responsible for the large incoherent cross-section of hydrogen as compared to that of 
deuterium.

columnar discotic phase liquid crystal phase in which plate-like molecules form stacks ar
ranged on a regular two-dimensional lattice. There is, thus, two-dimensional crystalline 
order but no long-range order in the third dimension.
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commensurate lattice lattice that can be divided into two or more sublattices, each of 
whose basis vectors is a rational multiple of the basis vectors of the other sublattices. 
Contrast with incommensurate lattice, 

compressibility modulus κ measuring change of volume V in response to change in 
pressure p: Kt = —V~l dV /dp)T =  η~2ϋη/ϋμ)τ , where n is the number density and μ 
is the chemical potential. Inverse of the bulk modulus B.

Compton scattering scattering of photons by electrons.
conjugate variable the work done in changing an extensive thermodynamic variable is 

the product of the change in that variable and its conjugate intensive variable. Thus 
volume and pressure are conjugate variables, as are particle number and chemical 
potential.

conservative dislocation motion motion of a dislocation along the glide plane, parallel to 
the Burgers vector, in which there is no net transport of mass, 

constitutive relation phenomenological relation between a current and a thermodynamic 
field. Examples include the relationship between the number current J and the number 
density n, J  =  -D V n , where D is the diffusion constant, and that between the electrical 
current density and the electric field in a conductor with conductivity σ, J  =  <xE. 

continuous group group, such as the rotation group, whose operations are parametrized 
by points in a continuous space, 

continuous transition phase transition in which the order parameter increases continuously 
from zero.

conventional unit cell unit cell whose shape most directly reflects the symmetry of the 
lattice. Thus, the conventional unit cell of all cubic lattices, including BCC and FCC, 
is a cube. The primitive cells for FCC and BCC lattices are not cubes, 

core energy the energy associated with the destruction of order at the core of a topological 
defect, such as a vortex, 

corrections to scaling corrections to the dominant scaling behavior in the vicinity of a
critical point arising from irrelevant variables that scale to zero at the critical point,

correlation length characteristic length, ξ, of a correlated region, ξ diverges as the critical 
temperature, Tc, of a second-order phase transition is approached, 

correlation length exponent exponent v controlling the divergence of the correlation length: 
ξ ~  \ T  — Tc|-V. In mean-field theory, v =  j.  

covering surface an open surface whose boundary is a specified closed curve, such as a
closed vortex or dislocation loop, 

creep time-dependent evolution of the strain in a solid subjected to a constant stress. 
An ideal solid responds elastically to stress (with a time-independent strain). Creep 
results from the motion of defects, i.e. vacancies, interstitials, dislocations, and grain 
boundaries.

critical density density at the liquid-gas critical point.
critical dimension the upper critical dimension is the spatial dimension below which fluc

tuations become dominant and mean-field theory breaks down. The lower critical 
dimension is that below which the fluctuations become so large that no transition 
occurs.

critical endpoint type of critical point where a line of second-order transitions terminates 
at a line of first-order transitions, 

critical exponents exponents controlling the singularities of thermodynamic variables at 
second-order critical points, e.g. cy ~  (T  — Tc)-0:, φ ~  (T  — Tcf ,  and ξ ~  (T  — Tc)~v. 

critical opalescence enhanced scattering of light and resultant cloudiness of a fluid near 
its critical point, arising from the development of density fluctuations at length scales 
comparable to the wavelength of visible light, λ, when ξ oc (T  -  Tcr  *  λ
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critical point point in a phase diagram characterized by singularities in derivatives of the 
free energy and related thermodynamics quantities, 

critical slowing down slowing down of dynamical processes at a second-order critical 
point. For example, in the conventional, or Van Hove, theory for a binary mixture, the 
diffusion coefficient, D, vanishes as the inverse relative concentration susceptibility, χ~ι, 
as the phase separation critical point is approached. More generally, dynamic slowing 
down is described by a dynamical critical exponent, z, in addition to static exponents 
(such as y in χ).

crystallographic point group point group compatible with the symmetry of any periodic 
crystal lattice composed of regularly repeated identical unit cells. Point groups with 
five-fold symmetry operations (such as the icosahedral group in three dimensions) are 
among those that are not crystallographic point groups, 

cubatic putative material with “cubic” bond-angle order, resulting, for example, from 
dislocation melting of a cubic crystal in which the periodic translational order but not 
the orientational order of the crystal is destroyed, 

cubic anisotropy anisotropy of a cubic lattice; it leads to a term v φ* in the Hamiltonian 
of an 0„ field theory.

cubic fixed point fixed point of an 0 „ field theory resulting from the presence of cubic 
anisotropy.

Curie spin susceptibility response of noninteracting isolated spins to an external magnet 
field, χ =  μ2//ίβ T,  where μ is the spin’s magnetic moment. A Curie law is any linear 
response proportional to l / T .  

curvature deviation of a curve or surface in space from local flatness. The curvature at 
point P  on a surface S is characterized by the maximum and minimum radii, Ri and 
R2, of circles in mutually perpendicular planes perpendicular to the plane tangent to S 
at P,  best approximating the curves formed by the intersection of S with these planes. 
The mean curvature is (l/i?i +  \ /R i) /2 ,  and the Gaussian curvature is l/(i?ii?2 )· 

cutoff maximum wave number, Λ, of fields in a phenomenological Hamiltonian. In lattice 
models, Λ =  2π /a, where a is the lattice spacing.

dangerous irrelevant variable irrelevant variable at a critical point that must be retained 
to provide the correct scaling behavior of some field. Generally, the field in question 
diverges as some power of the dangerous irrelevant variable. A cubic anisotropy field 
is a dangerous irrelevant variable for the transverse susceptibility near the Heisenberg 
critical point below Tc. Above the upper critical dimension, dc =  4, the coefficient of 
φ 4 in a φ4 field theory is a dangerous irrelevant variable for the free energy. 

Debye-Hiikel theory mean-field theory for mobile charged carriers interacting via the 
Coulomb potential. This theory is very useful for ions in solution and for unbound 
vortices. It predicts exponential screening by mobile charges beyond the Debye-Hiikel 
screening length κ- 1  =  (4 n ^2 qnqq2 /ekBT )1/2, where there are nq ions of charge q per 
unit volume and the dielectric constant is e. The resulting potential has the Yukawa 
or screened Coulomb form: Φ ~  exp(— icr)/r.

Debye-Waller Factor Thermal (or quantum) fluctuations reduce the order parameter of a 
system from its classical T  =  0 value. In systems such as the xy-model or periodic 
crystals with a broken continuous symmetry, this reduction is expressed in terms of a 
factor exp(—2 W), where W  is called the Debye-Waller factor. In isotropic systems the 
fluctuations can be calculated from a if-dimensional sum of modes with wavevector 
q and energy q W  oc T  J  ddq /q n. W  diverges and long-range order is destroyed 
for d less than or equal to the lower critical dimension dL. In periodic crystals, the 
order parameters (nc) ~  exp(— W)  (whose squared amplitudes are proportional to
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the intensity of Bragg peaks) are averages of complex amplitudes of density waves at 
wavevectors G in the reciprocal lattice, and the Debye-Waller factor is related to the 
fluctuations in particle displacement u via Wg ~  G2{u2}. Thus the thermal motion of 
the particles in a crystal leads not to a finite width of the Bragg peak but rather to a 
decay in amplitude of the higher order peaks, 

decimation process of removing degrees of freedom in real-space realizations of the renor
malization group. Process of killing every tenth soldier in a Roman legion after a lost 
battle.

defect imperfection in an ordered structure. There are local defects, such as missing 
atoms (vacancies) or extra atoms at points other than lattice sites (interstitials) in a 
crystal, and there are topological defects, such as dislocations characterized by some 
nonvanishing quantized line (or surface) integral on a loop (surface) enclosing the 
defect core.

de Gennes-Taupin length length, ξ, beyond which the orientational order of the normal 
to a fluid membrane is lost: ξ ~  eCK/T, where c is a constant and κ is the curvature 
rigidity of the membrane, 

density-density correlation functions the functions

are all correlation functions of the density n(x). The function g(x,x') is called the 
pair-correlation function. Scattering experiments measure the Fourier transform

has a peak at at q as 2π/α, where a is the average interparticle spacing. In crystals, 
C„„(q) has Bragg peaks at points in the crystal’s reciprocal lattice. For an uncorrelated 
system, such as an ideal gas, g(q) =  1. From the fluctuation-dissipation theorem, 
S„„(q)/T is also the susceptibility relating the change in density in response to a change 
in the chemical potential at wave vector q. Thus, n~2S(q =  0) / T  is the compressibility, 

destructive interference addition of two waves whose phases differ by 180°, resulting in a 
partial or complete cancelation of the amplitude, 

devil’s staircase a continuous function with flat regions. The average period in the Frenkel- 
Kontorowa and related models as a function of some control parameter can be a 
devil’s staircase. An incomplete devil’s staircase is a function with flat regions (with zero 
derivative) connected by regions with nonzero derivative. A complete devil's staircase 
is a function whose derivative is zero almost everywhere (i.e., except at a countable set 
of points). It is also called a singular continuous function. A harmless staircase is a 
function with discontinuous jumps between flat regions, 

diffuse scattering scattering whose intensity is spread out in wave vector. To be contrasted 
with Bragg scattering whose intensity is highly concentrated at Bragg peaks. Diffuse 
scattering can be concentrated in diffuse rings (fluids or liquid crystals), in diffuse sheets 
(uncorrelated lines), or diffuse lines (uncorrelated sheets), 

diffusion term applied to processes controlled by the diffusion equation: ΰ φ /d t  =  DV2</>, 
where φ  is a scalar field and D is the diffusion constant. The diffusion current is 
j =  — The field, φ, can, for example, be the temperature or relative concentration 
of two species. For ideal noninteracting particles in suspension, Brownian motion

C„„(x, x') =  (n(x)n(x')),
S„„(x,x') =  (n(x)n(x')) -  (n(x))(n(x')>,

<n(x))(n(x'))g(x,x') =  Cm(x,x') -  <n(x))<5(x -  x')

Cim(q) = S(q) =  / ddxddx  Cnn{x, x'),
where V is the volume. In fluids,

C„„(q)= <»>[! + («)g(«)]
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controls both the mean square displacement of a labeled particle and the relaxation 
of concentration fluctuations. For more complex situations, the self- (or labeled) 
diffusion constant, Ds, is defined by (R2) =  2dDst, while the cooperative or gradient 
diffusion, Dc, is defined by j =  —DcVn, where j is the particle current and n is the 
density. As repulsive interactions are increased, Ds decreases and Dc increases from the 
noninteracting value, D(). 

diffusion limited aggregation (DLA) process of forming clusters or aggregates in which 
diffusing particles have some nonzero probability of irreversibly sticking together once 
they touch. These clusters are generally fractal, with df »  1.75 in three dimensions, 

dilation symmetry invariance with respect to a change of scale. Fractal objects, such as 
polymers or DLA clusters, have a kind of continuous dilation symmetry (they look the 
same at different magnifications). Periodic and quasi-crystalline objects have a discrete 
dilation symmetry.

directed diffusion diffusion with a drift, possibly caused by an external field, in some 
preferred direction.

direct lattice a lattice of points in coordinate (as opposed to reciprocal) space, 
director unit vector specifying the direction of average molecular alignment in liquid 

crystals, particularly nematic liquid crystals, 
disclination orientational topological defect in a crystal or a bond-angle ordered phase, 

such as a nematic or a hexatic liquid crystal, in which the direction of bond order 
undergoes a quantized change (kn in nematics and kn /3  in hexatics) in one circuit 
around the core.

discommensuration soliton-like defect in adsorbed monolayers and in the Frenkel- 
Kontorowa model separating two regions in which the adatom lattice is commen
surate with the substrate lattice. A regular lattice of discommensurations can lead to 
an incommensurate phase, 

discotic liquid crystals liquid crystal composed of disc-shaped molecules. There are ne
matic and columnar discotic phases. The latter have two-dimensional columnar lattices, 

discrete Gaussian model lattice model in which there is an integer-valued function, hi, at 
each site, 1, and a bond energy proportional to (hi — hy)2: Jtf’ = J  X^<M/>(/ii — hy)2. The 
two-dimensional version of this model is used to describe fluid-solid interfaces and is 
dual to the two-dimensional Coulomb gas. 

discrete group group with a countable, usually finite number of elements, 
discrete symmetry symmetry in which all symmetry elements are discrete operations such 

as inversion or rotation through π / 2 . 
dislocation topological defect in periodic and quasi-periodic solids in which the phase of a 

mass density wave changes by 2π in one circuit around a core. Alternatively, a defect 
terminating an extra plane of atoms in the crystal, 

dissipation irreversible loss of energy to incoherent degrees of freedom, 
dissipationless flow hydrodynamic flow with no irreversible heat loss. See also inviscid 

flow.
domain wall defect separating two distinct but energetically equivalent states in systems 

with a broken discrete symmetry, 
dual lattice each lattice in two dimensions has an associated dual lattice created from the 

intersections of the perpendicular bisectors of each of its bonds.

Einstein relation equation relating the diffusion constant, D, of a particle to its mobility, 
l /α: D =  kBT /a. See also Stokes’ law.

Euclidean group the symmetry group of isotropic space. It consists of all translations, 
rotations, and reflections that leave isotropic space invariant.
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Euler characteristic χ =  2(1 — g), where g is the number of handles on a closed surface. 
The total vorticity of any vector in the tangent plane of a closed surface is equal to χ. 
For example, a combed hairy sphere (g =  0) has two cowlicks.

Euler’s equation equation governing the flow of an inviscid (dissipationless) one-component 
fluid: dy/dt +  (v · V)v =  —(Vp)/p, where v is the velocity, p is the pressure, and p is 
the mass density.

Excluded volume In systems that are dominated by entropy the effect of short-range 
potentials can be treated in terms of the reduction in available volume produced by a 
nonzero density of particles. In a hard-sphere gas, the reduced or excluded volume for 
N  particles of volume b is Nb, and the entropy of such a gas confined to a container 
of volume V is N  ln( V — Nb). The entropic effects are much more interesting in the 
case of polymers where a random walk becomes a self-avoiding random walk in the 
presence of monomer excluded volume effects. This changes the dependence of the size 
of a polymer on the degree of polymerization N  from being proportional to /V1/2 to 
being proportional to /V3/w+2) where d is the spatial dimension.

FCC lattice face-centered-cubic lattice -  lattice in which lattice sites are at the vertices 
and face centers of a regular cube. Being at once a close-packed structure and of the 
highest crystalline symmetry (cubic), the FCC lattice is the second most popular solid 
structure for the elements at room temperature, with 18 takers.

Fermi’s golden rule rule for calculating transition probabilities in single scattering events. 
The transition rate from a quantum state, i, to another state, j,  is given by 
τ~ι =  (2n/K)\(i\U\j)\2pf, where U is the perturbation potential responsible for the 
transitions and p/ is the density of final states.

Fick’s law phenomenological relation between the particle current, j, and the gradient of 
the density, n: j =  —DcVn, where Dc is the cooperative or gradient diffusion constant.

first homotopy group group n\(J()  associated with closed loops in an order-parameter 
space J( .  Elements of the group correspond to homotopically (see homotopy) distinct 
closed loops in J i .  Group multiplication rules depend on the topology of J( ,  Two 
simple cases are J i  =  Si =  the unit circle and J i  =  S2 =  the unit sphere. In Si, a 
closed loop is indexed by an integer-valued winding number specifying the number of 
times Si is wrapped. Group multiplication is equivalent to adding winding numbers, 
and πι (Si) =  Z , the group of integers under addition. All closed loops in S2 can be 
continuously deformed to a point: there is only one homotopy class, and π\ (S2 ) =  0.

fixed point a set of recursion relations, such as those used in renormalization group 
calculations, lead to flows (changes in the variables upon successive iterations) in their 
parameter space. A point that remains unchanged under application of recursion 
relations is a fixed point. A fixed point is stable if nearby points flow toward it and 
unstable if nearby points flow away from it.

Flory theory for the radius of gyration, Rc, of a polymer. Mean-field theory yielding 
Rc ~  N v, with v =  3/(d  +  2) for a polymer in d dimensions. This result is obtained 
by minimizing the free energy, Fa + FKp as (R2/N )  + (N2/ R d), of a polymer composed 
of N  monomers over the polymer radius, R. The entropic contribution, Fe =  R2/N ,  
is approximated by that of a Gaussian chain, and the contribution, Frep =  N 2/ R d, 
from monomer-monomer repulsion is estimated to be f  ddxp2 as N 2/ R d, where the 
monomer density, p, is N / R d.

fractal An object whose mass does not scale as Rd where R  is its characteristic length and 
d is the dimension of space. See Hausdorff dimension.

Frank free energy elastic energy for a nematic liquid crystal expressed in terms of the
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director n(x):

F = \ J £ x  ' n )2 + χ 2 [η · (V  x η)]2 + K 3[n χ (V  x n)]2]

Freedericksz transition transition in a nematic cell from a spatially uniform to a non- 
uniform state as a function of external magnetic or electric field.

frustration The inability of a model system to satisfy all of its bonds, usually because of 
topological constraints. A “fully frustrated” system is frustrated on every elementary 
unit. The classic example is the antiferromagnetic Ising model on a triangular lattice 
(try it!). The “glass” transition in many disordered systems is blamed on frustration 
(especially in spin glasses).

functional a function of a function. If F[f(xa)] depends only on the value /(xo), then 
F is a function of f ( x 0). If, on the other hand, F depends on the function f ( x )  at 
all points in some continuous domain, then F is a functional of / .  For example, 
F =  J y l W / d x ) 2 — cos f]dx  is a functional of /  depending on f ( x )  for all y < x  < z.

fundamental group see first homotopy group.
/ -sum rule sum rule for the integral over frequency of the imaginary part of the density- 

density response function times the frequency:
f  dm „ nq2
/  — ωχ  (q ,co )  =  — ,

J  π m
where n is the number density and m is the particle mass.

gauge symmetry local, as opposed to, global symmetry. Symmetry that can be applied to 
any point in space. Quantum electrodynamics (including interaction with matter) has 
a [/(l) gauge symmetry.

Gauss-Bonnet theorem theorem relating the number of handles (genus g) of a closed 
surface to the integral over the surface of the Gaussian curvature: f  d S ( l /R iR 2) =  
4π(1 - g ) .

Gaussian critical point critical point at r =  0 for a Gaussian model in which the Hamilto
nian is quadratic in a field φ: t f  =  |  f  άάχ[τφ2 +  (V</>)2]. The stable fixed point above 
the upper critical dimension corresponds to this critical point.

Gaussian curvature the product (I/.R1 .R2 ) of the inverse principal radii of curvature, Ri 
and Ri, at a point on the surface. See also curvature.

Gaussian fluctuations harmonic fluctuations about a local equilibrium state of a field 
theory.

genus the number of handles on a surface: an integer g that appears in the Gauss-Bonnet 
theorem. See also Euler characteristic.

Gibbs free energy thermodynamic potential G (T ,p ,N )  that is a natural function of tem
perature T, pressure p, and particle number N.

Gibbs paradox paradox that the entropy of an ideal gas calculated purely classically is 
not extensive. This paradox is resolved by including a factor, arising from the quantum 
statistics of particles, of 1 / N ! in integrals over phase space, where N  is the number of 
particles.

Ginzburg criterion criterion that mean-field theory breaks down when the rms fluctuations 
in the local value of an order parameter exceed the average value of the local 
order parameter. It states that mean-field theory breaks down in dimension d when 
(ξ/ξο)4~ά > ZfjAcy, where ξ is the coherence length, ξ0 is the bare coherence length, 
and Acy is the mean-field specific heat jump. It can be used to determine the upper 
critical dimension.
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glass a phase of matter with no long-range order but with a nonzero shear rigidity. 
Usually a disordered material which has a restoring force against shear strain (or its 
generalizations). Conventionally, any disordered material with a viscosity greater than 
1 0 13 poise is called a glass.

Glauber model purely dissipative dynamical model for a nonconserved order parameter. 
The time dependence of a field φ  is determined by the equation δ φ /d t  =  — Γ ( δ ^ / δ φ )  + 
C(x, t), where Γ is a dissipative coefficient and ζ is a noise. This model is also called 
model A.

global symmetry invariance with respect to operations on all constituents of a system, e.g.
rotations of all the spins in a Heisenberg system, 

golden mean (1 +  *j5)/2 (or its inverse); quadratic irrational which solves
τ2 — τ — 1 = 0 ; “the most irrational number” in that it is least well approximated
by rationals, as can be seen by truncating its continued fraction expansion,

1
τ =  1 +  ■

1 +
1

1
1 + --------- 1

1 +
1 + . . .  .

Greeks described the “most beautiful rectangle”, the golden rectangle, as having 
sides in the ratio of τ. (The default AspectRatio for graphs in Mathematica is τ.) 
The best rational approximates to τ are given by the ratio of Fibonacci numbers 
(F„ =  Fn-l + Fn- 2, F0 =  0, =  1).

good solvent the properties of polymers in solution are determined largely by whether 
their monomers are relatively more attracted to the solvent molecules or to other 
monomers. Interactions in polymer solutions are characterized by the Flory-Huggins 
free energy: F »  j  Τ φ 2( 1 — 2χ), where φ  is the monomer volume fraction and χ is the 
Flory parameter. In a good solvent, 1 — 2χ > 0, monomers prefer being surrounded 
by solvent, polymers swell and take on configurations of a self-avoiding random walk 
with a radius (of gyration) varying as ~  M il{i+1], where M is the molecular weight 
of the polymer or its polymerization index. In a θ-solvent, 1 — 2χ =  0, monomers 
effectively do not interact with the solvent, and polymers behave as ideal chains with 
R(t ~  M 1/2. In a poor solvent, 1 — 2χ <  0, monomers are attracted to each other, and 
polymers collapse to dense objects that typically precipitate from solution, 

grain boundary the boundary between different microcrystallites. Often, crystallite bound
aries consist of a low-energy periodic arrangement of dislocations, which orients 
crystallites at small angles with respect to each other. This is a low-angle grain 
boundary.

Hansen-Verlet criterion phenomenological criterion, based on computer simulations 
and experimental observations, that a liquid will condense to a solid phase when 
Snn(ko)/Sm(k =  oo) > 2J-2.9, where Sm(k) is a density-density correlation function and 
ko is the wave number of the maximum intensity peak, 

hard cutoff in calculations where material is considered as continuous, especially in scaling 
and renormalization, there can be unphysical consequences of allowing the length scales 
to become too small. A hard cutoff puts atomic dimensions as the smallest wavelength 
allowable, often as a limit in an integral, 

hard spheres particles which intereact with a potential U(r) =  0, r > 2a ; U(r) =  oo, r < 2a, 
where a is the particle radius. Dense systems of hard spheres are liquids for φ  <  0.49, 
have coexisting liquid (φ =  0.49) and FCC solid (φ =  0.54) phases for 0.49 <  φ  <  0.54,
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and are FCC solids for φ > 0.54, where φ  is the volume fraction. Random close 
packing of hard spheres fills space to 63% and represents a reasonable approximation 
to the structure of glasses and dense liquids. Periodic close packing leads to FCC and 
HCP structures with a filling fraction of 0.7404.

Hartree approximation a mean-field-like approximation in which φ4 is approximated by 
6 φ2{φ2) and the expectation value, {φ2}, is determined self-consistently. This approx
imation is exact in the spherical model or the n-vector model when n =  oo. A similar 
approximation is used in treating interacting electron systems.

Hausdorff dimension exponent dH relating the mass, M, to some characteristic length, R, 
of an object: M ~  RdH. For a dense object in d dimensions, M ~  Rd and dH =  d. For 
a fractal object, dH =  df < d, where df is the fractal dimension. For an ideal polymer 
or random walk, R2 ~  N  ~  M,  or M ~  R l/2 and dH =  1 /2. 

heavy wall a negative discommensuration which tends locally to pile up mass, 
hedgehog a topological point defect of three-dimensional spins in a three-dimensional 

space. Spins in the simplest hedgehog configuration, like the electric field of a point 
charge, point radially outward from a point.

Heisenberg model model spin Hamiltonian t f  =  — J  ^ M, si · S|/. The spin S| can either be 
quantum mechanical or it can be a classical n-component vector.

Heitler-London theory a model for the electronic structure of small molecules that explic
itly correlates electrons so that there are as few per atomic site as possible. Contrast 
with molecular orbital theory, 

helicity modulus the elastic constant relating gradients in spin direction Θ to a restoring 
force for an xy-model.

Helmholtz free energy thermodynamic potential F [T ,V ,N ]  that is a natural function of 
the temperature T, the volume V, and the number of particles N. 

hexagonal close-packed (HCP) hard spheres at maximum packing fraction 
(74%) form into hexagonal layers which then stack in an HCP or FCC structure. 
In an HCP lattice, alternate layers are the same. Each particle has 12 nearest neigh
bors. This is not a Bravais lattice, requiring a unit cell with two particles (a basis of 
2). The layer spacing is -^/2/3 times the distance between sphere centers. This is the 
most popular structure of the elements, with 24 takers at room temperature, 

hexatic phase a structure characterized by long-range six-fold orientational order but no 
long-range translational order. Such a phase is seen in liquid crystal systems. A 
scenario for melting in two dimensions involves a hexatic phase as an intermediate 
stage between liquid and hexagonal crystalline phases, 

homogeneous function if /  (x) =  I f f  (bx), then /  (x) is a homogeneous function of degree k.
Scaling relations are the result of the homogeneity of thermodynamic functions, 

homotopy two mappings, / 0 and f \ ,  from a closed path in real space to a closed path in 
order-parameter space are homotopic if they can be continuously deformed into each 
other. An explicit construction of such a deformation is called a homotopy. 

Hubbard-Stratonovich transformation transformation expressing a quadratic 
form in a field φ  as integral over an auxiliary field with a Gaussian weight of 
the exponential of a linear form in the field φ :

« Ρ  ( i * * 2)  -  f  O’- p  ( - ^  + r*) ■

Hund’s rule electrons on an atom in an unclosed shell occupy the orbitals in such a way 
as to maximize the total spin. This configuration allows Pauli exclusion to keep like 
spins apart, and hence reduce their Coulomb repulsion.
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hydrodynamic modes the long-wavelength (small q) excitations of a system whose fre
quency tends to zero with q are called hydrodynamic modes. Hydrodynamic modes are 
directly related to conservation laws and broken symmetries. In a liquid, there are five 
hydrodynamic modes associated with conservation of momentum in three directions 
and conservation of energy and mass. They are the two longitudinal sound modes, two 
transverse momentum modes, and a thermal diffusion mode. All but the longitudinal 
sound modes are damped (i.e., nonpropagating). Spin waves in ferromagnets and 
antiferromagnets are broken-symmetry hydrodynamic modes, 

hydrophilic and hydrophobic liking or disliking water and, therefore, soluble or not soluble 
in water, respectively. Hydrophilic interactions are complicated and controversial. 
However, naively we know that water consists of dipolar molecules, and we therefore 
expect that charged or polar molecules can gain some polarization energy in water. On 
the other hand, organic molecules with low polarizability and no dipoles will disrupt 
the preferred structure of nearby water molecules and increase their energy. Oils, 
therefore, separate from water and will not dissolve. See also amphiphilic molecule 

hyperscaling relation scaling relation involving the spatial dimension ii of a system. For 
example, y +  2 /J =  ifv, a =  2  — dv, and β  =  (d — 2  +  η)ν/ 2 . 

hysteresis history-dependent properties of a system. The thermodynamic properties of a 
system are completely determined by the temperature, pressure, etc., and are indepen
dent of how the system reached these conditions. Therefore, a hysteretic state must 
be out of equilibrium, or metastable. Hysteresis is often associated with first-order 
phase transitions in which there is a finite barrier to nucleation of a new phase and 
a latent heat to be dissipated. It is also associated with glassy systems frozen into 
nonequilibrium states.

icosahedral symmetry the symmetry of an icosahedran, particularly noteworthy for five
fold rotation axes. It is the point group of highest symmetry, and one which is 
crystallographically forbidden, i.e., periodic crystals with this symmetry cannot be 
formed (but see quasi crystals). However, the dense packing and high symmetry of 
icosahedra have led people to look for short-range icosahedral order in liquids and 
glasses.

icosahedratic the three-dimensional equivalent of hexatic order in two dimensions. Long- 
range icosahedral orientational (bond-angle) order without long-range translational 
order.

ideal polymer chain a freely linked chain of monomers with no intermonomer interactions 
(they can interpenetrate). It should have the same statistical properties as a random 
walk and hence should have an end-to-end length and a radius of gyration that 
increases as the square root of the number of monomers (R(, ~  /V1/2). 

incommensurate crystal a structure with long-range periodic order but with two or more 
periodicities with an irrational ratio. Common examples of incommensurate crystals 
are magnetic systems in which the magnetic period (e.g. helical order) is irrational with 
respect to the atomic lattice and systems with density wave instabilities at wave vector 
<2dw related to the Fermi wave vector fef (in one dimension, <Jdw =  2/cf ), which is often 
unrelated (hence usually irrationally related) to the underlying lattice, 

infrared singularities singularites in integrals over wave number q arising from small q 
(i.e., long wavelength and thus infrared). These integrals are usually of the form 
f  dqq~a, with a >  1. Infrared singularities of the form f  qd~lq~2dq are responsible for 
the fluctuation destruction of long-range order in systems with a broken continuous 
symmetry in dimensions d less than or equal to two. 

intensive variable a thermodynamic variable that remains unchanged when the system is
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doubled (or tripled etc.) in size. Examples are pressure, temperature, and chemical 
potential. Extensive variables, such as free energies, entropy, number of particles, and 
volume can be made intensive by dividing by the volume (to make energy density, etc.). 

interfacial stiffness elastic constant relating energy to perpendicular displacement fluctua
tions of an interface. It contains contributions both from the surface tension (energy 
per unit area) and the potential, favoring alignment of the interface parallel to some 
fixed surface.

intermediate function the spatial Fourier transform, /(q, t), of the density correlation func
tion, C„„(x, x', t, 0) -  to be contrasted with the Fourier transform, C„„(q, ω), with respect 
to both space and time. This function is often useful in light scattering and neutron 
scattering.

interstitials atoms or particles that reside at positions between crystalline sites, 
inviscid flow fluid flow with no viscosity and hence no dissipation. For incompressible 

fluids, such flow obeys Euler’s equation:
dv/dt +  (v · V)v =  — (l/p)Vp.

irreducible representation in group theory, a representation of a symmetry operation that 
cannot be expressed in terms of lower dimensional representations, 

irrelevant field a field that successively rescales toward zero as the length scale is increased, 
i.e., as coarse graining progresses (but see dangerous irrelevant variable). Only relevant 
fields determine universality classes.

Ising model model Hamiltonian t f  =  <Ti<Ti ' *n which the local variables, g \ ,  take on 
the two values +1. This model has Z2 symmetry, 

isobar a constant pressure path. The critical isobar is a path to the critical point (e.g. the 
liquid-gas critical point) at the critical pressure, 

isochore constant density path. The critical isochore is the path to the critical point (e.g. 
the liquid-gas critical point) at the critical density. It is easily achieved experimentally 
by enclosing a fixed number of particles in a fixed volume 

isotherm constant temperature path. The critical isotherm is a path to the critical point 
(e.g. the liquid-gas critical point) at the critical temperature, 

isotropic fluid a fluid phase whose properties are independent of orientation.

Josephson scaling relation scaling relation, ps ~  ξ2~ά, expressing the superfluid density (or 
spin stiffness), ps, in terms of the correlation length, ξ, in dimension d near the critical 
point.

kink a point defect in a one-dimensional model with discrete symmetry, e.g. a spin-flip 
in a one-dimensional Ising model with a spin-up chain on one side and a spin-down 
chain on the other side of the kink.

Kosel crystal crystal whose surface energy is proportional to the number of broken bonds. 
Kosterlitz-Thouless transition vortex unbinding transition in two-dimensional 

systems with xy  or t/(l) symmetry from a phase with an elastic rigidity (spin stiffness) 
and power-law correlations to one with no rigidity and exponential correlations. 

Kramers’ equation stochastic equation for the probability distribution of a particle as a 
function of its momentum p, position x, and time t.

Kramers-Kronig relation integral relation between the real part, /(to), and the imaginary 
part, /"(cu), of a response function:

f  *222 ίί>, f  ■‘α .ψ ΐ ,
J  π ω' — ω J  π ω — ω

where means principal part. Results from linear response and causality.
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Kubo formula equation relating a transport coefficient, such as Γ in the equation j =  
~ rV /j  for the diffusion current in terms of the chemical potential, to a time integral 
of a correlation function of a current:

T = 2 lV  J  J 0
where β  =  l /Γ ,  d is the spatial dimension, V is the volume, and {A,B}+ =  AB + B A  
is the anticommutator of A  and B. The diffusion constant, D, is Γ δμ/dn, where n is 
the density of diffusing species.

Lagrangian elasticity formulation of elasticity in which mass points are indexed by mass 
points of a reference surface. The elastic free energy is expressed as an integral of local 
strain energies over the reference surface. To be contrasted with Eulerian free energy, 
where the strain variable is a phase gradient at a point in space and integrals in the 
elastic energy are over the volume of material. 

λ  line a line of second-order phase transitions that meets a line of first-order transitions 
at a tricritical point. The primary example is the λ  (or superfluid transition) line that 
meets the phase separation line in He3 -He4 mixtures at low temperature.

Lame coefficient for an isotropic solid in d dimensions, there are two elastic constants, 
known as Lame coefficients, λ and μ, related to the bulk and shear moduli by: 
Β = λ  +  (2μ /d) and μ =  μ. 

lamellar phase a phase with the symmetry of a one-dimensional stack of two-dimensional 
sheets. In lyotropic liquid crystals, this is the smectic phase. Similar phases occur in 
microemulsions and block copolymers.

Landau, Lev originator of most of the physics in this book.
Landau mean-field theory phenomenological form of mean-field theory in which the free

energy is expanded in a low-order power series in the order parameter.
Landau-Peierls instability Fluctuation destruction of long-range periodic order in one

dimensional solids (such as smectic liquid crystals) in three dimensions. Bragg peaks 
of an ideal periodic solid are converted to power-law peaks for a lamellar structure. 

Landau-Placzek formula equation for the dynamic density-density response function of a 
one-component fluid in the hydrodynamic limit. This function has both sound-wave 
(Brillouin) peaks and a thermal diffusion (Rayleigh) peak.

Langevin theory phenomenological theory for dynamical processes in which there is a 
random force (or noise) with a power spectrum usually chosen to produce thermal 
equilibrium distributions.

Laplace pressure equilibrium pressure difference, δρ, between the inside and outside of a 
spherical droplet of radius R  and surface tension σ : δρ =  2σ /R.  

lattice a periodic array of points defined by the linear combination with integer coefficients, 
/i, of a set of primitive translations vectors, a i,...,a^ . The points are located at 
Ri =  /i ai +  Ι2Λ2 + . . .  +  IdAd- 

Laue condition condition that incoming wave vectors, k, which lie on the perpendicular 
bisectors of reciprocal lattice vectors, G (i.e., on the Brillouin zone boundary) will be 
Bragg scattered: k — k' =  G or k - G /2 = | G /2 |2. 

law of rectilinear diameters the linear dependence on temperature, T, of the average 
density as the liquid-gas critical point is approached along the coexistence curve: 
^(ni+ng) — nc oc |T  — Tc\, where n; and ng are, respectively, the liquid and gas densities, 
nc is the critical density, and Tc is the critical temperature. This behavior is predicted 
by mean-field theory. Critical fluctuations convert the linear dependence to |T — Tc|1_“, 
where a is the specific heat exponent.
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Lennard-Jones potential model potential between neutral atoms incorporating the R~6 
attractive Van der Waals attraction at large distances and approximating repulsive 
interactions at short distances by R~12. U(R) =  4e[(a/R)i2 — (σ/R )6]. Also called the 
6 - 1 2  potential.

Lifshitz point critical point where a disordered phase, a spatially uniform ordered phase, 
and a spatially modulated ordered phase meet.

Lifshitz-Slyozov law relation R  ~  t 1/3 between the characteristic length scale, R, and time, 
t, at long times after a quench below the spinodal line in a system with a conserved 
order parameter.

Lindemann Criteria When particles in a crystal fluctuate from their equilibrium positions 
by a distance comparable to the unit cell dimensions, we expect that the crystalline state 
is no longer well defined. Phenomenologically, solids melt when the rms fluctuations 
of the constituent particles exceed approximately 2 0 % of the interparticle separation, 

lock-in energetic preference for commensurate arrangement of an overlayer on a substrate 
over a finite range of control parameters, 

long-range order (LRO) if you know the value of the order parameter at x =  0, do you 
know the value at x =  oo? Yes —» LRO. No —» no LRO. Equivalently, does the 
correlation function remain finite as x —» oo? If C ^(x  —» oo) —» 0, then no LRO. The 
existence of (<5 function) Bragg peaks implies long-range periodic order, 

long-time tail algebraic, rather than exponential, fall-off at long time of correlation func
tions, particularly the velocity autocorrelation function in a fluid.

Lorentzian peak peak in a function of the form Γ / [χ1 + Γ 2]. Peaks of this form occur 
in both static and dynamic correlation functions. Being the Fourier transform of 
exponentials, they characterize short-range correlations over length or time scales of 
order Γ-1.

Lyotropic - Refers to systems, usually liquid crystals, which exhibit phase changes as a 
function of concentration rather than temperature as in thermotropic systems. Typical 
examples are vesicles, micelles, and microemulsions in lamellar and other ordered 
phases.

magnetic scattering neutrons have a magnetic moment and are, therefore, scattered by 
magnetic fields. Thus, they are useful probes of magnetic structure such as occurs in 
paramagnets, ferromagnets, antiferromagnets, etc., or in flux phases of superconductors. 
With the advent of high photon fluxes in synchrotrons, it is now possible to use the 
weak scattering of X-rays from magnetic fields (a relativistic effect) to study magnetic 
structures, but the technique is nowhere near as popular as magnetic neutron scattering, 

magnetization the magnetic dipole moment per unit volume. It is the order parameter for 
a magnetic transition and is the derivative of the energy with respect to magnetic field, 

magnon A quantized spin wave. In ferromagnets the long wavelength dispersion is 
quadratic, ω ~  q2 while for antiferromagnets it is linear, cu ~  |<j|. 

mean curvature the average curvature over two perpendicular directions on a surface. The 
mean radius of curvature is one-half the inverse reciprocal sum of principal radii of 
curvature, 1 / R =  ^ [(1 /i?i) +  (1 /i?2)]. See also curvature, 

mean-field theory approximate theory, used extensively in the study of phase transitions, 
in which dynamical variables take on their mean or average values and are then 
calculated self-consistently. There are no thermodynamic fluctuations in this theory. 
This is typically the first approximation that one uses to determine the possible 
thermodynamic phases of a new model Hamiltonian. It has a good chance of giving 
the correct ground states and topology of phase diagrams. Above an upper critical 
dimension, mean-field theory yields the correct values of critical exponents.
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mean-free path the distance that a particle (or wave) goes (propagates) before undergoing 
a collision. The transport mean-free path is the distance a particle goes before its 
direction is randomized. It is weighted (by cos Θ ~  q2) as to the effectiveness of the 
scattering.

memory function the kernel y(t — t') relating the acceleration or force of a (Brownian) 
particle in suspension to its velocity history: δν/d t  =  — y(t — t')v(t')dt'. More 
generally, any time- (or frequency-) dependent transport coefficient, 

meniscus the interface between two coexisting fluid phases.
metamagnet a material with antiferromagnetic order in zero external field that undergoes 

a first-order phase transition to a phase with a non-vanishing ferromagnetic moment 
in an increasing external field, 

metastable state state that is stable with respect to infinitesimal fluctuations but which is 
not the equilibrium state of the system, 

micelle a self-assembled aggregate of surfactant molecules in suspension. A dilute solution 
of surfactant molecules in water is stable because of entropy of mixing. However, when 
the surfactant concentration exceeds the critical micelle concentration, the system can 
lower its free energy via the formation of closed structures whose inner volume is filled 
with hydrophobic tails shielded from contact with water by hydrophilic heads at the 
structures’ outer surfaces. For surfactants in oil, inverted micelles form with interior 
volume occupied by polar heads rather than hydrocarbon tails. At low concentrations, 
micelles tend to be spherical, but at higher concentrations and for different surfactant 
head to tail dimensions, they can exhibit more complex shapes (e.g. rods, worms, etc.). 

Migdal-Kadanoff procedure renomalization procedure in which bonds are cut and moved, 
leaving sites connected to other sites by only two bonds. The variables at these sites 
are “decimated” by tracing over their degrees of freedom in the partition function, 

mirror plane a plane of reflection symmetry.
mode eigenfunction of linearized equations of motion. A normal mode has a sinusoidal 

time dependence. For a classical system, the number of normal modes equals the 
number of degrees of freedom. In systems with translational symmetry, the modes are 
characterized by a wave vector and a frequency. In fluid systems, the modes are often 
overdamped.

models A to H phenomenological nonlinear dynamical models describing the time evolu
tion of order parameters and conserved variables that lead to equilibrium probability 
distributions at long time. Models A to D are purely dissipative models, whereas 
models E to H have Poisson bracket terms leading to propagating modes. Model A is 
the Glauber model, and model B is the Cahn-Hilliard model, 

modulated phase phase with a spatially modulated order parameter, often associated with 
a Lifshitz point.

molecular field an internal mean effective field resulting from the interaction of dynamic 
variables in a system. The most common example is the average effective magnetic 
field, Hes, acting on a spin, σ, due to the exchange interaction, J, with its neighboring 
spins, Heg =  Jz(ff)/g^s, where z is the number of nearest neighbors, 

molecular orbital approximation the electronic states of a many particle system are often 
approximated by ignoring the Coulomb interaction among electrons and finding the 
single particle states in the potential of the bare ions. The states are then occupied 
by electrons at the lowest energy consistent with the Pauli exclusion principle. The 
opposite approximation, Heitler-London, assumes strong correlations from the electron 
repulsions, and hence allows no double occupancy of a site.

Monge gauge parametrization of a surface by its height above some reference frame.
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multicritical point a critical point at which two or more second-order, and possibly addi
tional first-order, lines meet. The order of a multicritical point is determined by the 
number of second-order lines meeting it. Three second-order and one first-order lines 
meet at a tricritical point, 

multiple scattering occurs in any system in which the mean-free path, /, is not much 
greater than the dimensions of the system, L. Almost all scattering theory (see Chapter 
2) applies to the limit / >  L, where there is only single scattering in the sample. The 
sample is essentially transparent to the probe particle or wave. A scattering probability 
approaching unity is already much too high to allow meaningful interpretation of 
scattering data.

Navier-Stokes equations hydrodynamical equations for an incompressible fluid: p(dv/dt) + 
p(v - V)v =  — Vp +  t/V2v, with V  · v =  0, where p is the mass density, v is the velocity, 
p is the pressure, and η is the viscosity, 

nematic liquid crystal a material composed of anisotropic (rod or disc shaped) particles 
with long-range orientational but no long-range translational order. The transition 
from the isotropic to the nematic phase is first order. The term nematic comes from 
the Greek νβμωσ for thread. The most obvious characteristic of early nematics was 
the threadlike defects, which can be seen connecting other defects on the cover of this 
book. Most digital liquid crystal displays use nematics, 

nematogen a rod-like molecule which tends to form nematic liquid crystals.
Nernst theorem the third law of thermodynamics, stating that entropy tends to zero as 

temperature approaches absolute zero, 
nucleation a first-order transition from one phase to another is characterized by a discon

tinuous jump in the order parameter, φ, and by an energy barrier between the two 
phases (or values of φ). Because of the barrier, there is a surface tension, σ, associated 
with an interface between the two phases. A droplet (nucleus) of the new equilibrium 
phase gains bulk free energy but costs surface energy. For the droplet to grow, its 
radius, R, must exceed a critical radius, Rc =  2<χ/Δ/, where A f  is the gain in bulk 
free energy density. The critical nucleus may form from thermodynamic fluctuations 
(homogeneous nucleation) or on a surface or dust particle (heterogeneous nucleation).

Onsager relation symmetry relation, λΛΒ = λΒΑ, for dissipative coefficients, λΛΒ, relating 
the current for A  to the variable conjugate to B.

On symmetry symmetry exhibited by vectors on the surface of the unit sphere in n dimen
sions. Physical realizations include the vector or Heisenberg models (O3 symmetry) 
and the xy-model (O2 symmetry).

Order parameter parameter distinguishing an ordered from a disordered phase. For 
example, the order parameter for a ferromagnet is the average magnetization (m). 
(m) is zero in the high-temperature paramagnetic phase where spins are randomly 
oriented and nonzero in the ferromagnetic phase where spins align on average along 
a common direction. More generally, the order parameter is the average, (φ ), of an 
operator, φ, which is a function of the dynamical variables in the system Hamiltonian 
t f .  (φ) is zero in the disordered phase and nonzero in the ordered phase. It is chosen 
to have values in different equivalent ordered phases reflecting the symmetry of the 
Hamiltonian t f  (i.e., to transform under an irreducible representation of the symmetry 
group of t f ).

order-parameter exponent for a second-order transition, the order parameter, (φ), goes to 
zero as T  —» Tc with an exponent β : {φ) ~  (Tc — Τ ψ .  In mean-field theory, β = in 
the three-dimensional Ising model, β  »



Glossary 679

Ornstein-Zernicke theory theory for correlations in which the density correlation function 
is a Lorentzian function, S„„(q) =  S„„(0)/[1 + q 1ξ1], of the wave number, with a width 
approaching zero as the critical point is approached.

pair distribution function the probability of finding another particle as a function of dis
tance from the center of a particular particle, statistically averaged over the system. 
For an ideal gas of pointlike particles, the pair distribution function, g(x), is indepen
dent of position and is equal to unity. For hard spheres, it is zero out to twice the 
sphere radius. It is a maximum at this distance, and then it oscillates and decays with 
distance until it asymptotes to the average density. See also density-density correlation 
functions.

paramagnetic having a positive magnetic susceptibility so that the system energy is de
creased upon application of an external field, 

paramagnetic phase disordered high-temperature phase of a magnet.
Penrose tiling tiling of a two-dimensional plane with pentagonal symmetry. Two types of 

tiles are needed to produce this crystallographically disallowed symmetry, 
percolation a transition in the connectivity of a system. Imagine a lattice whose bonds (or 

sites) are randomly occupied with probability p. When p is greater than the percolation 
threshold, pc, there is an infinite path of connected bonds (or contiguous sites) from 
one side of the system to the other. Below pc, clusters of connected occupied bonds 
(or contiguous occupied sites) have a characteristic dimension ξ  oc (p — pc)_v· At pc, 
the infinite cluster is a fractal with fractal dimension d f = 1.9 in two dimensions and 
dF ~  2.6 in three dimensions. In one dimension, pc =  1. For bond percolation, pc =  0.5 
for a square lattice and 0.247 for a cubic lattice. In three dimensions, balls on lattices 
percolate when their volume fraction is »  0.16. In mean-field theory, pc =  l/(z  — 1), 
where z is the number of nearest neighbors, 

persistence length the correlation length for unit tangent vectors to a polymer or unit 
normals to a surface: the distance over which the object is effectively linear or “flat”, 

phason the spatial variation of the phase of a density wave in an incommensurate structure 
is referred to as a phason. It is also the dynamical mode associated with this variation, 

phase transition Transition between two equilibrium phases of matter whose signature is 
a singularity or discontinuity in some observable quantity. First-order transitions are 
characterized by a discontinuity in a first derivative of a thermodynamic potential. 
In particular, entropy S, which is the temperature derivative of a free energy (S =  
—S F /dT )  has a discontinuity AS leading to a latent heat L = TAS.  For second-order 
tansitions, first derivatives of thermodynamic potentials are continuous. See order 
parameter and hysteresis, 

phonon A quantized sound or elastic wave often with a linear long wavelength dispersion 
relation, ω ~  \q\.

plumber’s nightmare a cubic self-assembled phase of a lyotropic liquid crystal in which 
there are two continuous, interpenetrating, multiply connected volumes, which are 
separated by a bilayer membrane. (Imagine trying to clean out one of the volumes 
with a plumber’s snake.) One version of a plumber’s nightmare is topologically 
equivalent to the Fermi surface of copper.

Poisson bracket in a classical system with conjugate coordinate q and momentum p, the 
Poisson bracket of two functions, A  and B, of q and p is {A, B} = (dA/dp)(dB/dq) — 
(6A/dq)(6B/6p). Poisson bracket relations among continuous fields appear in stochastic 
equations for continuous fields in which there are nondissipative processes. They lead 
to propagating, rather than purely dissipative, modes and to mode-mode coupling.
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Poisson ratio the Poisson ratio, σ, is the negative ratio of change in width to change in 
length when a material is pulled along its length: uxx =  —auzz. Normally, the width 
will decrease as the length increases. In an isotropic three-dimensional solid with 
bulk modulus B and shear modulus μ, thermodynamic stability allows for values of 
σ =  ^(3B — 2μ)/(3Β + μ) between —2 and If volume is conserved, then σ =  A. It 
is very unusual to find a three-dimensional material with a negative σ, but some have 
been artificially made. Two-dimensional fluctuating membranes embedded in three 
dimensions have negative values of σ.

Poisson summation formula formula relating the sum over integers, k, of a function, g(x), 
evaluated at the integers, k, to the sum over of integers, m, of the Fourier transform of 
the function: ^  g(k) =  J2m dxg(x)e~2'lixm.

Pokrovsky-Talapov energy free energy for a one-dimensional wall in two dimensions con
fined between two other walls. There is a contribution to this energy proportional 
to Γ //2, where / is the separation between walls, because the confining walls reduce 
fluctuations and thus entropy.

poor solvent see good solvent.
Potts model lattice model in which variables σ, at sites i on a lattice can take on any of s 

distinct values. The Hamiltonian is t f  =  —J  5Ζ<Ι;> [.s<SCTjCTj — 1],

quasi-long-range order (QLRO) type of “order” that exists in systems, such as two- 
dimensional xy  models and three-dimensional smectic liquid crystals, without long- 
range order but with power-law, rather than exponential, decay of order-parameter 
correlation functions.

quasicrystal an ordered structure that exhibits (1) long-range incomensurate see incom
mensurate crystal) translation order and (2) long-range orientational order with a 
crystallographically disallowed point group symmetry. The first condition is often re
ferred to as quasiperiodicity. It implies the existence of a diffraction pattern with Bragg 
peaks on a dense set of points in reciprocal space. Crystallographically disallowed point 
groups are those that are incompatible with tiling of space with a single kind of tile. In 
two dimensions, all point group symmetries with order n not equal to 2, 3, 4, or 6 are 
disallowed. In three dimensions, icosahedral symmetry is disallowed. Penrose tilings 
(see Penrose tiling) provide an example of a two-dimensional quasicrystal with 5-fold 
symmetry. Physical examples of quasicrystals include AIMn alloys with icosahedral 
symmetry and AlCuCo alloys with decagonal symmetry.

radius of gyration for a set of N  points at positions R„ R}: =  ^ \(R , — (R))2/iV, where 
{R) =  Σ  Rj/iV. A measure of the size of an object (especially a polymer), it is the rms 
distance of the constituents (monomers) from the center of mass. For an ideal polymer, 
Rg =  i^nd-to-end/v6 and scales as the square root of the number of monomers.

Random Walk A series of uncorrelated steps of average step length a describe a random 
path with zero average displacement but characteristic size (as measured by the radius 
of gyration or the end-to-end length) proportional to N/iVa where N  is the number of 
steps. The Haussdorf dimension of the random walk is 2. The probability of return to 
the origin for an infinite random walk is 1 in one or two dimensions but is less than 1 
in dimension greater than 2. (i.e., for d >  2, there is a nonzero probability of escape or 
equivalently of not returning to the origin)

Rayleigh peak in fluids, the thermal diffusion peak in the density-density correlation 
function, S„„(q, to), as a function of frequency, ω, at fixed wave number q. It is centered 
at ω — 0, and its width is DTq2, where Dt is the thermal diffusion coefficient. Contrast 
with Brillouin peaks.
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renormalization group a transformation involving thinning of degrees of freedom (coarse 
graining), coupled with a change in length scale. For example, representing a group of 
spins as a block spin and then constructing a Hamiltonian on the scale of the block 
spins.

self-similar a structure that “looks the same” at all length scales. Its correlation functions 
have no characteristic length and therefore are typically power laws with distance or 
wave vector. Exhibits dilation symmetry, 

smectic from the Greek σμεγμα., meaning soap, from which the original smectic liquid 
crystals were made. A smectic phase is a “solid” in one dimension and a fluid in the 
two orthogonal directions. It is characterized by a mass-density wave with modulations 
along one spatial direction, and is usually depicted by a cartoon showing equally spaced 
parallel layers. Thermal fluctuations in the phase of the mass-density wave lead to 
destruction of long-range positional order in three-dimensional smectics as a result of 
the Landau-Peierls instability, 

solitary wave a time-independent, traveling or oscillating solution to a nonlinear differen
tial equation with a well defined shape, 

soliton a solitary wave that remains invariant after collision with another solitary wave, 
spin-density wave a static spatial modulation of the spin structure of a system whose wave 

vectors can either be commensurate or incommensurate with the underlying lattice. 
The simplest case of a spin-density wave is an antiferromagnet with modulation wave 
number q =  π/α, where a is a lattice constant, 

spin-flop transition an antiferromagnet can be viewed as consisting of antiparallel spin 
pairs. Due to spin-orbit coupling, spins align along a preferred direction in the 
crystal, called the easy axis. A magnetic field along this easy axis cannot change the 
magnetization unless it flips one of the spins. However, if they flop to a configuration 
perpendicular to the applied field, they can tilt toward the magnetic field and gain 
energy proportional to <5 M  ■ H  and still remain mostly antiparallel to each other, so 
preserving most of their exchange energy. When the net energy gained is greater than 
the anisotropy energy, we have the spin-flop transition, 

spinodal curve curve separating metastable from unstable regions in the coexistence re
gions of binary fluids. Decay to equilibrium above the spinodal curve is via droplet 
nucleation; decay below the spinodal curve is via the formation of initially small 
amplitude periodic modulations of the order parameter, 

spinodal decomposition process of decay towards equilibrium in a globally unstable region 
of a phase diagram constrained by particle conservation. Typically seen in quenches of 
binary mixtures.

spin waves the classical normal modes or quantum excitations of a magnetically ordered 
system. In the long-wavelength limit, they are the hydrodynamic modes related to 
the symmetry broken by selecting a direction for the spin alignment. The simplest 
dispersion relations are ω ~  q for antiferromagnetic spin waves and ω ~  q2 for 
ferromagnetic spin waves. Quantized spin waves are known as magnons. 

spin-wave stiffness elastic constant ps relating free energy density to rotation gradients in 
an xy- or n-vector model: /  =  (ps/2)(V0)2. In superfluids, which, like the xy-model, 
have a complex order parameter, ps is the superfluid density, 

splay one of three spatial variations of the director, n, in a nematic liquid crystal. It is 
characterized by a finite value of V  · n. The usual cartoon describing splay has the 
director arranged in the same manner as playing cards are held in your hand, 

stochastic variable a variable which changes with time such that there is no correlation 
between different time intervals. A random variable.



682 Glossary

Stokes’ law says that the drag force on a spherical particle of radius a in a fluid of viscosity 
η moving at velocity v is /  =  βπηαν. Equivalently, the mobility is a-1 =  (6πηα)~ι. 

strain relative distortion of a solid. Measured by the strain tensor, ui;· =  (1 /2)(V,u^ +  Vyw,), 
where u is the displacement of the solid relative to a reference solid (in Lagrangian 
coordinates). Longitudinal strain has displacement along the gradient; shear strain is 
displacement perpendicular to the gradient. Application of stress to a solid produces 
strain.

strain rate a gradient of the velocity field measured by the tensor — 
|(V ;Vj +  VjVi). In a solid, γij can be regarded as the strain per unit time or strain-rate 
tensor. In a fluid phase, application of a stress results in a continuous deformation 
of the system with time, and stress is linearly related to strain rate by the viscosity 
(tensor).

stress Force per unit area acting on an element of matter through its bounding surfaces. 
Normal forces (to the surface) are associated with compression, while transverse forces 
are associated with shear. The force density is related to the gradient of the (symmetric) 
stress tensor: /; =  See also strain and strain rate, 

structure factor S(q) =  V~l f  ddxddx'e~“l<’:~’:'<Cnn(x, x') is the Fourier transform of the 
density-density correlation function, C„„(x, x'), where V is the volume. It contains 
information about two-body interparticle correlations, and is measured in scattering 
experiments. See also density-density correlation functions, 

supercooling for a first-order transition, there is a region between the phase boundary and 
the spinodal line where the system is in metastable equilibrium, and the free energy 
prefers the low-temperature phase but there is a barrier to overcome to form a critical 
nucleus. If there are no inhomogeneities to aid nucleation and the activation energy 
is sufficiently high, then the high-temperature phase can remain until the sample is 
supercooled to near the spinodal line. For pure water, the freezing transition can be 
suppressed to —40°C.

TDGL model time-dependent Ginzburg-Landau model. Dynamic model with purely 
dissipative dynamics, also called model A or Glauber dynamics, 

tetracritical point critical point where four second-order lines meet.
TGB phase twist-grain boundary phase in liquid crystals in which there is a periodic 

parallel array of twist-grain boundaries, each composed of a regular array of screw 
dislocations. This phase is the liquid crystal analog of the Abrikosov vortex lattice 
phase in superconductors. It can have quasicrystalline symmetry, 

thermotropic exhibits phase transitions as a function of temperature, as opposed to ly
otropic, where the transitions occur predominantly as a function of concentration. 
Usually applied to liquid crystals.

0-solvent See under good solvent
topological defect a defect in an order-parameter field that cannot be eliminated by any 

continuous distortion of the order parameter. Such a defect is characterized by some 
integer-valued index, such as the winding number. It generally has a core region, where 
the order parameter goes to zero, and a far-field region characterized by nonvanishing 
strain. Examples of topological defects include vortices, dislocations, disclinations, and 
hedgehogs.

tricritical point critical point where three second-order lines meet a first-order line, 
twist distortion of the director, n, in a liquid crystal with nonvanishing η · (V  x n). The 

director rotates in a helical fashion as it advances along an axis, 
type I and II smectics in a type I smectic, the penetration depth for twist and bend is less
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than the correlation length for the smectic order parameter. In type II systems, the 
twist and bend penetration depths are larger than the correlation length.

universality class systems whose properties near a second-order phase transition are con
trolled by the same renormalization group fixed point are in the same universality class. 
They have the same relevant critical exponents but may have completely different order 
parameters and transition temperatures. Typically, universality classes are determined 
by spatial dimension, symmetry of the order parameter, and range and symmetry of 
interaction potentials.

upper critical dimension the spatial dimension, dc, above which fluctuations play a negligi
ble role in the vicinity of a second-order phase transition. Thus, for d > dc, mean-field 
theory gives the correct values for critical exponents. For the Ising model, dc = 4.

vacancy a pointlike defect in a periodic solid consisting of a missing particle at a crystal 
site. Point defects in three-dimensional systems have integrable strain fields, and 
therefore do not destroy long-range order the way that dislocations can.

Van der Waals attraction 1 / r 6 attractive interaction between neutral atoms.
Van der Waals equation of state equation of state for a fluid in which there is a mean-field 

critical point for a liquid-gas transition:

where p is the pressure, n is the number density, T is the temperature, and a and b are 
constants.

Van Hove theory See under critical slowing down.
vesicle an object consisting of a closed bilayer membrane with the same phase interior and 

exterior. Typically a self-assembled bilayer shell with water on either side. Biological 
cells can be viewed as phospholipid vesicles.

Villain model lattice model with xy  symmetry that is dual to the discrete Gaussian model.
viscosity coefficient relating the shear stress to the shear strain rate. It measures the rate 

of momentum transfer across a transverse velocity gradient.
Volterra construction prescription for creating dislocations and disclinations in crystals by 

slicing a cylindrical sample along a radius and displacing the sides of the slice by 
the Burgers vector of the defect and gluing to make the cylinder continuous. For 
disclinations, slice, rotate, and glue.

Weiner-Kintchine theorem theorem relating the power spectrum, Caa(«J), of a variable, A, 
to the temporal Fourier transform of its correlation function:

Weiss molecular field theory mean-field theory in which the interaction with neighbors is 
approximated by an average effective field. For an Ising model or a Heisenberg model 
on a lattice with z nearest neighbors for each site, Heg = zJ{a).

Wigner-Seitz cell unit cell of a lattice that is the interior envelope of all planes that are 
perpendicular bisectors of bonds connecting a lattice site to all other lattice sites, 

work hardening when a material, particularly a metal, is repeatedly plastically deformed, 
dislocations are introduced and moved. They can multiply and entangle to a degree 
which prevents further motion. With the dislocations immobile, the yield stress 
increases.

(ρ + αη2)(η~ι - b ) = T ,
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Wulff plot plot of the surface tension, σ(θ, φ), of a crystal as a function of the polar 
angles, Θ and φ , specifying the direction of the unit normal, N, to crystal surfaces. The 
equilibrium shape of a crystal is the interior envelope of planes perpendicular to N 
and passing through the Wulff plot. The determination of crystal shape in this way is 
called the Wulff construction.

xy-model model for vectors with O2 symmetry or complex fields with t / ( l ) symmetry. 
Applied to spins constrained to lie in a plane, to superfluid and density wave transitions 
(liquid-solid and smectic transitions).

Yang-Lee edge singular point of the free energy of an Ising model in an external imaginary 
magnetic field. The upper critical dimension for the critical behavior of this point is 6.

yield stress the stress beyond which a solid material no longer responds elastically. It 
either flows or deforms plastically, not returning to its original shape when the stress is 
released. For an ideal model solid, the yield stress is the shear elastic constant divided 
by 4π. For real materials, it is \Qr2 to 10-3 times smaller because of the presence of 
dislocations.

Young’s modulus the ratio of uniaxial stress to uniaxial strain in a crystal (with orthogonal 
stresses equal to zero). In terms of Lame coefficients, Y = 9B/(3B  +  μ) in three 
dimensions.

Z n symmetry discrete symmetry of the integers modn under addition. The Ising model 
has Z 2 symmetry. Clock models with vectors restricted to n equally spaced points on 
the two-dimensional unit circle have Z„ symmetry.
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abelian group, 505
Abrikosov vortex lattice, 561, 571, 662 
absolute solid-on solid (ASOS) model, 644, 662 
acoustic phonons, harmonic lattice, 367-8 

See sound modes 
adatoms, 78, 601, 662 

crystal and liquid phases, 78 
Airy stress function, 535, 589 
amphiphilic molecule, 6 8 , 71, 662 
amplitude ratios, 236-7 
Angstrom, 17
angular momentum, 420, 425, 441 
anharmonicities 

nonlinear sigma model, 341 
see nonlinearities 

Anisotropic-Next-Nearest-Neighbor Ising 
(ANNNI) model, 186-8, 662 

anisotropy 
anisotropic lattice, 54, 
anisotropic molecules, 58, 62 
cubic, 267 
energy, 177 
field, 177, 662 
quadratic, 269 

AN NNI, see Anisotropic-Next-Nearest-Neighbor 
Ising model 

antibonding orbital, 2 2  

antiferromagnet 
antiferromagnetic phase, 87, 176, 346 
conjugate field, 136 
Heisenberg model, 435 
hydrodynamics, 438-9 
model G, 437
order parameter (staggered magnetization) 

136, 177, 435 
phase transitions, 135 
spin waves, 438 

argon, 3, 7-8, 178
ASOS see absolute solid-on solid model 
atomic form factor, 31, 662

bands in metals, 25
basin of attraction, 245, 253-4, 662
basis, crystalline solids, 43, 48, 662

BCC see body-centered cubic lattice 
bend, 299, 301, 662 

expulsion from smectic phase, 312 
Bernal model, 40, 662 
biaxial nematic, 16, 135-7, 662 
binding energy, 18 
bipartite lattice, 135-7, 662 
block-spin variable, 238-40, 662 
Blume-Emergy-Griffiths model, 179 
body-centered cubic (BCC) lattice, 53-6, 87, 135, 

189-94, 515-17, 662 
defects, 515-17 

Bose particles, 123 
Boltzmann constant, 11, 216, 376 
Bohr magneton, 25
bond-angle (bond orientational) order, 58, 6 6 , 

328-9, 534, 556, 663 
bonding orbital, 22, 663 
Bragg scattering 47-9, 663 

cylinder, TGB phase, 568 
and Debye-Waller factor, 49, 322 
law, 29-33, 663
and long-range order, 61, 136 
peaks, 48, 75-6, 663 

satellite, 31
and adsorbed monolayers, 325 
and antiferromagnetic order, 8 8 , 136 
and incommensurate systems, 80-1 
and quasicrystals, 82 

and quasi-long-range order, 61, 313, 325 
sheets, 75 
spot, 10, 77 

Bragg-Williams theory, 146-151, 663 
Bravais lattice, 43, 50-5, 663 
breakdown of mean-field theory, 208, 214-17,

225
Brillouin scattering, 452, 458, 663 
Brillouin zone, 46, 47, 100, 136, 256, 258-9, 663 
broken symmetry, 2, 10, 14, 132-4, 433, 663 

broken continuous symmetry, 10, 12, 14, 137-8 
broken discrete symmetry, 135-137 
and defects in systems with discrete symmetry, 

590
and elasticity, 288

685
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and Goldstone mode, 432, 434 
helium, 460-4 
magnetic order, 85-90 
phase, 10-15, 419 
and topological defects, 495 
variables, 417-419 

hydrodynamic variable, 427 
Brownian motion, 375, 663 
buckling instability, 315 
bulk modulus, 320, 663 

see compressibility 
Burgers vector, 663 

dislocation, 508-9, 513, 534 
lattice, 514

c-director, 64, 506
Cahn-Hilliard model (model B), 448, 468, 664 
Callen-Welton theorem, 387, 664 

see fluctuation-dissipation theorem 
canonical ensemble, 119 
canted spin order, 87 
Cantor set, 604, 664 
causal, 355, 664
charge-density response function, 205 
chemical potential, 110, 117 
chiral liquid crystal, 561 

see cholesteric liquid crystal 
chiral molecule, 60-1, 664 
cholesteric (chiral) liquid crystal, 58-61, 87, 299, 

561, 569, 665 
cholesterol nonanoate, 64 
Cl see commensurate-incommensurate 
classical plasma, 205 
climb, 521, 664 
clock model, 139, 664 
close-packing, 9, 52, 56-7, 664

see FCC, HCP, and random-close-packed 
lattices 

closure, 44
coarse graining process, 217-19, 239, 664 
coarsening, 483, 490 
codimension, 499, 664
coexistence, 117, 159, 161, 170, 178, 180, 664 
coherence length, 231 

see correlation length 
coherent cross-section, 404-6 
coherent and incoherent scattering, 404-5, 664 
columnar discotic phase, 6 8 , 664 

homework problem, 103 
lyotropic systems, 71 

commensurate 
A N N N I model, 187 
Frenkel Kontorowa model, 602, 604, 
lattice, 78, 665
magnetic wave vector, 77-82, 89

overlayer, 254 
see incommensurate 

commensurate-incommensurate transition, 
77-82, 89, 603-7, 640-3 

dislocations, 640-3
and the Frenkel-Kontorowa model 601-20 

commutation relation, 120, 218, 434, 461 
completeness relation, 98 
compressibility, 5, 114, 116, 162, 328, 451, 488, 

664
in adsorbed overlayers, 639 

Compton scattering, 8 8 , 665 
conjugate field, 134, 139 
conjugate variables, 111, 665 
conservation laws, 2, 418 

angular momentum, 420 
density, 369, 418 

and diffusion, 369 
energy, 420, 438, 440-41 
and hydroydnamic modes, 418 
mass, 441, 445, 453 
and model B, 468 
and model C, 469 
momentum, 441 

and model H, 476 
spin and models E & F, 476 
spin and models G & J, 477 

conservative dislocation motion, 520, 665 
constitutive relation, 418, 425, 665 
continuous symmetries, groups, 135, 137-9, 157, 

288, 495, 665 
hydrodynamics and broken, 418 

continuous transition, 13, 15, 665 
see second-order transition 

conventional unit cell, 51, 53, 665 
cooperative diffusion, 376-8 
core energy of a topological defect, 526, 665 
corrections to scaling, 241, 665 
correlation functions, static, 123-132, 226, 231, 

243, 260, 383 
density-density, 34-36 
and compressibility, 126 
direct pair correlation function, 126 
displacements in an isotropic solid, 322, 324, 

533
displacements in a smectic liquid crystal, 313 
and long-range order, QLRO, and disorder, 

295
mean-field order parameter, 157 
nematic director, 306 
pair distribution function, 36 
pair correlation function, 36, 40 
spin-spin 130, 

in KT transition, 577 
static scaling of, 252
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static structure factor, 36, 42 
of a crystal, 48 

structure function 32, 62, 6 6  

2D crystal, 325 
Smectic-Λ liquid crystal, 313 
ID  crystal, 323 

and susceptibility, 131
transverse in systems with broken continuous 

symmetry, 292 
correlation functions, dynamic, chapter 7, 353-83 
classical fluid, 452-53 

and cross-sections, 405-6 
Brownian particle, 383-4 
density-density correlation function, 354, 372, 

374, 405 
dynamic scaling, 469
and fluctuation-dissipation theorem, 387, 397 
and inelastic scattering, 404-8 
rigid rotor, 430 
self-diffusion (problem), 416 
see response functions 

correlation length, 154-5, 213, 214, 228, 231, 244, 
262, 341, 665 

correlation length exponent v, 155, 231, 228,
262, 266, 269, 665 

Coulomb attraction, 18, 19 
Coulomb gas, 546, 584, 588-9 
covering surface, 511, 665 
creep, 12, 665 
critical density, 5, 159, 665 
critical dimensions, 

dynamic, 471
lower dL, 15, 227, 295, 313, 322 
upper dc, 15, 213, 226, 263, 283, 285-6 

critical endpoint, 180, 665 
critical exponents, 230, 665 

tables of, 231, 237 
z (dynamic scaling) 469-71 
a (specific heat), 231, 233-4, 237 
β  (order parameter), 153, 167, 174, 231, 237 
y (susceptibility), 153, 174, 227, 231, 237, 285 
yeff. 273 
δ , 154, 174
Δ (gap exponent), 324, 341 
η (critical point), 231, 232, 237, 268, 286 
η (order paremeter in 2D xy-model), 296 
η0 (smectic liquid crystal), 313, 640 
t\Q (2D crystal) 325
ηu and ηι, (polymerized membranes), 431 
η 6, hexatic QLRO, 558 
λ (external field scaling), 324, 340 
λ, =  \ / ν  (thermal), 240 
v (correlation length), 155, 174, 231, 237, 240, 

251, 262, 266, 269, 286, 284 
ω (field scaling), 238

ωε (energy density scaling), 240 
φ  (crossover), 235, 270 
percolation from one-state Potts model, 286 
universality, and scaling, field theory, 230-7 
Yang-Lee edge, 286 

critical isobar, 160 
critical isochore, 159, 162-5 
critical isotherm, 160 
critical nucleus, 480 
critical opalescence, 4, 5, 165, 665 
critical point, 4, 5, 118, 159, 162-5, 6 6 6  

critical pressure, 162 
critical slowing down, 4, 465, 6 6 6  

crossover exponent, 235, 269, 270 
crossover functions, 216, 228, 270-3 
crystalline solids, 43-5 

Bragg scattering, 47-9 
close packed structures, 56-7 
disclinations, 517-8 
dislocations, 513-17 
growth, 522 
hydrodynamics, 459
order parameter and transition to, 187-98
periodic functions, 46-7
reciprocal lattice, 45-6
space groups, 57-8
strength, 518-22
three-dimensional Bravais lattices, 53-6 
topological defects, 506-26 
two-dimensional Bravais lattices, 50-3 

crystallographic point group, 51, 6 6 6  

cubatic, 328, 6 6 6  

cubic anisotropy, 267, 6 6 6  

cubic fixed point, 268, 6 6 6  

cubic lattice, 52-7 
Curie spin susceptibility, 243, 6 6 6  

curvature, 623-5, 6 6 6  

mean, 625, 676
and elasticity of smectic liquid crystals, 311 

cutoff, 221, 226, 256, 294, 6 6 6

dangerous irrelevant variables, 273-5, 6 6 6  

Debye-Hiickel screening length, 204, 206, 558, 
666

Debye-Waller factor, 49, 294, 322, 407, 6 6 6

decimation, 245-8, 667
de Gennes energy, 566
de Gennes-Taupin length, 628, 630, 667
delocalization energy, 25
density functional theory, 195-8
density operator, 34-8
destructive interference, 29, 667
devil’s staircase, 603-5, 667
dielectric constant, 20, 206-7, 546, 551
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diffraction
see Bragg scattering 

diffuse rings, 60
diffuse scattering, 48, 60, 77, 667 
diffusion, 369-8, 383, 667 

cooperative vs self, 376-8 
particle, 353
on a lattice, master equation, 378-81 
directed, 415, 6 6 8

director in nematic liquid crystal, 456 
external potentials and the Einstein relation, 

373-5
Fick’s law, 369-70, 373, 671 
Green function, and dynamic response, 370-1 
hydrodynamic mode, 425, 429, 438, 449, 451, 

454
and Langevin theory, 383-85
mass, 454
model B, 468
model C, 469
permeation, 617
phason, 617
response function, 371-3 
spin, 438
thermal, 425, 429, 438, 451, 454 
vacancy, 459 

diffusion limited aggregation (DLA), 97, 6 6 8  

dilation, 317
dilation symmetry, 90, 6 6 8  

Dirac delta function, 204 
direct lattice, 43-5, 6 6 8  

direct pair correlation function, 195 
directed diffusion, 415, 6 6 8  

director, 59, 168, 420, 506, 6 6 8  

see also Frank director 
disclinations, 495, 6 6 8  

in crystal, 517, 519, 534 
density, 534
and the KT transition, 558 
loops, 527
in hexatic liquid crystals, 526 
in nematic liquid crystals, 524-6 
in smectic-C films, 506, 509 
twist, 519
Volterra construction, 517, 519 
wedge, 519 

discommensurations, 590, 602-3, 613, 6 6 8  

disconnected diagram, 279 
discontinuous transition, 13 

see first-order phase transition 
discotic liquid crystals, 15, 6 8 , 6 6 8  

discrete Gaussian model, 578, 584, 645, 6 6 8  

discrete symmetry, group, 13, 135-7, 590, 6 6 8  

dislocations, chapter 9, 12, 13, 49, 495, 510, 520, 
531, 640-3, 6 6 8

Burgers vector, 508-9, 513, 534 
and C l transition, 640-3 
in crystals, 531 

edge, 514-5 
energies, 531-6 
screw, 514-5 

density, 521
and grain boundaries, 522-4 
in hexagonal and close-packed lattices, 515 
mediated melting, 555, 555-9 
in periodic solids, 512-17 
in smectic liquid crystals, 507, 308, 507-12, 

561-73
Volterra construction, 515, 683 

dissipation, 361, 365-6, 394-5, 419, 446-8, 6 6 8  

dissipationless flow, 445-8, 6 6 8  

dissipative dynamics, 466-9 
domain walls, chapter 10, 15, 590, 6 6 8  

in mean-field theory, 595-601 
fluctuating, 635 

dual lattice, 50, 580, 6 6 8  

duality
lattice Coulomb-gas model, 582-4 
Potts models, 579-82 
Villain model, 578-9, 582-4 
xy-model, 582-4 

dynamic models,
see models, stochastic 

dynamic scaling, 469-72 
dynamic upper critical dimension, 471 
dynamic modes, 2, 359, 362-68 

see hydrodynamics, diffusion, sound

e-expansion, 263-276, 286 
easy-plane ferromagnet, 138 
edge dislocations, 13, 510, 520, 640-3 

loops, 512 
effective critical exponent, 273 
Einstein relation, 373-5, 385, 6 6 8  

elastic constants, tables of, 319, 320 
elastic continuum, 366 
elastic variable, 288 
elasticity, chapter 6  

of classical harmonic lattices, 332 
free energy, xy-model, 289-90 
Eulerian stress tensor, 338-41 
fluctuations, 293-5 

and light scattering, 306-8 
frank free energy, of nematic liquid crystals, 

298-300
Josephson scaling relation, 292-3 
Lagrangian elasticity, 330-4 
Lagrangian stress tensor, 334-7 
nonlinear sigma model, 341-7
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0 „ symmetry and nematic liquid crystals, 
298-306 

smectic liquid crystals, 308-16 
of solids, 316 

bond-angle and translational order, 328 
density functional theory, 329 
elastic free energy, 318-19 
fluctuations, 321-2 
isotropy, and cubic solids, 319-21 
one-dimensional crystals, 322-4 
vacancies and interstitials, 325-8 
two-dimensional crystals, 324-6 

stress-strain relations, 337-8 
xy-model, 289-97 
polymerized membranes, 632 

elasticity of sterically stablized phases, 638-40 
electron scattering, 409 
energy density, 240 
energy of a surface, 625-6 
enthalpy, 113
entropy, 3, 111, 119, 146, 424-5 

density, 424, 427 
of mixing, 146 
steric, 635 

entropy production equation, 444-5 
equations of state, 116-17 

mean-field, 153 
scaled, 234-5 
Van der Waals, 683 

equipartition theorem, 10, 123, 223 
escape, to third dimension, 501 
Euclidean group, 39, 6 6 8  

Euler characteristic, 626, 669 
Euler-Lagrange equation, 301-2, 485, 538, 597, 

671
Eulerian coordinates, 331, 446 
Eulerian elasticity, 338-41 
Euler’s equation, 448, 669 
exchange interaction, 21-5 
excluded volume, 46, 94 
exclusion principle, 7, 23 
extensive variable, 1 1 1  

external Hamiltonian, 134

/-su m  rule, 372, 670
face-centered cubic structure, 9, 41, 53-7, 190-4, 

669
defects, 515-17 

facets and faceting, 8 , 648-55 
fan spin order, 87
FCC see face-centered cubic structure 
FeCh, crystal structure, 175-82 
Fermi gas, 122
Fermi pseudopotential, 402-4 
Fermi’s Golden Rule, 30, 400-2, 669

ferrimagnet, 87, 130 
ferroelectric phase, 81, 138 
ferromagnet 

conjugate field, 128 
ferromagnetic phase, 87, 128 
hedgehog defect for O3 , 500 
Heisenberg model, 127, 435 
hydrodynamics, isotropic, 439-440 
model J, 477 
order parameter, 128 
spin waves, 440 

ferromagnetic exchange, 25 
Fick’s law, 369-70, 373, 669 
field theory, 213-83 

construction, 217-26 
gaussian integrals, 221-3 
Ising model 

hypercubic lattice, 248-52 
one-dimensional Ising model, 242-5 

Landau-Ginzberg-Wilson, 465 
lattice field theories, continuum limit, 219-21 
mean-field theory, from functional integrals, 

223-5
n-vector model, 228-30 
self-consistent field approximation, 226-30 

first homotopy group, 504 
first law of thermodynamics, 109-11 
first-order phase transition, 144 

bicritical point, 183 
and harmless staircase, 605 
liquid-to-solid, 187-198 
nematic-isotropic transition, 168-172 
and nucleation, 480-82 
Potts model, 202 
tricritical point, 174 

five-fold symmetry, 50, 82-5 
fixed point, 245, 251, 262, 267-9, 671, 548, 573, 

634, 669 
cubic, 268 
Gaussian, 262, 268 
high T , 245, 262 
Heisenberg, 266, 268 
Ising 

ID , 245
1+e Migdal-Kadanoff, 251 
4 - e ,  268 

Kosterlitz-Thouless, 548, 573 
polymerized membrane, 634 
Potts lattice gas, 256-7 

FK  see Frenkel-Kontorowa 
floating phase, 601 
Flory parameter, 671
Flory theory, radius of gyration of a polymer, 

94, 669 
fluctuating walls, 635-40



690 Index

fluctuation-dissipation theorem, 353, 374, 387, 
397-9, 664 

see Callen-Welton theorem 
fluctuations, 15 

and break-down of mean field theory 
(Ginzburg), 214-17, 225-6 

and corrections to mean-field theory, 294 
and correlation functions 35, 125, 131 
and destruction of long-range order, 294 
and Debye-Waller factor, 294, 322, 407, 6 6 6  

dynamic, 355, 387, 397 
of elastic variables, 293, 306, 312, 321 
of fluid membranes, 626 
in harmonic approcimation, 626-9 
in mean-field theory, 154, 157 
and scattering, 405-8 
and susceptibilities, 120, 132 

fluid hydrodynamics, 441-53 
fluids, 38-43 

internal energy, 109 
thermodynamics, 108-17 
two-component, 453 
see also superfluids; water 

Fokker-Planck equation, 388-9, 473 
four-state Potts model, 256 
Fourier transforms, 10, 97-100 

transforms on a lattice, 10 0  

fractals, 91-7
Frank director, 168, 302, 311, 328 

see also director 
Frank free energy, 298-300, 311, 316, 455, 567, 

669
free standing smectic-C films, 506 
Freedericksz transition, 302-4, 670 
freezing, 8-15 

Hansen-Verlet criterion, 192, 671 
Frenkel-Kontorowa model, 601-20 
frustration, 7, 112, 670 
functional integral, 218 
functional derivatives, 140-1, 672 
fundamental group, 504, 670

Galilean transformation, 441-2 
gap exponent Δ, 234 
gas partition function, Coulomb, 588-9 
gaseous state, 3-5, 38-43 
gauge symmetry, 135, 670 
Gauss-Bonnet theorem, 626, 670 
Gaussian critical point, 262, 670 
Gaussian curvature, 624, 625, 670 
Gaussian fluctuations, 224, 670 
Gaussian integrals, 221-3 
Gaussian model, momentum shell 

renormalization group, 261-3 
generalized force, 1 1 0

generalized Heisenberg models, 435-6 
de Gennes free energy for the smectic-^4 phase, 

566
de Gennes-Taupin length, 628, 630, 667 
genus, 626-7
Gibbs free energy, 112, 114 
Gibbs’ paradox, 119, 670 
Ginzburg criterion, 214-7, 225, 670 
Ginzburg length, 215, 228 
Ginzburg parameter, 572 
Ginzburg temperature, 215, 225-6, 228, 272 
Ginzburg-Landau model, time-dependent, 466, 

682 
glaciers, 1 2  

glass, 1 1 2 , 671 
G lauber model, 466, 671 
glide, 12, 520 
glide plane, lattice, 57 
global packing constraints, 7 
global symmetry, 135, 671 
Glossary, 662-84 
gold, fractal aggregate, 95 
golden mean, 51, 83, 671 
Goldstone mode, 432, 471 
Goldstone theorem, 432, 434 
good solvent, 93, 673 
grain boundaries, 522-3, 589, 671 
grand canonical ensemble, 120, 125 
grand potential, 113 
graphite, lattice, 78-9 
gravity, 335 
Green function, 477-8 

diffusion, 370-1, 376, 531 
and dynamic response, 370-1 
and mode-mode coupling, 477-8 

ground state manifold, 502 
groups

first fundamental group, 504, 672 
homotopy, 504-5, 524 
see also symmetry group 

gyration, radius of, 91, 680

Hameker constant, 553 
Hansen-Verlet criterion, 192, 671 
hard cutoff, 219, 671 
hard-sphere 

close-packing, 671 
interaction, 40 
model, 7
solid-liquid phase transition, 43 
fluid, 38 

harmless devil’s staircase, 605 
harmonic lattice, acoustic phonons, 367-8 
harmonic oscillator, 359-66 

fluctuation-dissipation, 387
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Hartree approximation, 226, 672 
Hausdorff dimension, 97, 672 
heat, 109
heat capacity, 114 
heat current, 424, 427, 445 
Heaviside unit step function, 355 
heavy wall, 602, 672 
hedgehog, 500-3, 527, 585, 674 
Heisenberg fixed point, 266, 269 
Heisenberg model, 14, 127-9, 140, 202, 435, 672 
Heisenberg operator, 392 
Heitler-London theory, 20, 25, 672 
helical magnetic phase, 91 
helical spin order, 87 
helicity modulus, 290-1 
helium 

He3, 117, 179 
He3 -He4 mixtures, 179 .
He4, 177, 179 
helium films, 551-5 
Kosterlitz-Thouless transition, 551-2 
superfluids, 138, 289, 460-4 

Helmholtz free energy, 112, 194, 200, 672 
density, 115, 122, 126-7, 327 

hexatic phases, 65-8, 672 
liquid crystals, 65-8 70, 138, 289, 524-6, 657 
2D crystals, 78, 558 

hexagonal close-packed solid (HCP), 41, 56-7, 
105, 515-17, 672 

hexagonal lattice, 57, 69, 191, 515-17 
hexatic-B phase, 6 6 , 138 
Hg, chain salts, 322-4 
homogeneity, 230 
homogeneous fluid, 118 
homogeneous functions, 115-16, 672 

and scaling, 230-6 
homotopy, 495, 503-4, 672 

groups, 504-5 
honeycomb lattice of walls, 638 
Hubbard-Stratonovich transformation, 276-7, 

588, 672 
Hund’s rule, 25, 672 
hydrodynamics, chapter 9, 418-92 

conserved and broken-symmetry variables, 
417-419 

crystalline solids, 459-60 
dissipationless, 445-8 
equations, 2 

films, fluid, 494 
fluid hydrodynamics, 440-54 
nematic liquid crystals, 454-56, 493 
modes, 449-52, 673 

of a fluid, 1 1  

and nucleation, 479-91 
rigid rotors on a lattice, 419-34

smectic liquid crystals, 456-9, 493 
spin systems, 434-40 
and spinodal decomposition, 479-91 
superfluid helium, 460-4, 493 

films, 553 
variable, 288 
water, 418
see models, stochastic 

hydrogen bonding, 3, 7 
hydrogen molecule, 20-2, 25-8 
hydrophilic and hydrophobic, 6 8 , 673 
hypercubic lattice, Ising model, 248-52 
hyperscaling relation, 233, 673 
hysteresis, 171, 673

ice, edge dislocation, 12-13 
icosahedral order, 190, 193 
icosahedral packing, 7 
icosahedral symmetry, 82, 673 
icosahedratic, 328, 673 
ideal gas, 112-3 
ideal polymer chain, 90, 673 
incoherent cross-section, 404-6 
incommensurate, 77-91 

devil’s staricases, 603-6 
dynamic modes, phasens, 615-7 
FK  model, 602-5 
quasicrystals, 83-5 

incommensurate crystal lattice, 77-82, 322, 6  

Ho, 89-91 
K r on graphite, 80 
Lifshitz points, 184 
N a N 0 2, 79 
reciprocal lattice, 82 
striped phase, 618 
TGB phase, 563
2D solitons (Pokrovsky-Talapov), 635 
see commensurate 

inelastic scattering, 399-408 
inertia, 428 
inertial term, 361 
infrared singularities, 313, 673 
intensive variable, 111, 673 
interfacial stiffness, 626, 674 
intermediate function, 406, 674 
internal energy, 109 
interstitials, 325, 674 
inviscid flow, 325, 445, 674 
ionic salt, 18
irreducible representation, 134, 674 
irrelevant field, 241, 253, 674 
Ising critical point, 256 
Ising Hamiltonian, 139, 151 
Ising model, 14, 139-40, 161, 166, 674 

Bragg-Williams mean-field theory, 203
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fixed point,
ID , 245
1 +  e, 251 
4 - e ,  268 

kinetic, 466 
kink, 591-2
Landau mean-field theory, 152-6 
Migdal-Kadanoff renormalization group, 

248-52 
nucleation, 481 
one-dimensional, exact, 242-5 
spin, 15, 177
and spinodal decomposition, 481 
square lattice, 250 
topologically distinct states, 591-4 
walls, 593
see also AN N N I model 

Ising symmetry, 135-7, 139, 152, 231, 259, 470 
isobar, isochore, isotherm, 159-60, 674 
isotropic fluids, 15, 16, 38-43, 307, 674 

hydrodynamics of, 440-53 
isotropic fractals, 91-7 
isotropic phase 

of liquid crystals, 58-61 
metastability, 170 
nematic-to-isotropic transition, 191 

isotropic solids, elasticity, 319-22

Jacobian, 342
Josephson scaling relation, 293, 437, 528, 674 
Josephson tunneling, 158

K 2 N iF4, 346
Kadanoff construction, 237-42 
kinematic viscosity, 449 
kinetic, Ising model, 466 
kinetic energy, 3, 122 
kinks, chapter 1 0  

Kirchhoff’s laws, 381 
Kosel crystal, 644, 654, 674 
Kosterlitz-Thouless (KT) transition, 296, 495, 

544-51, 578, 647, 674 
correlation length, 550 
of striped phases, 642 
integration of the KT recursion relations, 

573-5
longitudinal and transverse response, 575-7 
and roughening, 648 
spin correlation function, 577-8 

Kosterlitz-Thouless-Halperin-Nelson-Young 
(KTHNY) transition, 555-61 

Kram er’s equation, 415 
Kramers-Kronig relation, 357-8 
krypton 

on graphite, 79-80, 253, 558

incommensurate phases, 635 
Lennard-Jones (L-J) potential, 256 

KT see Kosterlitz-Thouless transition 
KTH N Y  melting transition, 555-61 
Kubo formulae, 432-3, 447, 454, 675

Lagrangian 
of classical fluid, 443 
of rigid rotor, 421-6 

Lagrangian coordinates, 331, 446 
Lagrangian elasticity, 330-40 

FK  model, 607, 615 
lambda line, 173-4, 179, 183, 270, 675 
Lame-coefficients, 320, 557, 675 
lamellar phase (of lyotropic liquid crystals), 71, 

637, 640, 675 
Landau free energy, 151, 193, 219 
Landau gauge, 573 
Landau mean-field theory, 151-2, 675 
Landau theory, chapter 4 
Landau and Placzek, 452 
Landau-Ginzberg-Wilson, field theory, 465 
Landau-Ginzburg free energy, 571 
Landau-Peierls instability, 311 
Landau-Placzek formula, 452, 675 
Langevin theory, 353, 381-90, 675 
Laplace pressure, 487, 675 
Laplace transform, 356, 370, 430 
Laplace’s equation, 528, 531 
Laplacian Green function, 531, 545 
latent heat, 144, 170 
lattice 

anisotropic, 54, 267 
basis, 43, 662 
bipartite, 135-7
body-centered cubic (BCC), 53-6, 87, 135, 

189-94, 515 
cubic, 52-7 
direct, 43 
dual, 50, 580
face-centered cubic (FCC), 9, 41, 53-7, 190-4, 

515-17, 671 
hexagonal, 57, 69, 191, 515-17 
reciprocal, 45, 46, 187 
simple cubic (SC), 53 
triangular, 51-3, 255, 520 
vector, 43 

Laue condition, 47-8, 675 
law of rectilinear diameters, 166, 675 
LCAO, 26
Legendre transform, 112, 653 
Lennard-Jones potential, 24, 39, 78, 192, 256, 

676
lever rule, 484 
Levi-Cevita symbol, 317
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Lifshitz point, 184-7, 236, 283, 676 
Lifshitz-Slyozov law, 490, 676 
light scattering 

Brillouin peaks, 452 
from a nematic liquid crystal, 306-8 
Rayleigh peak, 452 

light wall, 602
limit of metastability, 170, 171, 480 
linear combination of atomic orbitals (LCAO), 

26 
lipids, 72
liquid crystals, 58-71 

discotic phases, 15, 6 8 , 6 6 8  

display device, 304 
hexatic phases, 65-8, 70, 672 
isotropic, nematic and cholesteric phases,

58-61
lyotropic liquid crystals and microemulsions, 

68-71 
mesophase, 15
see cholesteric, nematic, and smectic liquid 

crystals
liquid-gas transition, 5, 136, 167, 230, 468
liquid structure, 38-43
local packing rules, 7
local symmetry, 135
lockin, 89, 601, 676
long-range order (LRO), 10, 15, 58, 61, 130, 295, 

341, 544, 555, 627, 676 
fluctuation destruction of, 294 
orientational order, 6 6 , 8 6 , 627, 631 

of fluid membranes, 627 
of polymerized membranes, 631 

positional order, lack of in fluid membranes 
627

see quasi-long-range order 
long-time tail, 414, 676 
longitudinal strain, 321 
Lorentzian peak, 323, 327, 363, 367, 676 
low-angle neutron scattering, 94 
lower critical dimension, 227, 295, 313, 322 
lower critical field, 564-6 
lyotropic liquid crystals, 58, 68-71, 314, 637, 640

macroscopic variable, 1 

magnetic Bragg peaks, 87, 89 
magnetic bubble domain, 518 
magnetic dipole interaction, 87 
magnetic order, 85-90 

see ferri, ferro, and anti-ferromagnet 
magnetic scattering, 407-8, 676 
magnetization, 87, 127, 177-9, 436-9 
magnon, 676 

see spin wave 
Maier-Saupe theory, 211

mass density, 115, 441 
mass density wave, 136 
matching rule, 85 
Mathieu operator, 567 
Maxwell displacement vector, 206 
mean curvature, 625, 676 
mean-field theory, chapter 4, 15, 144-209 

Bragg-Williams theory, 144, 146-51 
breakdown, 214-16, 225-6 
first-order transition, 168-72, 173-5, 187-98 
from functional integrals, 223-5 
Ising and n-vector models, 152-9 
Landau theory, 145, 151, 156, 159 
liquid-gas transition, 159-69 
liquid-solid transition, 187-98 
multicritical points, 172-87 
nematic-to-isotropic transition, 168-72 
variational mean-field theory, 198-204 

Debye-Hiickel theory, 204 
0 „ classical model, 2 0 2  

s-state Potts model, 201 
mean-field transitions, examples of, 157-9, 216 
mean-free path, 33, 417, 677 
memory function, 412, 677 
meniscus, 4, 159, 677 
mercury chain salts, 322-4 
Mermin-Wagner-Berezinskii theorem, 294 
mesophase, 15 
metamagnet, 175-9, 677 
metastable state, 480, 677 

see limit of metastability 
micelles, 70, 73-4, 677 
microcanonical ensemble, 119 
microemulsions, 71, 75, 635-40 
Migdal-Kadanoff procedure, 248, 248-56, 253, 

262, 345, 677 
mirror plane, 60, 677 
M nF2, 183
MnO, neutron diffraction, 90 
M NTSF-TCNQ, 76-7 
mobility, 360 
mode, 359, 677 
mode-mode coupling, 477-91 
models for phase transitions 

Absolute solid-on-solid (ASOS), 644 
anisotropic dipolar magnet, 284 
ANNNI, 186
for bicritical and tetracitical points, 181, 209 
Blume-Emery-Griffiths, 179 
Chen-Lubensky, 210-1 
clock, 140
dicrete Gaussian, 584, 645 
Frenkel-Kontorowa, 590, 601-20 
Gaussian, 261 
Heisenberg, 127
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anisotropic, 435 
Ising, 139, 146, 152-6, 160, 238, 242, 251, 590-4 
for Lifshitz points, 185, 283 
for liquid-solid transition, 188 
Maier-Saupe, 211 
for metamegnets, 177 
nonlinear sigma, 341-6 
Potts, 140, 201-2, 284, 579-82, 593 

four state, 592 
lattice gas, 254
one-state and percolation, 285 

rigid rotors on a lattice, 419-34 
solid-on-solid (SOS), 645 
for tricritical point, 173, 283 
Villain, 583, 645 
Yang-Lee edge, 287 
O3 (Heisenberg), 288, 503 
n-vector (0„), 140, 156-57, 202 

with cubic anisotropy, 267 
limit n —> 00, 228 

xy,  140, 289-98, 495, 506, 526, 582, 544 
anisotropic, 347 

models, stochastic 
dissipative models 

model A (Glauber), 466, 483 
model B (Cahn-Hilliard), 468, 488 
model C, 469 

with Poisson brackets, 475-7 
models E&F, (planar ferromagent and 

superfluid He), 476 
model G (anti-ferromagnet), 477 
model H (liquid-gas critical point), 476 
model J (isotropic ferromagnet), 477 

modulated phase, 186, 677 
molecular field, 148, 677 
molecular orbital approximation, 25, 677 
momentum density, 1, 441 
momentum shell renormalization group, 256-75 
Monge gauge, 620-1, 625-6, 677 
multicritical point, 172-5, 209-10, 235-6, 678 
multiple scattering, 33-4, 678

«-dimensional orthogonal group 0„, 228 
n-vector elastic energy, 298 
n-vector models, 140, 152-4, 228-30, 267, 298 
N aN 0 2  and incommensurate crystal, 79 
natural function, 112, 426 
natural variables, 1 1 2  

Navier-Stokes equations, 448-9, 678 
nematic liquid crystals, 14, 58-63 

fluctuations and light scattering, 306 
Frank elastic energy, 298-300 
Fredericksz transition, 302-4 
homotopy group, 524 
hydrodynamics, 434-6

order parameter, 168, 307, 420 
rigid rotor dynamics, 417-34 
topological defects, 524-27 
transition to isotropic phase, 168-72 
transition to smectic phase, 210, 315 
twisted nematic (cholesteric) 60, 64 
twisted nematic display, 304 
cells with non-uniform, 300-2 

nematogens, 171, 678 
Nernst theorem, 111, 678 
neutron scattering, 7, 33-4, 87, 91, 97, 400-7 
Newton’s laws, 441 
noise sources, 382 
non-symmorphic space group, 57 
nondissipative coefficients, 418 
nonlinear sigma model, 341 
nonlinearities 

elasticity of solids, 331 
renormalization in fluid membranes, 629-30 
smectic elasticity, 315 

nonlocal susceptibility, 154-6 
normal plane, section, 623-4 
normal-to-superconducting transition, 157, 571-3 
normal-to-superfluid transition, 173 

Kosterlitz-Thouless in 2D films, 551-5 
nucleation, 13, 480-3, 678 

conserved order parameters and spinodal 
decomposition, 484 

with a nonconserved order parameter, 480-3 
symmetric unstable quench with modal A 

dynamics, 483-4 
number density operator, 34

O2 model, 
see models, xy

0 2 symmetry, 137, 289
0 3 symmetry, 138 
O3 model, 288, 503

see models, O3 

O3 order parameter spaec, 501 
octahedron, 189 
On model, 2 0 2  

see models, n-vector 
On symmetry, 140, 235, 298, 343, 344, 682 

and nematic liquid crystals, elasticity, 298-306 
one-dimensional chains, 72 
one-dimensional crystal, 322 
one-dimensional order, 15 

Ising model, 242-5 
in three-dimensional materials, 71-7 

one-loop approximation, 224 
one-particle reducible diagrams, 279 
one-phonon scattering, 407 
Onsager reciprocity theorem, 492, 678 
Onsager relation, 454, 678
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opalescence, 4, 165 
order parameters, 128, 133, 231 

antiferromagnetic, 136, 177, 435 
crystal, 48, 177, 435 
exponent β, 233, 682 
ferromagnetic, 168, 420 
hexatic, 6 8  

Ising, 152 
liquid-gas, 161 
modulated, 186
with more than two components, 499-501 
nematic, 168, 420 
02, 

see xy 
Oi

see ferromagnetic 
On, 156 
smectic, 65
spaces and homotopy, 501-6 
superfluid heliem, 460 

see xy 
and symmetry, 139 
1/(1) 

see xy 
xy, 139, 289, 460 

order-disorder transition, 135, 230 
ordered systems, thermodynamics of 127-32 
organic conductor, 77 
Ornstein-Zernicke theory, 156, 165, 679 
orthogonality condition, 98 
osmotic compressibility, 488 
overdamped oscillator, 361

pair correlation function, 37 
pair distribution function, 36, 39, 679 

noninteracting gas, 125 
paramagnetic phase, 87, 176, 679 
paramagnetic state, 128 
partial dislocations, 516 
partition function, 1 2 0  

Pauli exclusion principle, 20 
Pauli spin operator, 25 
Penrose tile, 83, 679 
percolation, 202, 285, 679 
Percus-Yevick equation, 40 
periodic boundary condition, 98 
periodic solids, 2, 43, 47, 512-5 

see crystalline solids 
permeation mode, 458 
persistence length, 628, 679 
perturbation theory, diagrammatic, 277-83 
phase space, 117-22 
phasons, 615-6, 679 

pinned, 617-8 
phonons, 679

see sound 
photons, 33-4, 8 8

see X-ray and light scattering 
planar curve, 621 
planar magnet, 436-8 
plaquette, 249, 250, 578 
plasma, classical, 205 
plate-like molecule, 6 8  

plumbers’ nightmare, 71, 74, 327, 679 
point scatterers, 76
Poisson bracket, 218, 359, 393, 428, 465, 472-7, 

475-7, 679 
commutation, relation, 432 

Poisson ratio, 378, 533, 680 
negative, 338, 632 

Poisson summation formula, 582, 589, 680 
Pokrovsky-Talapov free energy, 636, 648, 680 
polarized light, scattering intensity, 307 
pole structure and dynamic response, 396-8 
polymerized membranes, 633 
polymers, 90-7 
poor solvent, 93, 671 
Potts critical end-point, 256 
Potts lattice gas, 253-6 
Potts model, 140, 201-2, 579-82, 592-3, 680 

four states, 592-3 
and percolation, 285-6 

power spectrum, 355, 683 
power-law peak, 325
pressure, 110, 116-17, 335, 340, 344, 444, 449, 

455, 459, 462 
Laplace, 487, 675 

primitive translation vector, 43 
primitive unit cell, 43
“problems”, 103-7, 209-12, 283-7, 347-52, 411-6, 

492-4, 585-9, 656-61

quadratic anisotropy, 269 
quantized flux, 572 
quantum  fluctuation, 1 0  

quasi-Bragg peak, 61, 313, 325 
quasi-crystals, 82-5, 563, 570 
quasi-elastic scattering, 32 
quasi-long-range order (QLRO), 61, 296, 322, 

341, 555, 680 
see long-range order 

quasi-periodic structures, 77 
see incommensurate 

quasi-static process, 1 1 0  

quench, 483

radial distribution function, 37, 40, 93 
radius of gyration, 91, 680 
random close packed lattice, 105 
random forces, 381-3
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random isotropic fractals, 90-7 
random phase approximation, 226 
random walk, 4, 90, 375, 680 
random-close-packed spheres, 41 
Rayleigh peak, 452, 680 
Rayleigh scattering, 377-8 
reactive couplings, 428 
reactive current, 427 
reciprocal lattice, 45, 46, 187 

incommensurate, 80, 83, 614 
quasicrystal, 85 

rectilinear diameters, law of, 166 
relevant field, 241, 253 
renormalization group, 242-75, 681 

fluid membranes, 624 
Kosterlitz-Thouless, 542-50, 554-57 
nonlinear σ model, 314-17 
polymerized membranes, 625 
see also momentum shell renormalization 

group, Migdal-Kadanoff procedure 
resistors, 381
response functions, 325, 362-5, 371-3 

diffusion, 372 
dissipation, 394-5
fluctuation-dissipation theorem, 387, 397-8 
harmonic oscillator, 362-5 
helium films, 554 
hydrodynamic, 425, 430, 452 
response to external fields, 390-2 
spectral representations, 395-7 
sum rules, and moment expansions, 398 
symmetry properties of response functions, 

392-4
see correlation functions, dynamic 

rigid rod, 58
rigid rotors on a lattice, 419-33 
rigidity, 1 0  

see elasticity 
rod-like molecule, 6 8  

rotational invariance, 35 
rotationally isotropic, 38 
roughening and faceting, 648-55 

Gaussian model, 645-6 
roughening transition, 646-8 
solid-on-solid model, 645-6 

runaway, 268

saddle point, 223-4, 624 
scaled equation o f state, 234 
scaling, 213 

corrections to, 241 
dynamic, 469 
energy density, 240 
in critical phenomena, 230-4 

scattering, chapter 2, 29-33, 399-410

see Bragg scattering, diffuse scattering 
scattering potential, 47 
Schrodinger equation, 390, 394 
Schroinger operator, 567 
screening in a classical plasma, 207 
screw axis, 57
screw dislocation, 509, 522, 532 

energy of, 532-3, 539 
SDS-pentanol-water lamellar smectic, 314 
second law, thermodynamics, 111, 119, 424 
second-order phase transition, 5, 144, 213-83 

bicritical-tetracritical, 181-3, 209 
commensurate-incommensurate, 77-82, 89, 

603, 640-3 
dislocation mediated melting, 555-9 
EuO, 235 
FeCl2, 175
He3-H34 mixtures, 179 
hexatic-isotropic fluid, 558 
Ising, 146-52, 153-6, 248-53 
Kosterlitz-Thouless, 542-54 
Landau point in biaxial nematics, 212 
Lifshitz, 184-87, 211 
liquid-gas, 159-67 
nonlinear σ model, 314-6 
On (n-vector) 156-7, 202-4, 263-73 
percolation, 2 0 2  

Potts lattice gas, 253-5 
roughening, 643 
self-consistent field, 226-30 
superconducting, 158, 571-3 
TGB-cholesteric, 556-8 
TGB-smectic-^4, 565-6 
tricritical, 173-5, 209 

self-avoiding random walk (SAW), 93-4, 140 
self-consistent field approximation, 226-30 
self-diffusion, 376-8 
self-similar, 90, 681 
shear distortion, 8, 317-18 
shear modulus, 320, 555 
shear (transverse) sound mode, 2, 369, 459 
shear viscosity, 447 
short-range order, 58, 322 
short-time behavior, 385-7 
simple cubic (SC), lattice, 53 
sine-Gordon, 589 

soliton, 599 
single scattering, 33 
singular continuous function, 604 
slip, 520
smectic liquid crystals, 58-65, 681 

smectic-Λ liquid crystals, 15, 61-5 
dislocations, 308, 507-12, 561-73 
elastic free energy, 309-12, 536 
elasticity, 308-16
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fluctuations, 312-14 
hydrodynamics, 456-9 
nonlinearities, 314-15 
order parameter, 61, 308, 315 
order parameter space, 509 
transition to nematic phase, 315-16 
transition to smectic-C phase, 158, 216 
types I and II, 564, 682 

smectic-B phase, 6 6  

smectic-C phase, 61-4 
disclinations, 506, 509 
order parameter, 64, 506 

smectic-F and -L  phase, 6 8 , 70 
Smoluchowski equation, 388-9, 473 
sodium nitrite, 79, 81 
soft mode, 290
solid-on-solid (SOS) models, 645 
solitary wave, 681 

see also solitons 
solitons, 590, 600, 681 

sine-Gordon, 599 
see also walls, kinks and solitons 

solvents, 93, 671 
Θ solvent, 94, 96 

sound, 429 
first in superfluid helium, 464 
second in superfluid helium, 454 
longitudinal in isotropic fluid, 450 
longitudinal in crystal, 460 
longitudinal in elastic continuum, 367 
in model rotator system, 429 
transverse in crystals, 460 
transverse in elastic continuum, 367 
third in superfluid helium films, 553 

sound velocity, 429 
spatial dimension, 15 
spatial homogeneity, 38 
specific heat, 115, 231, 425 

exponent a, 233 
spin correlation function, 295, 577-8 
spin dynamics, 434-5 
spin systems 

antiferromagnet isotropic, 438-9 
ferromagnets isotropic, 439 
generalized Heisenberg models, 435-6 
planar magnet, 436-8 

spin waves, 434, 440, 681 
spin-density wave, 136, 681 
spin-flip, 15, 24 
spin-flop transition, 182, 681 
spin-orbit interaction, 177 
spin-spin correlation function, 130 
spin-wave stiffness, 290, 341, 346, 542-4, 681 
spinodal curve, 484, 681 
spinodal decomposition, 484-9, 681

splay, 299, 681
stability of homogeneous fluids, 113-5
stability exponents, 268
stable fixed point, 245, 669
static cross-section, 31
static scattering, 32
stationary state, hydrodynamic, 422
steam, 3
steric entropy, 635-8 
sterically stabilized phases, 638-40, 642 
stochastic models, 

see models, stochastic 
stochastic variable, 375 
Stokes’ law, 360, 682 
strain, 11, 316, 682 

inverse compressibility, 328 
strain rate, 447, 682 
strain tensor 

linearized, 317 
Lagrangian, 331 
Eulerian, 331 

strength
of crystals, 518 
of vortex, 497 

stress, 682 
stress tensor, 334 

Lagrangian, 334-7 
Eulerian, 338-41 

stress-strain relations, 340 
striped phase, 618 
structure factor, 33 
structure function, 32 
structure and scattering, 29-103 
sum rules, 357, 398-9 

and moment expansions, 398 
superconductivity, 135, 216-17, 571 
supercooling, 171 
superfluids, 123, 575 

density, 290, 460 
free energy density, 575-6 
helium, 138, 289, 460-4, 551-5 
hydrodynamics, 460-4 

third sound in thin films, 553 
Kosterlitz-Thouless transition in thin films, 

551-4
longitudinal and transverse response, 575-7 
velocity, 460-4 
and xy  symmetry, 138 

superheating, 171 
superlattice peaks, 87 
surface tension, 481, 486, 635-8 
surfactants, 636, 638 
susceptibility, 231, 341 

critical exponent, 154, 228 
symmetries, and order parameters, 139
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symmetry group, 39, 133 
Euclidean, 39, 670 
O0, 139, 231
0 2, 137, 139, 231, 289
0 3, 138, 156, 230, 231 
On, 138, 156, 202, 298 
1/(1), 137
Z 2 (Ising) 135, 139, 152, 231 
Zjv 137, 139 

symmetry, order parameters, and models, 132-9 
continuous symmetries, 137-9 
discrete symmetries, 135-7 

symmorphic space group, 57

tangent plane, 623 
TDGL model, 466, 682 
temperature quench, 483-4 
tension, 335
tetracritical point, 181-2, 235, 253, 682 
tetrahedra, 7, 191
TGB see twist-grain-boundary phase 
thermal conductivity, 425 
thermal equilibrium, 381-3 
thermal fluctuation, 1 0  

thermodynamic 
critical field of the TGB phase, 564-5 
equilibrium, 417-9 
laws of, 109-12 
stability, 321 
sum rule, 357, 365 

thermodynamics of homogeneous fluids, 108-17 
thermotropic liquid crystal, 6 8 , 682 
thermotropism, 58 
Θ solvent, 94, 96, 682 
three-phase coexistence, 174 
third sound, 553 
time reversal, 133, 359, 361 
time translations, 133
time-dependent Ginzburg-Landau model, 466, 

682
time-of-flight measurements, 409 
topological defects, 12, 495-585, 682 

characterization, 495-506 
crystals

disclinations, 517-18 
dislocation mediated melting, 555-9 
energies of 526-42 
examples, 506-26
Kosterlitz-Thouless transition, 542-55 
nematic and hexatic liquid crystals, 524-6 
order parameters spaces and homotopy, 501-6 
periodic solids, 512-15 
see dislocations, disclinations, and vortices 

torus, 626
transfer matrix, 242

translation vector, 43 
translational invariance, 35, 329 
transport coefficients, 425 
transverse strain, 321 
triacontahedron, 190 
triangular, lattice, 51-3, 255, 520 
tricritical point, 173-5, 180, 181, 236, 253, 682 

three-state Potts critical point, 256 
turbidity of nematics, 307 
twist, 299-306, 561, 687 
twist disclination, 519 
twist wave vector, 89 
twist-grain-boundary phase, 561-73, 682 

analogy with superconductivity, 571-3 
X-ray scattering, 568-71 

twisted nematic 
see cholesteric liquid crystal 

twisted nematic display, 304 
two scale factor universality, 234 
two-component fluids, 453 
two-dimensional order, 15 

Bravais lattice, 50 
charge-density wave, 80 

smectic, 311 
hexagonal solids, 321 
orthogonal group 0 2, 137 

in three-dimensional materials, 71-7 
two-fluid model, 461

1/(1) symmetry, 289 
see xy symmetry 

undamped oscillator, 359 
undulations, smectic, 315 
unit cell, 43-6
universality class, 213, 230, 683
unstable fixed point, 245
up-down symmetry, 230
upper critical dimension, 213, 215, 228, 264, 6

upper critical field, 564
Ursell function, 35-6, 124, 195-6

vacancy, 49, 325, 683 
diffusion, 459 

Van der Waals attraction, 18-20, 683 
Van der Waals equations o f state, 144, 683 
Van Hove theory, 465, 471, 683 
variational mean-field theory, 198 
velocity correlation function, 385 
vesicle, 70, 73, 683 
vicinal surface, 648 
Villain model, 583, 645, 683 

duality, 578-9 
viscosity, 387, 447-8, 683 

table of common materials, 448 
kinematic, 449
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viscous force, 360
Volterra construction, 515, 517, 519, 683 
vortex energy, 526 
vortices, 495-9, 504-6 

analogy with magnetism, 530-1 
energy, 526-30 
helium films, 551-5 
Kosterlitz-Thouless transition, 544-51 
and the spin-wave stiffness, 542-4 
superfluid helium films, 551-5 
vortex pairs, 499-500 
in xy-models, 506-7

walls, kinks and solitons, 590-656 
domain walls in mean-field theory, 595-601 
dynamics, 599-601 
φ* kink, 597-9 
fluctuating walls, 620-35 

arrays, 635-43 
Frenkel-Kontorowa model, 601-20 
soliton, sine-Gordon, 599 

wandering exponent, 594, 629 
water

as example of condensed matter, 3-15 
ice crystals, 8 

dislocations, 12-13 
Navier-Stokes equation, 448 
phase diagram, 4 
viscosity, 448 

wave number cutoff, 152, 6 6 6  

wedge disclination, 519 
weight function, 2 2 1  

Weiner-Khintchine theorem, 355, 683 
Weiss molecular field theory, 144, 148, 683 
white noise source, 383, 466

Wigner-Seitz cell, 44-6, 50, 52, 683
winding number, 497, 503-5, 528, 603
wine bottle, 289
work hardening, 521, 683
Wulff construction, 653
Wulff plot, 654, 684
wurtzite, 9

X-ray diffraction and scattering, chapter 2, 33, 
67, 613-14 

from TGB phase, 568-71 
See scattering, Bragg scattering, and diffuse 

scattering 
X-ray structure factor, 325 
xenon, 79 

electron scattering, 560 
on graphite, 77, 324-6, 560 

incommensurate phases, 635 
xy-model, 288, 289, 495, 502, 506, 524, 544-5, 

684
elasticity, 289-90
longitudinal and transverse response, 575-7 
shear modulus, 555 
vortex energy, 526-30 
vortex unbinding, 555 

xy-symmetry, 137

Yang-Lee edge, 286, 684 
yield stress, 12, 518, 684 
Young’s modulus, 337, 533, 557, 684 

2-D, 632

Z 3 symmetry, 137 
Zjv symmetry, 289, 684





